Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2004 Jun 1;380(Pt 2):409–417. doi: 10.1042/BJ20031528

Thermodynamic characterization of monomeric and dimeric forms of CcdB (controller of cell division or death B protein).

Kanika Bajaj 1, Ghadiyaram Chakshusmathi 1, Kiran Bachhawat-Sikder 1, Avadhesha Surolia 1, Raghavan Varadarajan 1
PMCID: PMC1224168  PMID: 14763902

Abstract

The protein CcdB (controller of cell division or death B) is an F-plasmid-encoded toxin that acts as an inhibitor of Escherichia coli DNA gyrase. The stability and aggregation state of CcdB have been characterized as a function of pH and temperature. Size-exclusion chromatography revealed that the protein is a dimer at pH 7.0, but a monomer at pH 4.0. CD analysis and fluorescence spectroscopy showed that the monomer is well folded, and has similar tertiary structure to the dimer. Hence intersubunit interactions are not required for folding of individual subunits. The stability of both forms was characterized by isothermal denaturant unfolding and calorimetry. The free energies of unfolding were found to be 9.2 kcal x mol(-1) (1 cal approximately 4.184 J) and 21 kcal x mol(-1) at 298 K for the monomer and dimer respectively. The denaturant concentration at which one-half of the protein molecules are unfolded (C(m)) of the dimer is dependent on protein concentration, whereas the C(m) of the monomer is independent of protein concentration, as expected. Although thermal unfolding of the protein in aqueous solution is irreversible at neutral pH, it was found that thermal unfolding is reversible in the presence of GdmCl (guanidinium chloride). Differential scanning calorimetry in the presence of low concentrations of GdmCl in combination with isothermal denaturation melts as a function of temperature were used to derive the stability curve for the protein. The value of Delta C (p) (representing the change in excess heat capacity upon protein denaturation) is 2.8+/-0.2 kcal x mol(-1) x K(-1) for unfolding of dimeric CcdB, and only has a weak dependence on denaturant concentration.

Full Text

The Full Text of this article is available as a PDF (272.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Almassy R. J., Janson C. A., Kan C. C., Hostomska Z. Structures of apo and complexed Escherichia coli glycinamide ribonucleotide transformylase. Proc Natl Acad Sci U S A. 1992 Jul 1;89(13):6114–6118. doi: 10.1073/pnas.89.13.6114. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Asgeirsson B., Hauksson J. B., Gunnarsson G. H. Dissociation and unfolding of cold-active alkaline phosphatase from atlantic cod in the presence of guanidinium chloride. Eur J Biochem. 2000 Nov;267(21):6403–6412. doi: 10.1046/j.1432-1327.2000.01728.x. [DOI] [PubMed] [Google Scholar]
  3. Backmann J., Schäfer G. Thermodynamic analysis of hyperthermostable oligomeric proteins. Methods Enzymol. 2001;334:328–342. doi: 10.1016/s0076-6879(01)34480-4. [DOI] [PubMed] [Google Scholar]
  4. Becktel W. J., Schellman J. A. Protein stability curves. Biopolymers. 1987 Nov;26(11):1859–1877. doi: 10.1002/bip.360261104. [DOI] [PubMed] [Google Scholar]
  5. Bernard P., Kézdy K. E., Van Melderen L., Steyaert J., Wyns L., Pato M. L., Higgins P. N., Couturier M. The F plasmid CcdB protein induces efficient ATP-dependent DNA cleavage by gyrase. J Mol Biol. 1993 Dec 5;234(3):534–541. doi: 10.1006/jmbi.1993.1609. [DOI] [PubMed] [Google Scholar]
  6. Bhatt Anant Narayan, Prakash Koodathingal, Subramanya H. S., Bhakuni Vinod. Different unfolding pathways for mesophilic and thermophilic homologues of serine hydroxymethyltransferase. Biochemistry. 2002 Oct 8;41(40):12115–12123. doi: 10.1021/bi020356i. [DOI] [PubMed] [Google Scholar]
  7. Blaber S. I., Culajay J. F., Khurana A., Blaber M. Reversible thermal denaturation of human FGF-1 induced by low concentrations of guanidine hydrochloride. Biophys J. 1999 Jul;77(1):470–477. doi: 10.1016/S0006-3495(99)76904-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Bose K., Clark A. C. Dimeric procaspase-3 unfolds via a four-state equilibrium process. Biochemistry. 2001 Nov 27;40(47):14236–14242. doi: 10.1021/bi0110387. [DOI] [PubMed] [Google Scholar]
  9. Chen J., Smith D. L. Amide hydrogen exchange shows that malate dehydrogenase is a folded monomer at pH 5. Protein Sci. 2001 May;10(5):1079–1083. doi: 10.1110/ps.53201. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Chen P., Schulze-Gahmen U., Stura E. A., Inglese J., Johnson D. L., Marolewski A., Benkovic S. J., Wilson I. A. Crystal structure of glycinamide ribonucleotide transformylase from Escherichia coli at 3.0 A resolution. A target enzyme for chemotherapy. J Mol Biol. 1992 Sep 5;227(1):283–292. doi: 10.1016/0022-2836(92)90698-j. [DOI] [PubMed] [Google Scholar]
  11. Cheng X., Gonzalez M. L., Lee J. C. Energetics of intersubunit and intrasubunit interactions of Escherichia coli adenosine cyclic 3',5'-phosphate receptor protein. Biochemistry. 1993 Aug 17;32(32):8130–8139. doi: 10.1021/bi00083a011. [DOI] [PubMed] [Google Scholar]
  12. Dao-Thi M. H., Messens J., Wyns L., Backmann J. The thermodynamic stability of the proteins of the ccd plasmid addiction system. J Mol Biol. 2000 Jun 23;299(5):1373–1386. doi: 10.1006/jmbi.2000.3815. [DOI] [PubMed] [Google Scholar]
  13. Eftink M. R., Helton K. J., Beavers A., Ramsay G. D. The unfolding of trp aporepressor as a function of pH: evidence for an unfolding intermediate. Biochemistry. 1994 Aug 30;33(34):10220–10228. doi: 10.1021/bi00200a002. [DOI] [PubMed] [Google Scholar]
  14. Ganesh C., Shah A. N., Swaminathan C. P., Surolia A., Varadarajan R. Thermodynamic characterization of the reversible, two-state unfolding of maltose binding protein, a large two-domain protein. Biochemistry. 1997 Apr 22;36(16):5020–5028. doi: 10.1021/bi961967b. [DOI] [PubMed] [Google Scholar]
  15. Goldenberg D. P., Creighton T. E. Gel electrophoresis in studies of protein conformation and folding. Anal Biochem. 1984 Apr;138(1):1–18. doi: 10.1016/0003-2697(84)90761-9. [DOI] [PubMed] [Google Scholar]
  16. Guzman L. M., Belin D., Carson M. J., Beckwith J. Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter. J Bacteriol. 1995 Jul;177(14):4121–4130. doi: 10.1128/jb.177.14.4121-4130.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Inglese J., Johnson D. L., Shiau A., Smith J. M., Benkovic S. J. Subcloning, characterization, and affinity labeling of Escherichia coli glycinamide ribonucleotide transformylase. Biochemistry. 1990 Feb 13;29(6):1436–1443. doi: 10.1021/bi00458a014. [DOI] [PubMed] [Google Scholar]
  18. Jaenicke R. Folding and association of proteins. Prog Biophys Mol Biol. 1987;49(2-3):117–237. doi: 10.1016/0079-6107(87)90011-3. [DOI] [PubMed] [Google Scholar]
