Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2004 Jun 1;380(Pt 2):497–503. doi: 10.1042/BJ20031945

Iron-regulatory proteins DmdR1 and DmdR2 of Streptomyces coelicolor form two different DNA-protein complexes with iron boxes.

Francisco J Flores 1, Juan F Martín 1
PMCID: PMC1224170  PMID: 14960152

Abstract

In high G+C Gram-positive bacteria, the control of expression of genes involved in iron metabolism is exerted by a DmdR [divalent (bivalent) metal-dependent regulatory protein] in the presence of Fe2+ or other bivalent ions. The dmdR1 and dmdR2 genes of Streptomyces coelicolor were overexpressed in Escherichia coli and the DmdR1 and DmdR2 proteins were purified to homogeneity. Electrophoretic mobility-shift assays showed that both DmdR1 and DmdR2 bind to the 19-nt tox and desA iron boxes forming two different complexes in each case. Increasing the concentrations of DmdR1 or DmdR2 protein shifted these complexes from their low-molecular-mass form to the high-molecular-mass complexes. Formation of the DNA-protein complexes was prevented by the bivalent metal chelating agent 2,2'-dipyridyl and by antibodies specific against the DmdR proteins. Cross-linking with glutaraldehyde of pure DmdR1 or DmdR2 proteins showed that DmdR1 forms dimers, whereas DmdR2 is capable of forming dimers and probably tetramers. Ten different iron boxes were found in a search for iron boxes in the genome of S. coelicolor. Most of them correspond to putative genes involved in siderophore biosynthesis. Since the nucleotide sequence of these ten boxes is identical (or slightly different) with the synthetic DNA fragment containing the desA box used in the present study, it is proposed that DmdR1 and DmdR2 bind to the iron boxes upstream of at least ten different genes in S. coelicolor.

Full Text

The Full Text of this article is available as a PDF (402.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amador E., Castro J. M., Correia A., Martín J. F. Structure and organization of the rrnD operon of 'Brevibacterium lactofermentum': analysis of the 16S rRNA gene. Microbiology. 1999 Apr;145(Pt 4):915–924. doi: 10.1099/13500872-145-4-915. [DOI] [PubMed] [Google Scholar]
  2. Bentley S. D., Chater K. F., Cerdeño-Tárraga A-M, Challis G. L., Thomson N. R., James K. D., Harris D. E., Quail M. A., Kieser H., Harper D. Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature. 2002 May 9;417(6885):141–147. doi: 10.1038/417141a. [DOI] [PubMed] [Google Scholar]
  3. Boland C. A., Meijer W. G. The iron dependent regulatory protein IdeR (DtxR) of Rhodococcus equi. FEMS Microbiol Lett. 2000 Oct 1;191(1):1–5. doi: 10.1111/j.1574-6968.2000.tb09310.x. [DOI] [PubMed] [Google Scholar]
  4. Boyd J., Murphy J. R. Analysis of the diphtheria tox promoter by site-directed mutagenesis. J Bacteriol. 1988 Dec;170(12):5949–5952. doi: 10.1128/jb.170.12.5949-5952.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Boyd J., Oza M. N., Murphy J. R. Molecular cloning and DNA sequence analysis of a diphtheria tox iron-dependent regulatory element (dtxR) from Corynebacterium diphtheriae. Proc Natl Acad Sci U S A. 1990 Aug;87(15):5968–5972. doi: 10.1073/pnas.87.15.5968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Challis G. L., Ravel J. Coelichelin, a new peptide siderophore encoded by the Streptomyces coelicolor genome: structure prediction from the sequence of its non-ribosomal peptide synthetase. FEMS Microbiol Lett. 2000 Jun 15;187(2):111–114. doi: 10.1111/j.1574-6968.2000.tb09145.x. [DOI] [PubMed] [Google Scholar]
  7. Chen C. S., White A., Love J., Murphy J. R., Ringe D. Methyl groups of thymine bases are important for nucleic acid recognition by DtxR. Biochemistry. 2000 Aug 29;39(34):10397–10407. doi: 10.1021/bi0009284. [DOI] [PubMed] [Google Scholar]
  8. Doukhan L., Predich M., Nair G., Dussurget O., Mandic-Mulec I., Cole S. T., Smith D. R., Smith I. Genomic organization of the mycobacterial sigma gene cluster. Gene. 1995 Nov 7;165(1):67–70. doi: 10.1016/0378-1119(95)00427-8. [DOI] [PubMed] [Google Scholar]
  9. Dunbar B. S., Schwoebel E. D. Preparation of polyclonal antibodies. Methods Enzymol. 1990;182:663–670. doi: 10.1016/0076-6879(90)82051-3. [DOI] [PubMed] [Google Scholar]
  10. Feese M. D., Ingason B. P., Goranson-Siekierke J., Holmes R. K., Hol W. G. Crystal structure of the iron-dependent regulator from Mycobacterium tuberculosis at 2.0-A resolution reveals the Src homology domain 3-like fold and metal binding function of the third domain. J Biol Chem. 2000 Oct 26;276(8):5959–5966. doi: 10.1074/jbc.M007531200. [DOI] [PubMed] [Google Scholar]
  11. Flores Francisco J., Rincón Javier, Martín Juan F. Characterization of the iron-regulated desA promoter of Streptomyces pilosus as a system for controlled gene expression in actinomycetes. Microb Cell Fact. 2003 May 19;2(1):5–5. doi: 10.1186/1475-2859-2-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Fourel G., Phalipon A., Kaczorek M. Evidence for direct regulation of diphtheria toxin gene transcription by an Fe2+-dependent DNA-binding repressor, DtoxR, in Corynebacterium diphtheriae. Infect Immun. 1989 Oct;57(10):3221–3225. doi: 10.1128/iai.57.10.3221-3225.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Guex N., Peitsch M. C. SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis. 1997 Dec;18(15):2714–2723. doi: 10.1002/elps.1150181505. [DOI] [PubMed] [Google Scholar]
  14. Günter-Seeboth K., Schupp T. Cloning and sequence analysis of the Corynebacterium diphtheriae dtxR homologue from Streptomyces lividans and S. pilosus encoding a putative iron repressor protein. Gene. 1995 Dec 1;166(1):117–119. doi: 10.1016/0378-1119(95)00628-7. [DOI] [PubMed] [Google Scholar]
  15. Günter K., Toupet C., Schupp T. Characterization of an iron-regulated promoter involved in desferrioxamine B synthesis in Streptomyces pilosus: repressor-binding site and homology to the diphtheria toxin gene promoter. J Bacteriol. 1993 Jun;175(11):3295–3302. doi: 10.1128/jb.175.11.3295-3302.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Hill P. J., Cockayne A., Landers P., Morrissey J. A., Sims C. M., Williams P. SirR, a novel iron-dependent repressor in Staphylococcus epidermidis. Infect Immun. 1998 Sep;66(9):4123–4129. doi: 10.1128/iai.66.9.4123-4129.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Jakubovics N. S., Smith A. W., Jenkinson H. F. Expression of the virulence-related Sca (Mn2+) permease in Streptococcus gordonii is regulated by a diphtheria toxin metallorepressor-like protein ScaR. Mol Microbiol. 2000 Oct;38(1):140–153. doi: 10.1046/j.1365-2958.2000.02122.x. [DOI] [PubMed] [Google Scholar]
  18. Kitten T., Munro C. L., Michalek S. M., Macrina F. L. Genetic characterization of a Streptococcus mutans LraI family operon and role in virulence. Infect Immun. 2000 Aug;68(8):4441–4451. doi: 10.1128/iai.68.8.4441-4451.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  20. Lieser Scot A., Davis Talib C., Helmann John D., Cohen Seth M. DNA-binding and oligomerization studies of the manganese(II) metalloregulatory protein MntR from Bacillus subtilis. Biochemistry. 2003 Nov 4;42(43):12634–12642. doi: 10.1021/bi0350248. [DOI] [PubMed] [Google Scholar]
  21. Oguiza J. A., Marcos A. T., Malumbres M., Martín J. F. The galE gene encoding the UDP-galactose 4-epimerase of Brevibacterium lactofermentum is coupled transcriptionally to the dmdR gene. Gene. 1996 Oct 24;177(1-2):103–107. doi: 10.1016/0378-1119(96)00283-1. [DOI] [PubMed] [Google Scholar]
  22. Oguiza J. A., Tao X., Marcos A. T., Martín J. F., Murphy J. R. Molecular cloning, DNA sequence analysis, and characterization of the Corynebacterium diphtheriae dtxR homolog from Brevibacterium lactofermentum. J Bacteriol. 1995 Jan;177(2):465–467. doi: 10.1128/jb.177.2.465-467.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Peitsch M. C. ProMod and Swiss-Model: Internet-based tools for automated comparative protein modelling. Biochem Soc Trans. 1996 Feb;24(1):274–279. doi: 10.1042/bst0240274. [DOI] [PubMed] [Google Scholar]
  24. Pohl E., Holmes R. K., Hol W. G. Crystal structure of the iron-dependent regulator (IdeR) from Mycobacterium tuberculosis shows both metal binding sites fully occupied. J Mol Biol. 1999 Jan 22;285(3):1145–1156. doi: 10.1006/jmbi.1998.2339. [DOI] [PubMed] [Google Scholar]
  25. Schmitt M. P., Holmes R. K. Analysis of diphtheria toxin repressor-operator interactions and characterization of a mutant repressor with decreased binding activity for divalent metals. Mol Microbiol. 1993 Jul;9(1):173–181. doi: 10.1111/j.1365-2958.1993.tb01679.x. [DOI] [PubMed] [Google Scholar]
  26. Schmitt M. P., Predich M., Doukhan L., Smith I., Holmes R. K. Characterization of an iron-dependent regulatory protein (IdeR) of Mycobacterium tuberculosis as a functional homolog of the diphtheria toxin repressor (DtxR) from Corynebacterium diphtheriae. Infect Immun. 1995 Nov;63(11):4284–4289. doi: 10.1128/iai.63.11.4284-4289.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Schmitt M. P., Twiddy E. M., Holmes R. K. Purification and characterization of the diphtheria toxin repressor. Proc Natl Acad Sci U S A. 1992 Aug 15;89(16):7576–7580. doi: 10.1073/pnas.89.16.7576. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Schmitt Michael P. Analysis of a DtxR-like metalloregulatory protein, MntR, from Corynebacterium diphtheriae that controls expression of an ABC metal transporter by an Mn(2+)-dependent mechanism. J Bacteriol. 2002 Dec;184(24):6882–6892. doi: 10.1128/JB.184.24.6882-6892.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Schupp T., Toupet C., Divers M. Cloning and expression of two genes of Streptomyces pilosus involved in the biosynthesis of the siderophore desferrioxamine B. Gene. 1988 Apr 29;64(2):179–188. doi: 10.1016/0378-1119(88)90333-2. [DOI] [PubMed] [Google Scholar]
  30. Tao X., Murphy J. R. Binding of the metalloregulatory protein DtxR to the diphtheria tox operator requires a divalent heavy metal ion and protects the palindromic sequence from DNase I digestion. J Biol Chem. 1992 Oct 25;267(30):21761–21764. [PubMed] [Google Scholar]
  31. Tao X., Murphy J. R. Cysteine-102 is positioned in the metal binding activation site of the Corynebacterium diphtheriae regulatory element DtxR. Proc Natl Acad Sci U S A. 1993 Sep 15;90(18):8524–8528. doi: 10.1073/pnas.90.18.8524. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Tao X., Zeng H. Y., Murphy J. R. Transition metal ion activation of DNA binding by the diphtheria tox repressor requires the formation of stable homodimers. Proc Natl Acad Sci U S A. 1995 Jul 18;92(15):6803–6807. doi: 10.1073/pnas.92.15.6803. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. White A., Ding X., vanderSpek J. C., Murphy J. R., Ringe D. Structure of the metal-ion-activated diphtheria toxin repressor/tox operator complex. Nature. 1998 Jul 30;394(6692):502–506. doi: 10.1038/28893. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES