Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2004 May 1;379(Pt 3):815–822. doi: 10.1042/BJ20031500

Structural and functional dissection of the adhesive domains of Plasmodium falciparum thrombospondin-related anonymous protein (TRAP).

Reetesh Raj Akhouri 1, Arindam Bhattacharyya 1, Priyabrata Pattnaik 1, Pawan Malhotra 1, Amit Sharma 1
PMCID: PMC1224115  PMID: 14741048

Abstract

TRAP (thrombospondin-related anonymous protein) is a sporozoite surface protein that plays a central role in hepatocyte invasion. We have developed procedures for recombinant production of the entire ECD (extracellular domain) and A domain of TRAP using bacterial- and baculovirus-expression systems respectively. The ECD and A domain were purified to homogeneity and migrated on gel-filtration columns as non-aggregated, monomeric proteins. These adhesive modules bound to HepG2 cells in a dose-dependent and bivalent cation-independent manner. The binding of ECD and the A domain to HepG2 cells was inhibited poorly by an excess of sulphatide analogues, suggesting the presence of as yet unidentified receptors for the A domain on hepatocytes. Using surface-plasmon-resonance-based sensor technology (Biacore), we demonstrate that TRAP ECD has higher affinity for heparin (K(D)=40 nM) compared with the A domain (K(D)=79 nM). We also present a three-dimensional structure of the A domain based on the crystal structure of the homologous von Willebrand factor A1 domain. The TRAP A domain shows two spatially distinct ligand-binding surfaces. One surface on the A domain contains the MIDAS (metal-ion-dependent adhesion site) motif, where point mutations of Thr131 and Asp162 correlate with impairment of cell infectivity by sporozoites. The other surface contains a putative heparin-binding site and consists of a basic residue cluster. Our studies suggest that TRAP interacts with multiple receptors during the hepatocyte invasion process. Our results also pave the way for inclusion of these high-quality recombinant TRAP domains in subunit-based vaccines against malaria.