  19. Jaenicke R., Lilie H. Folding and association of oligomeric and multimeric proteins. Adv Protein Chem. 2000;53:329–401. doi: 10.1016/s0065-3233(00)53007-1. [DOI] [PubMed] [Google Scholar]
  20. Kampranis S. C., Howells A. J., Maxwell A. The interaction of DNA gyrase with the bacterial toxin CcdB: evidence for the existence of two gyrase-CcdB complexes. J Mol Biol. 1999 Oct 29;293(3):733–744. doi: 10.1006/jmbi.1999.3182. [DOI] [PubMed] [Google Scholar]
  21. Klein C., Chen P., Arevalo J. H., Stura E. A., Marolewski A., Warren M. S., Benkovic S. J., Wilson I. A. Towards structure-based drug design: crystal structure of a multisubstrate adduct complex of glycinamide ribonucleotide transformylase at 1.96 A resolution. J Mol Biol. 1995 May 26;249(1):153–175. doi: 10.1006/jmbi.1995.0286. [DOI] [PubMed] [Google Scholar]
  22. Kretschmar M., Jaenicke R. Stability of a homo-dimeric Ca(2+)-binding member of the beta gamma-crystallin superfamily: DSC measurements on spherulin 3a from Physarum polycephalum. J Mol Biol. 1999 Sep 3;291(5):1147–1153. doi: 10.1006/jmbi.1999.3037. [DOI] [PubMed] [Google Scholar]
  23. Ladbury J. E., Kishore N., Hellinga H. W., Wynn R., Sturtevant J. M. Thermodynamic effects of reduction of the active-site disulfide of Escherichia coli thioredoxin explored by differential scanning calorimetry. Biochemistry. 1994 Mar 29;33(12):3688–3692. doi: 10.1021/bi00178a027. [DOI] [PubMed] [Google Scholar]
  24. Loris R., Dao-Thi M. H., Bahassi E. M., Van Melderen L., Poortmans F., Liddington R., Couturier M., Wyns L. Crystal structure of CcdB, a topoisomerase poison from E. coli. J Mol Biol. 1999 Jan 29;285(4):1667–1677. doi: 10.1006/jmbi.1998.2395. [DOI] [PubMed] [Google Scholar]
  25. Miller S., Lesk A. M., Janin J., Chothia C. The accessible surface area and stability of oligomeric proteins. 1987 Aug 27-Sep 2Nature. 328(6133):834–836. doi: 10.1038/328834a0. [DOI] [PubMed] [Google Scholar]
  26. Mullen C. A., Jennings P. A. Glycinamide ribonucleotide transformylase undergoes pH-dependent dimerization. J Mol Biol. 1996 Oct 11;262(5):746–755. doi: 10.1006/jmbi.1996.0549. [DOI] [PubMed] [Google Scholar]
  27. Murphy K. P., Freire E. Thermodynamics of structural stability and cooperative folding behavior in proteins. Adv Protein Chem. 1992;43:313–361. doi: 10.1016/s0065-3233(08)60556-2. [DOI] [PubMed] [Google Scholar]
  28. Neet K. E., Timm D. E. Conformational stability of dimeric proteins: quantitative studies by equilibrium denaturation. Protein Sci. 1994 Dec;3(12):2167–2174. doi: 10.1002/pro.5560031202. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Panse V. G., Swaminathan C. P., Aloor J. J., Surolia A., Varadarajan R. Unfolding thermodynamics of the tetrameric chaperone, SecB. Biochemistry. 2000 Mar 7;39(9):2362–2369. doi: 10.1021/bi992484l. [DOI] [PubMed] [Google Scholar]
  30. Pineda T., Osei Y. D., Churchich J. E. Characterization of monomeric 4-aminobutyrate aminotransferase at low pH. Eur J Biochem. 1995 Mar 15;228(3):683–688. doi: 10.1111/j.1432-1033.1995.0683m.x. [DOI] [PubMed] [Google Scholar]
  31. Plotnikov V. V., Brandts J. M., Lin L. N., Brandts J. F. A new ultrasensitive scanning calorimeter. Anal Biochem. 1997 Aug 1;250(2):237–244. doi: 10.1006/abio.1997.2236. [DOI] [PubMed] [Google Scholar]
  32. Plum G. E., Breslauer K. J. Calorimetry of proteins and nucleic acids. Curr Opin Struct Biol. 1995 Oct;5(5):682–690. doi: 10.1016/0959-440x(95)80062-x. [DOI] [PubMed] [Google Scholar]
  33. Privalov P. L. Stability of proteins: small globular proteins. Adv Protein Chem. 1979;33:167–241. doi: 10.1016/s0065-3233(08)60460-x. [DOI] [PubMed] [Google Scholar]
  34. Schellman J. A. The thermodynamic stability of proteins. Annu Rev Biophys Biophys Chem. 1987;16:115–137. doi: 10.1146/annurev.bb.16.060187.000555. [DOI] [PubMed] [Google Scholar]
  35. Steyaert J., Van Melderen L., Bernard P., Thi M. H., Loris R., Wyns L., Couturier M. Purification, circular dichroism analysis, crystallization and preliminary X-ray diffraction analysis of the F plasmid CcdB killer protein. J Mol Biol. 1993 May 20;231(2):513–515. doi: 10.1006/jmbi.1993.1301. [DOI] [PubMed] [Google Scholar]
  36. Van Melderen L., Thi M. H., Lecchi P., Gottesman S., Couturier M., Maurizi M. R. ATP-dependent degradation of CcdA by Lon protease. Effects of secondary structure and heterologous subunit interactions. J Biol Chem. 1996 Nov 1;271(44):27730–27738. doi: 10.1074/jbc.271.44.27730. [DOI] [PubMed] [Google Scholar]
  37. Zweifel Mark E., Barrick Doug. Relationships between the temperature dependence of solvent denaturation and the denaturant dependence of protein stability curves. Biophys Chem. 2002 Dec 10;101-102:221–237. doi: 10.1016/s0301-4622(02)00181-3. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES