Lyso-glycosphingolipids mobilize calcium from brain microsomes via multiple mechanisms

Emyr LLOYD-EVANS¹, Dori PELLED, Christian RIEBELING and Anthony H. FUTERMAN²

Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel

Recently, we demonstrated that the GSL (glycosphingolipid), GlcCer (glucosylceramide), modulates Ca^{2+} release from intracellular stores and from microsomes by sensitizing the RyaR (ryanodine receptor), a major Ca^{2+} -release channel of the endoplasmic reticulum, whereas the lyso derivative of GlcCer, namely GlcSph (glucosylsphingosine), induced Ca^{2+} release via a mechanism independent of the RyaR [Lloyd-Evans, Pelled, Riebeling, Bodennec, de-Morgan, Waller, Schiffmann and Futerman (2003) J. Biol. Chem. **278**, 23594–23599]. We now systematically examine the mechanism by which GlcSph and other lyso-GSLs modulate Ca^{2+} mobilization from rat brain cortical and cerebellar microsomes. GlcSph, lactosylsphingosine and galactosylsphingosine all mobilized Ca^{2+} , but at significantly higher concentrations than those required for GlcCer-mediated sensitization of the RyaR. GlcSph-induced Ca^{2+} mobilization was partially blocked

by heparin, an inhibitor of the $Ins(1,4,5)P_3$ receptor, and also partially blocked by thapsigargin or ADP, inhibitors of SERCA (sarcoplasmic/endoplasmic reticulum Ca²⁺-ATPase), but completely blocked when both acted together. In contrast, neither lactosylsphingosine nor galactosylsphingosine had any effect on Ca²⁺ release via either the $Ins(1,4,5)P_3$ receptor or SERCA, but acted as agonists of the RyaR. Finally, and surprisingly, all three lyso-GSLs reversed inhibition of SERCA by thapsigargin. We conclude that different lyso-GSLs modulate Ca²⁺ mobilization via different mechanisms, and discuss the relevance of these findings to the GSL storage diseases in which lyso-GSLs accumulate.

Key words: galactosylsphingosine, glucosylsphingosine, $Ins(1,4, 5)P_3$, lactosylsphingosine, ryanodine, thapsigargin.

INTRODUCTION

GSLs (glycosphingolipids) are important structural and regulatory components of biological membranes, in particular neuronal membranes [1]. Their lyso (i.e. N-deacylated) derivatives (lyso-GSLs) are found in much lesser amounts in normal tissues, and have also been implicated in a variety of regulatory roles, e.g. the regulation of Ca²⁺ homoeostasis [2–4], modulation of enzyme activities [5,6] and modulation of protein kinases [7,8]. Most research studies on lyso-GSLs have focused on determining their functions in the GSL storage diseases, where both GSLs and the lyso-GSL derivatives accumulate. Indeed, lyso-GSLs have been implicated as pathogenic molecules in these diseases, particularly in those associated with neuronal pathology [9]. For instance, in Krabbe's [10] and Gaucher's disease [11], GalSph (galactosylsphingosine, psychosine) and GlcSph (glucosylsphingosine) accumulate respectively to relatively high levels, and have been assigned pathogenic roles [12].

Recently, we demonstrated that the GSL GlcCer (glucosylceramide) modulates Ca^{2+} release from the endoplasmic reticulum [13] by sensitizing the RyaR (ryanodine receptor), although it does not act as an agonist of the RyaR [14]. As a consequence, neurons that accumulate GlcCer are more sensitive to agents that induce neuronal cell dysfunction or death via the RyaR [15]. Importantly, the amount of exogenously added GlcCer required to sensitize the RyaR was close to that which accumulated in microsomes derived from the brain of a neuronopathic patient with Gaucher's disease [14]. In contrast, the mechanism by which GlcSph modulated Ca^{2+} release did not involve the RyaR, as ryanodine did not block GlcSph-mediated Ca^{2+} release [14]. In the present study, we examine the mechanism by which GlcSph and LacSph (lactosylsphingosine) release Ca^{2+} from microsomes derived from rat brain cortex, a region enriched in the RyaR, and from rat brain cerebellum, a region enriched in the other major Ca^{2+} -release channel, the Ins P_3R [Ins(1,4,5) P_3 receptor] [16]. We demonstrate that all three lyso-GSLs modulate Ca^{2+} release from microsomes by mechanisms different from one another and also different from the one found for GlcCer.

EXPERIMENTAL

Materials

GalSph, GlcSph, antipyrylazo III, thapsigargin, A23187, heparin, Ins P_3 [Ins(1,4,5) P_3], palmitoyl CoA, creatine kinase, phosphocreatine, ATP, ADP and Ruthenium red were from Sigma. LacSph was from Avanti Polar Lipids (Alabaster, AL, U.S.A.). Ryano-dine was from Alomone Labs (Jerusalem, Israel). ⁴⁵Ca²⁺ (30 mCi/mg) was from Amersham Biosciences (Little Chalfont, Bucks., U.K.).

Rat brain microsomes

Wistar rats, obtained from the Weizmann Institute Breeding Center (Weizmann Institute of Science, Rehovot, Israel), were killed, their brains removed, separated into cerebral cortex and cerebellum, rapidly frozen in liquid nitrogen and stored at -80 °C. Microsomes (from 10 to 12 g of tissue) were prepared essentially as described in [17] with some modifications [14]. Tissue was suspended in a ratio of 1:4 (w/v) in ice-cold 0.32 M sucrose, 20 mM Hepes/KOH (pH 7.0), containing 0.4 mM PMSF, 0.8 µg/ml leupeptin and aprotinin (1.4 trypsin inhibitor

Abbreviations used: GalSph, galactosylsphingosine; GlcCer, glucosylceramide; GlcSph, glucosylsphingosine; GSL, glycosphingolipid; InsP₃, Ins(1,4,5)P₃; InsP₃R, I

² To whom correspondence should be addressed (e-mail tony.futerman@weizmann.ac.il)

unit) (buffer A), and homogenized at 4 °C using eight up- and downstrokes of a rotating Potter–Elvehjem-type homogenizer. After centrifugation (at 700 g for 10 min), the resulting pellet (P1) was gently resuspended in one-fourth of the original volume of buffer A, centrifuged (at 700 g for 10 min) and the two supernatants were pooled (S1). Mitochondria were removed by centrifugation (at 8000 g for 45 min) of S1 and the resulting supernatant (S2) was centrifuged (at 115 000 g for 90 min) to obtain a microsomal pellet (P3), which was resuspended in 0.4–0.8 ml of buffer A. Protein was determined [18] and the microsomes were subsequently flash-frozen in liquid nitrogen. Microsomes were stored at -80 °C and used up to 6 months after their preparation, when there was no change in their activity with respect to Ca²⁺ release and uptake.

Spectrophotometric assay of Ca²⁺ uptake and release

Ca²⁺ uptake and release were measured by a spectrophotometric assay using the Ca²⁺-sensitive dye, antipyrylazo III [17,19,20], with some modifications. Rat brain microsomes from either the cortex or cerebellum (330 μ g in 8–15 μ l, buffer A) were added to 0.95 ml of 8 mM Na-Mops (pH 7.0), 40 mM KCl, 62.5 mM K₂HPO₄ and 250 μ M antipyrylazo III, in a plastic cuvette, containing a magnetic stir bar, to which 1 mM Mg-ATP, 40 μ g/ml creatine kinase and 5 mM phosphocreatine (pH 7.0) were added. Ca²⁺ uptake and release were measured in a Cary spectrophotometer (Varian, Melbourne, Australia) at 37 °C by determining A_{790} – A_{710} at 2 s intervals. The effect of lyso-GSLs was tested by their addition after Ca²⁺ loading. Lyso-GSLs were dissolved in ethanol and the final ethanol concentration did not exceed 1 % (v/v) in the cuvette.

The amount of Ca^{2+} released from microsomes was expressed as a percentage of the total Ca^{2+} in the microsomes, obtained by summing Ca^{2+} taken up during the Ca^{2+} loading period together with endogenous Ca^{2+} from the microsomal preparation [measured separately after the addition of a Ca^{2+} ionophore, A23187 (2 μ M), without Ca^{2+} loading]. The rate of Ca^{2+} uptake into microsomes was calculated by measuring the linear portion of the slope after the addition of Ca^{2+} , agonist or lipid.

Kinetic assay of SERCA (sarcoplasmic/endoplasmic reticulum ATPase)

Ca²⁺ uptake by SERCA was determined radiometrically using a rapid filtration technique [21]. Rat cortical microsomes (350 μ g of protein) were incubated at 37 °C in 1.5 ml of buffer B [40 mM imidazole (pH 7.0), 100 mM KCl, 5 mM MgCl₂, 5 mM NaN₃, 5 mM potassium oxalate, 0.5 mM EGTA, 1 μ M Ruthenium red [21] (which blocks spontaneous Ca²⁺ release via the RyaR [22]), 10 μ Ci ⁴⁵Ca²⁺ and CaCl₂] to yield a final concentration of 1 μ M free Ca²⁺ (determined using an algorithm [23] and software available at http://www.stanford.edu/~cpatton/maxc.html). Lyso-GSLs (100 μ M) were added to buffer B for 2 min at 37 °C, with or without 50 μ M thapsigargin. Ca²⁺ uptake was initiated by 5 mM ATP, and was terminated after 1, 3 and 5 s by adding 3 ml of ice-cold washing solution (20 mM Hepes, pH 7.4/150 mM KCl/1.4 mM MgCl₂/2 mM KH₂PO₄) [24], followed by filtration through a HAWP 0.45 μ m Millipore filter. The initial rate (v_0) of Ca²⁺ uptake was calculated by linear regression analysis.

RESULTS AND DISCUSSION

In a recent study [14], we demonstrated that the maximal level of sensitization of the RyaR by GlcCer was obtained using a concentration of $10 \,\mu$ M, for both short- and long-acyl-chain GlcCer.

Figure 1 Effects of lyso-GSLs on Ca²⁺ release

Cortical microsomes were loaded by two sequential additions of 25 nmol of Ca²⁺ (not shown in the Figure), and then incubated with (**A**) increasing concentrations of lyso-GSLs or (**B**) with or without ryanodine (350 μ M) before addition of 100 μ M LacSph. Data are representative traces showing absorbance change ($A_{710}-A_{790}$) of antipyrylazo III versus time.

We now examine the effects of the lyso derivative of GlcCer, GlcSph and two other lyso-GSLs on Ca2+ mobilization. In contrast with GlcCer, 10 µM GlcSph, GalSph or LacSph had no effect on Ca²⁺ release from cortical microsomes (Figure 1A). A small amount of Ca^{2+} was released using 50 μ M of lyso-GSLs, and approx. 20% of microsomal Ca²⁺ was released at 100 μ M (Figure 1A), an amount close to that released by agonists of the RyaR such as palmitoyl CoA [14]. LacSph-mediated Ca²⁺ release was completely blocked by preincubation with $350 \,\mu M$ ryanodine (Figure 1B), demonstrating that LacSph is an agonist of the RyaR, as is GalSph [14]. The ability of ryanodine to abolish completely LacSph- (Figure 1B) and GalSph-mediated Ca²⁺ release [14] indicates that these lyso-GSLs do not affect the integrity of the microsomal membranes. GlcSph-mediated Ca²⁺ release was not affected by ryanodine [14], demonstrating that GlcSph mobilizes Ca^{2+} by a mechanism independent of the RyaR.

To determine the mechanism by which GlcSph stimulates Ca^{2+} release, we next analysed the ability of heparin, an $InsP_3R$ antagonist [25], to modulate GlcSph-induced Ca^{2+} release from cerebellar microsomes, which contain higher levels of the $InsP_3R$ when compared with cortical microsomes [26]. Significantly more Ca^{2+} was released from cerebellar when compared with cortical microsomes [26]. Significantly more Ca^{2+} was released from cerebellar when compared with cortical microsomes by 100 μ M GlcSph [approx. 35 % (Figure 2) compared with 20 % (see Figure 3) respectively]. GlcSph-induced Ca^{2+} release was blocked to a significant extent (approx. 60 %) by heparin (Figure 2), as was $InsP_3$ -induced Ca^{2+} release is mediated via the $InsP_3R$. In contrast, heparin had no effect on either GalSphor LacSph-induced Ca^{2+} release (Figure 2), consistent with the suggestion that GalSph and LacSph are specific RyaR agonists.

Since only part of the GlcSph-induced Ca^{2+} release could be blocked by heparin (Figure 2), and not at all by ryanodine, we sought an additional mechanism to explain the residual levels of GlcSph-mediated Ca^{2+} mobilization. Preincubation with either

Figure 2 Lyso-GSL-induced Ca^{2+} release via the $Ins\ensuremath{P_3}\ensuremath{R}$ in cerebellar microsomes

Cerebellar microsomes were loaded by two sequential additions of 25 nmol Ca²⁺ and then incubated with or without heparin (150 μ g/ml) before addition of 25 μ M InsP₃ or 100 μ M lyso-GSLs. Results are means <u>+</u> S.D. from 3 to 4 independent experiments.

Figure 3 Lyso-GSL-induced Ca²⁺ mobilization via SERCA and the Ins P_3R in cortical microsomes

Cortical microsomes were incubated with or without ADP (1 mM) for 10 min and loaded with Ca²⁺. Note that in the experiment in which ADP was added, ATP, creatine kinase and phosphocreatine were not added to the cuvette. Microsomes were then incubated either with 150 μ g/ml heparin or 150 μ M thapsigargin for 10 min, and then incubated with 100 μ M lyso-GSLs. In microsomes incubated with thapsigargin, an additional dose of 25 nmol of Ca²⁺ was added to confirm inhibition of SERCA-mediated Ca²⁺ uptake. Results are means \pm S.D. from three independent experiments.

thapsigargin (a specific SERCA inhibitor [27]) or ADP (which inhibits the ATPase activity of SERCA [28]) blocked GlcSphinduced Ca^{2+} release by approx. 55% in cortical microsomes (Figure 3). Incubation with both ADP and heparin almost completely blocked Ca²⁺ release (Figure 3), suggesting that GlcSph induces Ca^{2+} release via both the Ins P_3R and from thapsigarginsensitive Ca^{2+} stores, and confirms that 100 μM GlcSph does not affect microsomal integrity. Surprisingly, not only did thapsigargin block GlcSph-induced Ca²⁺ release (Figure 3), but addition of GlcSph either before (results not shown) or after (Figure 4) the addition of thapsigargin restored Ca²⁺ uptake into microsomes. Moreover, GalSph and LacSph also restored Ca²⁺ uptake to levels comparable with those in the absence of thapsigargin (Table 1), whereas neither thapsigargin nor ADP had any effect on Ca²⁺ release by these two lyso-GSLs (Figure 3). The ability of the three lyso-GSLs to reverse thapsigargin inhibition of Ca²⁺ uptake via SERCA was supported by analysis of v_0 of Ca²⁺ influx into cortical microsomes using a kinetic assay. In untreated microsomes, the v_0 of Ca²⁺ uptake was 2.8 and 1.1 nmol of $Ca^{2+} \cdot s^{-1} \cdot (mg \text{ of protein})^{-1}$ in the presence of 50 μ M thapsigargin (Table 2). The v_o of Ca²⁺ uptake was restored to

Figure 4 Reversal of thapsigargin inhibition of SERCA by GlcSph

Cortical microsomes were loaded with Ca²⁺ (not shown in the Figure), incubated with 150 μ M thapsigargin, loaded with a further dose of 25 nmol Ca²⁺ to confirm inhibition of SERCA-mediated Ca²⁺ uptake, followed by addition of 100 μ M GlcSph. A representative trace of absorbance change ($A_{710}-A_{790}$) versus time is shown.

Table 1 Reversal of thapsigargin inhibition of SERCA by lyso-GSLs

Cortical microsomes were loaded with Ca²⁺, incubated with or without thapsigargin (150 μ M), loaded with a further dose of 25 nmol of Ca²⁺ to confirm inhibition of SERCA-mediated Ca²⁺ uptake, followed by addition of 30 μ M palmitoyl CoA or 100 μ M lyso-GSL. Results are means \pm S.D. from 3 to 4 independent experiments.

	Rate of Ca ²⁺ uptake [nmol \cdot s ⁻¹ \cdot (mg of protein) ⁻¹]		
Agonist or Iyso-GSL	Before agonist or lyso-GSL	After agonist or lyso-GSL*	After thapsigargin followed by agonist or lyso-GSL
Palmitoyl CoA GlcSph GalSph LacSph	$\begin{array}{c} 0.41 \pm 0.07 \\ 0.36 \pm 0.05 \\ 0.35 \pm 0.01 \\ 0.38 \pm 0.07 \end{array}$	$\begin{array}{c} 0.12 \pm 0.03 \\ 0.08 \pm 0.02 \\ 0.10 \pm 0.02 \\ 0.11 \pm 0.01 \end{array}$	$\begin{array}{c} 0.0 \pm 0.0 \\ 0.13 \pm 0.03 \\ 0.08 \pm 0.01 \\ 0.11 \pm 0.00 \end{array}$

* The rate of Ca^{2+} uptake after the addition of palmitoyl CoA or lyso-GSL is lower than that in their absence, since both induce Ca^{2+} release (via different mechanisms), and the values measured are therefore a combination of Ca^{2+} uptake and release.

Table 2 Effect of lyso-GSLs on reversing thapsigargin-mediated SERCA inhibition

Cortical microsomes were preincubated with or without thapsigargin (50 μ M) followed by incubation with 100 μ M lyso-GSLs, and the v_0 of Ca²⁺ uptake was measured using ⁴⁵Ca²⁺. Results are means \pm S.D. from 3 to 4 independent experiments.

Lipid	Initial rate (v_0) of SERCA activity [nmol of Ca ²⁺ uptake \cdot s ⁻¹ \cdot (mg of protein) ⁻¹]
Control	2.8 ± 0.2
GlcSph	2.9 ± 0.3
GalSph	1.9 ± 0.1
LacSph	1.9 ± 0.3
Thapsigargin	$1.1 \pm 0.1^{*}$
GlcSph + thapsigargin	2.3 ± 0.3
GalSph + thapsigargin	2.3 ± 0.4
LacSph + thapsigargin	2.0 ± 0.3
P < 0.01 (by ANOVA followed	by Tukey–Kramer all pairs analysis).

2.0–2.3 nmol of $Ca^{2+} \cdot s^{-1} \cdot (mg \text{ of protein})^{-1}$ when thapsigargintreated microsomes were incubated with the lyso-GSLs, suggesting that these lyso-lipids reverse the inhibition of SERCA

Figure 5 Summary of effects of lyso-GSLs on Ca²⁺ mobilization

GalSph and LacSph are agonists of the RyaR, as their action, similarly to that of the known RyaR agonist, palmitoyl CoA, can be blocked by high concentrations of ryanodine or by Ruthenium Red. GlcSph is an agonist of the Ins P_3 R, as its activity can be partially blocked by heparin. GlcSph as well as GalSph and LacSph reverse thapsigargin-mediated inhibition of SERCA, but GlcSph also mediates Ca²⁺ release from thapsigargin-sensitive Ca²⁺ stores.

by thapsigargin. This surprising result suggests that thapsigargin may not be an irreversible inhibitor of SERCA as assumed previously [27].

Together, these results show that lyso-GSLs mediate Ca²⁺ mobilization from microsomes via multiple mechanisms, with a high degree of specificity (Figure 5). However, none of the lyso-GSLs mediate their actions via G-protein-coupled receptors since their effects could not be blocked by GDP β S or pertussis toxin ([14]; C. Riebeling and A. H. Futerman, unpublished work). Thus GlcSph mobilizes Ca²⁺ as an Ins*P*₃R agonist from thapsigargin-sensitive Ca²⁺ stores (Figure 5), but does not sensitize the RyaR like GlcCer [14], whereas both GalSph and LacSph are RyaR agonists (Figure 5). This might suggest that lyso-GSLs with terminal galactose moieties act in a manner differently from GSLs with terminal glucose moieties. Similarly, GlcCer, but not galactosylceramide, activates CTP:phosphocholine cytidylyltransferase [29]. Also, GlcCer, but not galactosylceramide or lactosylceramide, sensitizes the RyaR [14].

It is a matter of debate whether the effects of lyso-GSLs on Ca²⁺ mobilization are relevant for understanding the molecular mechanisms of neuronal dysfunction in the GSL storage diseases in which lyso-GSLs accumulate. The lyso-GSL concentrations required to elicit an effect are significantly higher than those of the GSLs, at least for GlcSph versus GlcCer, and are also significantly higher than the levels found in tissues from GSL patients and animal models. We have recently measured GlcSph levels in the cortex [30] of a glucocerebrosidase-deficient mouse [31] and in brain microsomes [14] of a patient suffering from a neuronopathic form of Gaucher's disease, in which GlcSph levels were 2 and 5 nmol/mg of protein respectively. Calculation of the molar concentration of GlcSph in human brain microsomes gives a value of approx. 1.5 μ M [14], levels at which GlcSph has no effect on Ca^{2+} release (Figure 1), implying that GlcSph would need to accumulate at levels 10-50-fold higher than that found in tissues from patients with Gaucher's disease. We therefore conclude that, despite the specificity of lyso-GSL-induced Ca²⁺ release, these effects are unlikely to account for the pathophysiological mechanisms of neuronal dysfunction in GSL storage diseases, such as Gaucher's disease, in which GlcCer accumulates at higher levels than GlcSph [14,30,32], and affects Ca²⁺ mobilization at lower levels. Similarly, the effects of lyso-GSLs on other enzyme activities and on protein kinase C may be of pharmacological but not of physiological relevance.

This work was supported by the Israel Science Foundation (grant no. 290/00). C.R. is supported by a Research Training Network fellowship from the European Union (HPRN-CT-2000-00077). A. H. F. is the Joseph Meyerhoff Professor of Biochemistry at the Weizmann Institute of Science.

REFERENCES

- Buccoliero, R., Bodennec, J. and Futerman, A. H. (2002) The role of sphingolipids in neuronal development: lessons from models of sphingolipid storage diseases. Neurochem. Res. 27, 565–574
- 2 Okajima, F. and Kondo, Y. (1995) Pertussis toxin inhibits phospholipase C activation and Ca²⁺ mobilization by sphingosylphosphorylcholine and galactosylsphingosine in HL60 leukemia cells. Implications of GTP-binding protein-coupled receptors for lysosphingolipids. J. Biol. Chem. **270**, 26332–26340
- 3 Liu, R., Farach-Carson, M. C. and Karin, N. J. (1995) Effects of sphingosine derivatives on MC3T3-E1 pre-osteoblasts: psychosine elicits release of calcium from intracellular stores. Biochem. Biophys. Res. Commun. 214, 676–684
- 4 Himmel, H. M., Meyer zu Heringdorf, D., Windorfer, B., van Koppen, C. J., Ravens, U. and Jakobs, K. H. (1998) Guanine nucleotide-sensitive inhibition of L-type Ca²⁺ current by lysosphingolipids in RINm5F insulinoma cells. Mol. Pharmacol. **53**, 862–869
- 5 Igisu, H., Hamasaki, N., Ito, A. and Ou, W. (1988) Inhibition of cytochrome c oxidase and hemolysis caused by Iysosphingolipids. Lipids 23, 345–348
- 6 Sohal, P. S. and Cornell, R. B. (1990) Sphingosine inhibits the activity of rat liver CTP:phosphocholine cytidylyltransferase. J. Biol. Chem. 265, 11746–11750
- 7 Hannun, Y. A. and Bell, R. M. (1987) Lysosphingolipids inhibit protein kinase C: implications for the sphingolipidoses. Science 235, 670–674
- 8 Hannun, Y. A. and Bell, R. M. (1989) Functions of sphingolipids and sphingolipid breakdown products in cellular regulation. Science 243, 500–507
- 9 Ariga, T., Jarvis, W. D. and Yu, R. K. (1998) Role of sphingolipid-mediated cell death in neurodegenerative diseases. J. Lipid Res. 39, 1–16
- 10 Wegner, D. A., Suzuki, K., Suzuki, Y. and Suzuki, K. (2001) Galactosylceramide lipidosis: globoid cell leukodystrophy (Krabbe disease). In The Metabolic and Molecular Bases of Inherited Disease, vol. 2 (Scriver, C. R., Sly, W. S., Childs, B., Beaudet, A. L., Valle, D., Kinzler, K. W. and Vogelstein, B., eds.), pp. 3669–3694, McGraw-Hill, New York
- 11 Beutler, E. and Grabowski, G. A. (2001) Gaucher disease. In The Metabolic and Molecular Bases of Inherited Disease, vol. 2 (Scriver, C. R., Sly, W. S., Childs, B., Beaudet, A. L., Valle, D., Kinzler, K. W. and Vogelstein, B., eds.), pp. 3635–3668, McGraw-Hill, New York
- 12 Suzuki, K. (1998) Twenty five years of the 'psychosine hypothesis': a personal perspective of its history and present status. Neurochem. Res. 23, 251–259
- 13 Korkotian, E., Schwarz, A., Pelled, D., Schwarzmann, G., Segal, M. and Futerman, A. H. (1999) Elevation of intracellular glucosylceramide levels results in an increase in endoplasmic reticulum density and in functional calcium stores in cultured neurons. J. Biol. Chem. **274**, 21673–21678
- 14 Lloyd-Evans, E., Pelled, D., Riebeling, C., Bodennec, J., de-Morgan, A., Waller, H., Schiffmann, R. and Futerman, A. H. (2003) Glucosylceramide and glucosylsphingosine modulate calcium mobilization from brain microsomes via different mechanisms. J. Biol. Chem. **278**, 23594–23599

- 15 Pelled, D., Shogomori, H. and Futerman, A. H. (2000) The increased sensitivity of neurons with elevated glucocerebroside to neurotoxic agents can be reversed by imiglucerase. J. Inherit. Metab. Dis. 23, 175–184
- Nowycky, M. C. and Thomas, A. P. (2002) Intracellular calcium signaling. J. Cell Sci. 115, 3715–3716
- 17 Betto, R., Teresi, A., Turcato, F., Salviati, G., Sabbadini, R. A., Krown, K., Glembotski, C. C., Kindman, L. A., Dettbarn, C., Pereon, Y. et al. (1997) Sphingosylphosphocholine modulates the ryanodine receptor/calcium-release channel of cardiac sarcoplasmic reticulum membranes. Biochem. J. **322**, 327–333
- 18 Bradford, M. M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254
- 19 Palade, P. (1987) Drug-induced Ca²⁺ release from isolated sarcoplasmic reticulum. III. Block of Ca²⁺-induced Ca²⁺ release by organic polyamines. J. Biol. Chem. **262**, 6149–6154
- 20 Dettbarn, C., Betto, R., Salviati, G., Sabbadini, R. and Palade, P. (1995) Involvement of ryanodine receptors in sphingosylphosphorylcholine-induced calcium release from brain microsomes. Brain Res. 669, 79–85
- 21 Ji, Y., Loukianov, E. and Periasamy, M. (1999) Analysis of sarcoplasmic reticulum Ca²⁺ transport and Ca²⁺ ATPase enzymatic properties using mouse cardiac tissue homogenates. Anal. Biochem. **269**, 236–244
- 22 Imagawa, T., Smith, J. S., Coronado, R. and Campbell, K. P. (1987) Purified ryanodine receptor from skeletal muscle sarcoplasmic reticulum is the Ca²⁺-permeable pore of the calcium release channel. J. Biol. Chem. **262**, 16636–16643
- 23 Fabiato, A. and Fabiato, F. (1979) Calculator programs for computing the composition of the solutions containing multiple metals and ligands used for experiments in skinned muscle cells. J. Physiol. (Paris) 75, 463–505

Received 24 April 2003/31 July 2003; accepted 13 August 2003 Published as BJ Immediate Publication 13 August 2003, DOI 10.1042/BJ20030613

- 24 Wells, K. M. and Abercrombie, R. F. (1998) Luminal Ca²⁺ protects against thapsigargin inhibition in neuronal endoplasmic reticulum. J. Biol. Chem. 273, 5020–5025
- 25 Ghosh, T. K., Bian, J. H. and Gill, D. L. (1994) Sphingosine 1-phosphate generated in the endoplasmic reticulum membrane activates release of stored calcium. J. Biol. Chem. 269, 22628–22635
- 26 Mikoshiba, K. (1997) The Ins P_3 receptor and intracellular Ca²⁺ signaling. Curr. Opin. Neurobiol. **7**, 339–345
- 27 Treiman, M., Caspersen, C. and Christensen, S. B. (1998) A tool coming of age: thapsigargin as an inhibitor of sarco-endoplasmic reticulum Ca²⁺-ATPases. Trends Pharmacol. Sci. **19**, 131–135
- 28 Berman, M. C. (2000) Characterisation of thapsigargin-releasable Ca²⁺ from the Ca²⁺-ATPase of sarcoplasmic reticulum at limiting [Ca²⁺]. Biochim. Biophys. Acta **1509**, 42–54
- 29 Bodennec, J., Pelled, D., Riebeling, C., Trajkovic, S. and Futerman, A. H. (2002) Phosphatidylcholine synthesis is elevated in neuronal models of Gaucher disease due to direct activation of CTP:phosphocholine cytidylyltransferase by glucosylceramide. FASEB J. **16**, 1814–1816
- 30 Bodennec, J., Bodennec-Trajcovic, S. and Futerman, A. H. (2003) Simultaneous quantification of lyso-neutral glycosphingolipids and neutral glycosphingolipids by N-acetylation with [³H]acetic anhydride. J. Lipid. Res. 44, 1413–1419
- 31 Tybulewicz, V. L. J., Tremblay, M. L., LaMrca, M. E., Willemsen, R., Stubblefield, B. K., Winfield, S., Zablocka, B., Sidransky, E., Martin, B. M., Huang, S. P. et al. (1992) Animal model of Gaucher's disease from targeted disruption of the mouse glucocerebrosidase gene. Nature (London) 357, 407–410
- 32 Nilsson, O. and Svennerholm, L. (1982) Accumulation of glucosylceramide and glucosylsphingosine (psychosine) in cerebrum and cerebellum in infantile and juvenile Gaucher disease. J. Neurochem. **39**, 709–718