Full Text

The Full Text of this article is available as a PDF (298.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Cerami C., Frevert U., Sinnis P., Takacs B., Clavijo P., Santos M. J., Nussenzweig V. The basolateral domain of the hepatocyte plasma membrane bears receptors for the circumsporozoite protein of Plasmodium falciparum sporozoites. Cell. 1992 Sep 18;70(6):1021–1033. doi: 10.1016/0092-8674(92)90251-7. [DOI] [PubMed] [Google Scholar]
  2. Cerami C., Frevert U., Sinnis P., Takacs B., Nussenzweig V. Rapid clearance of malaria circumsporozoite protein (CS) by hepatocytes. J Exp Med. 1994 Feb 1;179(2):695–701. doi: 10.1084/jem.179.2.695. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Emsley J., Cruz M., Handin R., Liddington R. Crystal structure of the von Willebrand Factor A1 domain and implications for the binding of platelet glycoprotein Ib. J Biol Chem. 1998 Apr 24;273(17):10396–10401. doi: 10.1074/jbc.273.17.10396. [DOI] [PubMed] [Google Scholar]
  4. Frevert U., Sinnis P., Cerami C., Shreffler W., Takacs B., Nussenzweig V. Malaria circumsporozoite protein binds to heparan sulfate proteoglycans associated with the surface membrane of hepatocytes. J Exp Med. 1993 May 1;177(5):1287–1298. doi: 10.1084/jem.177.5.1287. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Frevert U., Sinnis P., Esko J. D., Nussenzweig V. Cell surface glycosaminoglycans are not obligatory for Plasmodium berghei sporozoite invasion in vitro. Mol Biochem Parasitol. 1996 Feb-Mar;76(1-2):257–266. doi: 10.1016/0166-6851(95)02563-4. [DOI] [PubMed] [Google Scholar]
  6. Hughes A. L. Circumsporozoite protein genes of malaria parasites (Plasmodium spp.): evidence for positive selection on immunogenic regions. Genetics. 1991 Feb;127(2):345–353. doi: 10.1093/genetics/127.2.345. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Jewett Travis J., Sibley L. David. Aldolase forms a bridge between cell surface adhesins and the actin cytoskeleton in apicomplexan parasites. Mol Cell. 2003 Apr;11(4):885–894. doi: 10.1016/s1097-2765(03)00113-8. [DOI] [PubMed] [Google Scholar]
  8. Jönsson U., Fägerstam L., Löfas S., Stenberg E., Karlsson R., Frostell A., Markey F., Schindler F. Introducing a biosensor based technology for real-time biospecific interaction analysis. Ann Biol Clin (Paris) 1993;51(1):19–26. [PubMed] [Google Scholar]
  9. Kappe S., Bruderer T., Gantt S., Fujioka H., Nussenzweig V., Ménard R. Conservation of a gliding motility and cell invasion machinery in Apicomplexan parasites. J Cell Biol. 1999 Nov 29;147(5):937–944. doi: 10.1083/jcb.147.5.937. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Lawler J., Hynes R. O. The structure of human thrombospondin, an adhesive glycoprotein with multiple calcium-binding sites and homologies with several different proteins. J Cell Biol. 1986 Nov;103(5):1635–1648. doi: 10.1083/jcb.103.5.1635. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Lee J. O., Rieu P., Arnaout M. A., Liddington R. Crystal structure of the A domain from the alpha subunit of integrin CR3 (CD11b/CD18). Cell. 1995 Feb 24;80(4):631–638. doi: 10.1016/0092-8674(95)90517-0. [DOI] [PubMed] [Google Scholar]
  12. Matuschewski Kai, Nunes Alvaro C., Nussenzweig Victor, Ménard Robert. Plasmodium sporozoite invasion into insect and mammalian cells is directed by the same dual binding system. EMBO J. 2002 Apr 2;21(7):1597–1606. doi: 10.1093/emboj/21.7.1597. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. McConkey Samuel J., Reece William H. H., Moorthy Vasee S., Webster Daniel, Dunachie Susanna, Butcher Geoff, Vuola Jenni M., Blanchard Tom J., Gothard Philip, Watkins Kate. Enhanced T-cell immunogenicity of plasmid DNA vaccines boosted by recombinant modified vaccinia virus Ankara in humans. Nat Med. 2003 May 25;9(6):729–735. doi: 10.1038/nm881. [DOI] [PubMed] [Google Scholar]
  14. McCormick C. J., Tuckwell D. S., Crisanti A., Humphries M. J., Hollingdale M. R. Identification of heparin as a ligand for the A-domain of Plasmodium falciparum thrombospondin-related adhesion protein. Mol Biochem Parasitol. 1999 May 15;100(1):111–124. doi: 10.1016/s0166-6851(99)00052-3. [DOI] [PubMed] [Google Scholar]
  15. Michishita M., Videm V., Arnaout M. A. A novel divalent cation-binding site in the A domain of the beta 2 integrin CR3 (CD11b/CD18) is essential for ligand binding. Cell. 1993 Mar 26;72(6):857–867. doi: 10.1016/0092-8674(93)90575-b. [DOI] [PubMed] [Google Scholar]
  16. Miller L. H., Good M. F., Milon G. Malaria pathogenesis. Science. 1994 Jun 24;264(5167):1878–1883. doi: 10.1126/science.8009217. [DOI] [PubMed] [Google Scholar]
  17. Myszka DG. Kinetic analysis of macromolecular interactions using surface plasmon resonance biosensors. Curr Opin Biotechnol. 1997 Feb 1;8(1):50–57. doi: 10.1016/s0958-1669(97)80157-7. [DOI] [PubMed] [Google Scholar]
  18. Müller H. M., Reckmann I., Hollingdale M. R., Bujard H., Robson K. J., Crisanti A. Thrombospondin related anonymous protein (TRAP) of Plasmodium falciparum binds specifically to sulfated glycoconjugates and to HepG2 hepatoma cells suggesting a role for this molecule in sporozoite invasion of hepatocytes. EMBO J. 1993 Jul;12(7):2881–2889. doi: 10.1002/j.1460-2075.1993.tb05950.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Nussenzweig I., Menard I. Analysis of a malaria sporozoite protein family required for gliding motility and cell invasion. Trends Microbiol. 2000 Mar;8(3):94–97. doi: 10.1016/s0966-842x(00)01700-5. [DOI] [PubMed] [Google Scholar]
  20. Rastegar-Lari Ghassem, Villoutreix Bruno O., Ribba Anne-Sophie, Legendre Paulette, Meyer Dominique, Baruch Dominique. Two clusters of charged residues located in the electropositive face of the von Willebrand factor A1 domain are essential for heparin binding. Biochemistry. 2002 May 28;41(21):6668–6678. doi: 10.1021/bi020044f. [DOI] [PubMed] [Google Scholar]
  21. Rathore D., McCutchan T. F., Garboczi D. N., Toida T., Hernáiz M. J., LeBrun L. A., Lang S. C., Linhardt R. J. Direct measurement of the interactions of glycosaminoglycans and a heparin decasaccharide with the malaria circumsporozoite protein. Biochemistry. 2001 Sep 25;40(38):11518–11524. doi: 10.1021/bi0105476. [DOI] [PubMed] [Google Scholar]
  22. Rathore D., McCutchan T. F. Role of cysteines in Plasmodium falciparum circumsporozoite protein: interactions with heparin can rejuvenate inactive protein mutants. Proc Natl Acad Sci U S A. 2000 Jul 18;97(15):8530–8535. doi: 10.1073/pnas.140224597. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Robson K. J., Frevert U., Reckmann I., Cowan G., Beier J., Scragg I. G., Takehara K., Bishop D. H., Pradel G., Sinden R. Thrombospondin-related adhesive protein (TRAP) of Plasmodium falciparum: expression during sporozoite ontogeny and binding to human hepatocytes. EMBO J. 1995 Aug 15;14(16):3883–3894. doi: 10.1002/j.1460-2075.1995.tb00060.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Robson K. J., Hall J. R., Jennings M. W., Harris T. J., Marsh K., Newbold C. I., Tate V. E., Weatherall D. J. A highly conserved amino-acid sequence in thrombospondin, properdin and in proteins from sporozoites and blood stages of a human malaria parasite. Nature. 1988 Sep 1;335(6185):79–82. doi: 10.1038/335079a0. [DOI] [PubMed] [Google Scholar]
  25. Robson K. J., Naitza S., Barker G., Sinden R. E., Crisanti A. Cloning and expression of the thrombospondin related adhesive protein gene of Plasmodium berghei. Mol Biochem Parasitol. 1997 Jan;84(1):1–12. doi: 10.1016/s0166-6851(96)02774-0. [DOI] [PubMed] [Google Scholar]
  26. Rogers W. O., Malik A., Mellouk S., Nakamura K., Rogers M. D., Szarfman A., Gordon D. M., Nussler A. K., Aikawa M., Hoffman S. L. Characterization of Plasmodium falciparum sporozoite surface protein 2. Proc Natl Acad Sci U S A. 1992 Oct 1;89(19):9176–9180. doi: 10.1073/pnas.89.19.9176. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Schneider J., Gilbert S. C., Blanchard T. J., Hanke T., Robson K. J., Hannan C. M., Becker M., Sinden R., Smith G. L., Hill A. V. Enhanced immunogenicity for CD8+ T cell induction and complete protective efficacy of malaria DNA vaccination by boosting with modified vaccinia virus Ankara. Nat Med. 1998 Apr;4(4):397–402. doi: 10.1038/nm0498-397. [DOI] [PubMed] [Google Scholar]
  28. Sinnis P., Clavijo P., Fenyö D., Chait B. T., Cerami C., Nussenzweig V. Structural and functional properties of region II-plus of the malaria circumsporozoite protein. J Exp Med. 1994 Jul 1;180(1):297–306. doi: 10.1084/jem.180.1.297. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Sultan A. A., Thathy V., Frevert U., Robson K. J., Crisanti A., Nussenzweig V., Nussenzweig R. S., Ménard R. TRAP is necessary for gliding motility and infectivity of plasmodium sporozoites. Cell. 1997 Aug 8;90(3):511–522. doi: 10.1016/s0092-8674(00)80511-5. [DOI] [PubMed] [Google Scholar]
  30. Templeton T. J., Kaslow D. C. Cloning and cross-species comparison of the thrombospondin-related anonymous protein (TRAP) gene from Plasmodium knowlesi, Plasmodium vivax and Plasmodium gallinaceum. Mol Biochem Parasitol. 1997 Jan;84(1):13–24. doi: 10.1016/s0166-6851(96)02775-2. [DOI] [PubMed] [Google Scholar]
  31. Ueda T., Rieu P., Brayer J., Arnaout M. A. Identification of the complement iC3b binding site in the beta 2 integrin CR3 (CD11b/CD18). Proc Natl Acad Sci U S A. 1994 Oct 25;91(22):10680–10684. doi: 10.1073/pnas.91.22.10680. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Weatherall David J., Miller Louis H., Baruch Dror I., Marsh Kevin, Doumbo Ogobara K., Casals-Pascual Climent, Roberts David J. Malaria and the red cell. Hematology Am Soc Hematol Educ Program. 2002:35–57. doi: 10.1182/asheducation-2002.1.35. [DOI] [PubMed] [Google Scholar]
  33. Wengelnik K., Spaccapelo R., Naitza S., Robson K. J., Janse C. J., Bistoni F., Waters A. P., Crisanti A. The A-domain and the thrombospondin-related motif of Plasmodium falciparum TRAP are implicated in the invasion process of mosquito salivary glands. EMBO J. 1999 Oct 1;18(19):5195–5204. doi: 10.1093/emboj/18.19.5195. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES