Table 3.
Performance comparison of the exploratory models for low social interaction frequency and high levels of lonelinessa.
| Exploration goal and model | AUCb | Accuracy | Precision | Specificity | F1-score | ||||||||
| Macroc | Microd | ||||||||||||
| Low social interaction frequency |
|
|
|
|
|
|
|||||||
|
|
GBMe | 0.909 | 0.850 | 0.837 | 0.857 | 0.829 | 0.828 | ||||||
| LRf | 0.850 | 0.780 | 0.837 | 0.732 | 0.763 | 0.766 | |||||||
| RF g | 0.935 | 0.849 | 0.837 | 0.857 | 0.824 | 0.828 | |||||||
| XGBoosth | 0.907 | 0.840 | 0.814 | 0.857 | 0.814 | 0.814 | |||||||
| High levels of loneliness |
|
|
|
|
|
|
|||||||
|
|
GBM | 0.887 | 0.838 | 0.871 | 0.784 | 0.867 | 0.871 | ||||||
| LR | 0.804 | 0.779 | 0.839 | 0.676 | 0.825 | 0.825 | |||||||
| RF | 0.909 | 0.818 | 0.871 | 0.730 | 0.854 | 0.857 | |||||||
| XGBoost | 0.858 | 0.798 | 0.839 | 0.730 | 0.838 | 0.839 | |||||||
aThe italicized values indicate the machine learning models with the best performance within each category (ie, low social interaction frequency and high levels of loneliness).
bAUC: area under the receiver operator characteristic curve.
cAverage F1-score for 10 folds.
dCalculated as the sum of the confusion matrix of folds.
eGBM: Gradient Boosting Machine.
fLR: logistic regression.
gRF: random forest.
hXGBoost: Extreme Gradient Boosting.