Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2004 Jan 15;377(Pt 2):395–405. doi: 10.1042/BJ20030638

Analysis of the interaction between piD261/Bud32, an evolutionarily conserved protein kinase of Saccharomyces cerevisiae, and the Grx4 glutaredoxin.

Raffaele Lopreiato 1, Sonia Facchin 1, Geppo Sartori 1, Giorgio Arrigoni 1, Stefano Casonato 1, Maria Ruzzene 1, Lorenzo A Pinna 1, Giovanna Carignani 1
PMCID: PMC1223863  PMID: 14519092

Abstract

The Saccharomyces cerevisiae piD261/Bud32 protein and its structural homologues, which are present along the Archaea-Eukarya lineage, constitute a novel protein kinase family (the piD261 family) distantly related in sequence to the eukaryotic protein kinase superfamily. It has been demonstrated that the yeast protein displays Ser/Thr phosphotransferase activity in vitro and contains all the invariant residues of the family. This novel protein kinase appears to play an important cellular role as deletion in yeast of the gene encoding piD261/Bud32 results in the alteration of fundamental processes such as cell growth and sporulation. In this work we show that the phosphotransferase activity of Bud32 is relevant to its functionality in vivo, but is not the unique role of the protein, since mutants which have lost catalytic activity but not native conformation can partially complement the disruption of the gene encoding piD261/Bud32. A two-hybrid approach has led to the identification of several proteins interacting with Bud32; in particular a glutaredoxin (Grx4), a putative glycoprotease (Ykr038/Kae1) and proteins of the Imd (inosine monophosphate dehydrogenase) family seem most plausible interactors. We further demonstrate that Grx4 directly interacts with Bud32 and that it is phosphorylated in vitro by Bud32 at Ser-134. The functional significance of the interaction between Bud32 and the putative protease Ykr038/Kae1 is supported by its evolutionary conservation.

Full Text

The Full Text of this article is available as a PDF (336.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abdullah K. M., Lo R. Y., Mellors A. Cloning, nucleotide sequence, and expression of the Pasteurella haemolytica A1 glycoprotease gene. J Bacteriol. 1991 Sep;173(18):5597–5603. doi: 10.1128/jb.173.18.5597-5603.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Abe Y., Matsumoto S., Wei S., Nezu K., Miyoshi A., Kito K., Ueda N., Shigemoto K., Hitsumoto Y., Nikawa J. Cloning and characterization of a p53-related protein kinase expressed in interleukin-2-activated cytotoxic T-cells, epithelial tumor cell lines, and the testes. J Biol Chem. 2001 Sep 6;276(47):44003–44011. doi: 10.1074/jbc.M105669200. [DOI] [PubMed] [Google Scholar]
  3. Bonneaud N., Ozier-Kalogeropoulos O., Li G. Y., Labouesse M., Minvielle-Sebastia L., Lacroute F. A family of low and high copy replicative, integrative and single-stranded S. cerevisiae/E. coli shuttle vectors. Yeast. 1991 Aug-Sep;7(6):609–615. doi: 10.1002/yea.320070609. [DOI] [PubMed] [Google Scholar]
  4. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  5. Briza Peter, Bogengruber Edith, Thür Albert, Rützler Michael, Münsterkötter Martin, Dawes Ian W., Breitenbach Michael. Systematic analysis of sporulation phenotypes in 624 non-lethal homozygous deletion strains of Saccharomyces cerevisiae. Yeast. 2002 Mar 30;19(5):403–422. doi: 10.1002/yea.843. [DOI] [PubMed] [Google Scholar]
  6. Chu S., DeRisi J., Eisen M., Mulholland J., Botstein D., Brown P. O., Herskowitz I. The transcriptional program of sporulation in budding yeast. Science. 1998 Oct 23;282(5389):699–705. doi: 10.1126/science.282.5389.699. [DOI] [PubMed] [Google Scholar]
  7. Clemente M. L., Sartori G., Cardazzo B., Carignani G. Analysis of an 11.6 kb region from the right arm of chromosome VII of Saccharomyces cerevisiae between the RAD2 and the MES1 genes reveals the presence of three new genes. Yeast. 1997 Mar 15;13(3):287–290. doi: 10.1002/(SICI)1097-0061(19970315)13:3<287::AID-YEA75>3.0.CO;2-5. [DOI] [PubMed] [Google Scholar]
  8. Deutschbauer Adam M., Williams Roy M., Chu Angela M., Davis Ronald W. Parallel phenotypic analysis of sporulation and postgermination growth in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A. 2002 Nov 13;99(24):15530–15535. doi: 10.1073/pnas.202604399. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Donella-Deana A., James P., Staudenmann W., Cesaro L., Marin O., Brunati A. M., Ruzzene M., Pinna L. A. Isolation from spleen of a 57-kDa protein substrate of the tyrosine kinase Lyn. Identification as a protein related to protein disulfide-isomerase and localisation of the phosphorylation sites. Eur J Biochem. 1996 Jan 15;235(1-2):18–25. doi: 10.1111/j.1432-1033.1996.00018.x. [DOI] [PubMed] [Google Scholar]
  10. Facchin Sonia, Lopreiato Raffaele, Ruzzene Maria, Marin Oriano, Sartori Geppo, Götz Claudia, Montenarh Mathias, Carignani Giovanna, Pinna Lorenzo A. Functional homology between yeast piD261/Bud32 and human PRPK: both phosphorylate p53 and PRPK partially complements piD261/Bud32 deficiency. FEBS Lett. 2003 Aug 14;549(1-3):63–66. doi: 10.1016/s0014-5793(03)00770-1. [DOI] [PubMed] [Google Scholar]
  11. Facchin Sonia, Lopreiato Raffaele, Stocchetto Silvia, Arrigoni Giorgio, Cesaro Luca, Marin Oriano, Carignani Giovanna, Pinna Lorenzo A. Structure-function analysis of yeast piD261/Bud32, an atypical protein kinase essential for normal cell life. Biochem J. 2002 Jun 1;364(Pt 2):457–463. doi: 10.1042/BJ20011376. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Facchin Sonia, Sarno Stefania, Marin Oriano, Lopreiato Raffaele, Sartori Geppo, Pinna Lorenzo A. Acidophilic character of yeast PID261/BUD32, a putative ancestor of eukaryotic protein kinases. Biochem Biophys Res Commun. 2002 Sep 6;296(5):1366–1371. doi: 10.1016/s0006-291x(02)02090-9. [DOI] [PubMed] [Google Scholar]
  13. Finkel T., Holbrook N. J. Oxidants, oxidative stress and the biology of ageing. Nature. 2000 Nov 9;408(6809):239–247. doi: 10.1038/35041687. [DOI] [PubMed] [Google Scholar]
  14. Fromont-Racine M., Rain J. C., Legrain P. Toward a functional analysis of the yeast genome through exhaustive two-hybrid screens. Nat Genet. 1997 Jul;16(3):277–282. doi: 10.1038/ng0797-277. [DOI] [PubMed] [Google Scholar]
  15. Gharahdaghi F., Weinberg C. R., Meagher D. A., Imai B. S., Mische S. M. Mass spectrometric identification of proteins from silver-stained polyacrylamide gel: a method for the removal of silver ions to enhance sensitivity. Electrophoresis. 1999 Mar;20(3):601–605. doi: 10.1002/(SICI)1522-2683(19990301)20:3<601::AID-ELPS601>3.0.CO;2-6. [DOI] [PubMed] [Google Scholar]
  16. Gibbs C. S., Zoller M. J. Rational scanning mutagenesis of a protein kinase identifies functional regions involved in catalysis and substrate interactions. J Biol Chem. 1991 May 15;266(14):8923–8931. [PubMed] [Google Scholar]
  17. Gietz R. Daniel, Woods Robin A. Transformation of yeast by lithium acetate/single-stranded carrier DNA/polyethylene glycol method. Methods Enzymol. 2002;350:87–96. doi: 10.1016/s0076-6879(02)50957-5. [DOI] [PubMed] [Google Scholar]
  18. Ho Yuen, Gruhler Albrecht, Heilbut Adrian, Bader Gary D., Moore Lynda, Adams Sally-Lin, Millar Anna, Taylor Paul, Bennett Keiryn, Boutilier Kelly. Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry. Nature. 2002 Jan 10;415(6868):180–183. doi: 10.1038/415180a. [DOI] [PubMed] [Google Scholar]
  19. Holmes C. F. A new method for the selective isolation of phosphoserine-containing peptides. FEBS Lett. 1987 May 4;215(1):21–24. doi: 10.1016/0014-5793(87)80106-0. [DOI] [PubMed] [Google Scholar]
  20. Hunt D. F., Yates J. R., 3rd, Shabanowitz J., Winston S., Hauer C. R. Protein sequencing by tandem mass spectrometry. Proc Natl Acad Sci U S A. 1986 Sep;83(17):6233–6237. doi: 10.1073/pnas.83.17.6233. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Kukuruzinska M. A., Lennon K. Diminished activity of the first N-glycosylation enzyme, dolichol-P-dependent N-acetylglucosamine-1-P transferase (GPT), gives rise to mutant phenotypes in yeast. Biochim Biophys Acta. 1995 Feb 22;1247(1):51–59. doi: 10.1016/0167-4838(94)00201-q. [DOI] [PubMed] [Google Scholar]
  22. Leonard C. J., Aravind L., Koonin E. V. Novel families of putative protein kinases in bacteria and archaea: evolution of the "eukaryotic" protein kinase superfamily. Genome Res. 1998 Oct;8(10):1038–1047. doi: 10.1101/gr.8.10.1038. [DOI] [PubMed] [Google Scholar]
  23. Meyer H. E., Swiderek K., Hoffmann-Posorske E., Korte H., Heilmeyer L. M., Jr Quantitative determination of phosphoserine by high-performance liquid chromatography as the phenylthiocarbamyl-S-ethylcysteine. Application to picomolar amounts of peptides and proteins. J Chromatogr. 1987 Jun 26;397:113–121. doi: 10.1016/s0021-9673(01)84994-3. [DOI] [PubMed] [Google Scholar]
  24. Morel Y., Barouki R. Repression of gene expression by oxidative stress. Biochem J. 1999 Sep 15;342(Pt 3):481–496. [PMC free article] [PubMed] [Google Scholar]
  25. Ni L., Snyder M. A genomic study of the bipolar bud site selection pattern in Saccharomyces cerevisiae. Mol Biol Cell. 2001 Jul;12(7):2147–2170. doi: 10.1091/mbc.12.7.2147. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Niedenthal R. K., Riles L., Johnston M., Hegemann J. H. Green fluorescent protein as a marker for gene expression and subcellular localization in budding yeast. Yeast. 1996 Jun 30;12(8):773–786. doi: 10.1002/(SICI)1097-0061(19960630)12:8%3C773::AID-YEA972%3E3.0.CO;2-L. [DOI] [PubMed] [Google Scholar]
  27. Resing K. A., Johnson R. S., Walsh K. A. Mass spectrometric analysis of 21 phosphorylation sites in the internal repeat of rat profilaggrin, precursor of an intermediate filament associated protein. Biochemistry. 1995 Jul 25;34(29):9477–9487. doi: 10.1021/bi00029a024. [DOI] [PubMed] [Google Scholar]
  28. Rodríguez-Manzaneque M. T., Ros J., Cabiscol E., Sorribas A., Herrero E. Grx5 glutaredoxin plays a central role in protection against protein oxidative damage in Saccharomyces cerevisiae. Mol Cell Biol. 1999 Dec;19(12):8180–8190. doi: 10.1128/mcb.19.12.8180. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Rodríguez-Manzaneque María Teresa, Tamarit Jordi, Bellí Gemma, Ros Joaquim, Herrero Enrique. Grx5 is a mitochondrial glutaredoxin required for the activity of iron/sulfur enzymes. Mol Biol Cell. 2002 Apr;13(4):1109–1121. doi: 10.1091/mbc.01-10-0517. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Ruzzene M., Brunati A. M., Sarno S., Donella-Deana A., Pinna L. A. Hematopoietic lineage cell specific protein 1 associates with and down-regulates protein kinase CK2. FEBS Lett. 1999 Nov 12;461(1-2):32–36. doi: 10.1016/s0014-5793(99)01409-x. [DOI] [PubMed] [Google Scholar]
  31. Sartori G., Mazzotta G., Stocchetto S., Pavanello A., Carignani G. Inactivation of six genes from chromosomes VII and XIV of Saccharomyces cerevisiae and basic phenotypic analysis of the mutant strains. Yeast. 2000 Feb;16(3):255–265. doi: 10.1002/(SICI)1097-0061(200002)16:3<255::AID-YEA520>3.0.CO;2-#. [DOI] [PubMed] [Google Scholar]
  32. Shaw R. J., Wilson J. L., Smith K. T., Reines D. Regulation of an IMP dehydrogenase gene and its overexpression in drug-sensitive transcription elongation mutants of yeast. J Biol Chem. 2001 Jul 5;276(35):32905–32916. doi: 10.1074/jbc.M105075200. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Stocchetto S., Marin O., Carignani G., Pinna L. A. Biochemical evidence that Saccharomyces cerevisiae YGR262c gene, required for normal growth, encodes a novel Ser/Thr-specific protein kinase. FEBS Lett. 1997 Sep 1;414(1):171–175. doi: 10.1016/s0014-5793(97)00980-0. [DOI] [PubMed] [Google Scholar]
  34. Stotz A., Linder P. The ADE2 gene from Saccharomyces cerevisiae: sequence and new vectors. Gene. 1990 Oct 30;95(1):91–98. doi: 10.1016/0378-1119(90)90418-q. [DOI] [PubMed] [Google Scholar]
  35. Williams B. A., Sillaots S., Tsang A., Storms R. Isolation by genetic complementation of two differentially expressed genes for beta-isopropylmalate dehydrogenase from Aspergillus niger. Curr Genet. 1996 Sep;30(4):305–311. doi: 10.1007/s002940050137. [DOI] [PubMed] [Google Scholar]
  36. Winzeler E. A., Shoemaker D. D., Astromoff A., Liang H., Anderson K., Andre B., Bangham R., Benito R., Boeke J. D., Bussey H. Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. Science. 1999 Aug 6;285(5429):901–906. doi: 10.1126/science.285.5429.901. [DOI] [PubMed] [Google Scholar]
  37. Witte S., Villalba M., Bi K., Liu Y., Isakov N., Altman A. Inhibition of the c-Jun N-terminal kinase/AP-1 and NF-kappaB pathways by PICOT, a novel protein kinase C-interacting protein with a thioredoxin homology domain. J Biol Chem. 2000 Jan 21;275(3):1902–1909. doi: 10.1074/jbc.275.3.1902. [DOI] [PubMed] [Google Scholar]
  38. Wysocki R., Van Dyck E., Fairhead C., Foury F. Mass-murdering: deletion of twenty-three ORFs from Saccharomyces cerevisiae chromosome XI reveals five genes essential for growth and three genes conferring detectable mutant phenotype. Gene. 1999 Mar 18;229(1-2):37–45. doi: 10.1016/s0378-1119(99)00030-x. [DOI] [PubMed] [Google Scholar]
  39. Zimmermann A. G., Gu J. J., Laliberté J., Mitchell B. S. Inosine-5'-monophosphate dehydrogenase: regulation of expression and role in cellular proliferation and T lymphocyte activation. Prog Nucleic Acid Res Mol Biol. 1998;61:181–209. doi: 10.1016/s0079-6603(08)60827-2. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES