Abstract
The kininogenase activities of mouse (mK1), rat (rK1) and human (hK1) tissue kallikreins were assayed with the bradykinin-containing synthetic peptides Abz-MTEMARRPPGFSPFRSVTVQNH2 (where Abz stands for o-aminobenzoyl) and Abz-MTSVIRRPPGFSPFRAPRV-NH2, which correspond to fragments Met374-Gln393 and Met375-Val393 of mouse and rat LMWKs (low-molecular-mass kininogens) with the addition of Abz. Bradykinin was released from these peptides by the mK1- and rK1-mediated hydrolysis of Arg-Arg and Arg-Ser (or Arg-Ala) peptide bonds. However, owing to preferential hydrolysis of Phe-Arg compared with the Arg-Ala bond in the peptide derived from rat LMWK, hK1 released bradykinin only from the mouse LMWK fragment and preferentially released des-[Arg9]bradykinin from the rat LMWK fragment (Abz-MTSVIRRPPGFSPFRAPRV-NH2). The formation of these hydrolysis products was examined in more detail by determining the kinetic parameters for the hydrolysis of synthetic, internally quenched fluorescent peptides containing six N- or C-terminal amino acids of bradykinin added to the five downstream or upstream residues of mouse and rat kininogens respectively. One of these peptides, Abz-GFSPFRAPRVQ-EDDnp (where EDDnp stands for ethylenediamine 2,4-dinitrophenyl), was preferentially hydrolysed at the Phe-Arg bond, confirming the potential des-[Arg9]bradykinin-releasing activity of hK1 on rat kininogen. The proline residue that is two residues upstream of bradykinin in rat kininogen is, in part, responsible for this pattern of hydrolysis, since the peptide Abz-GFSPFRASRVQ-EDDnp was preferentially cleaved at the Arg-Ala bond by hK1. Since this peptidase accepts the arginine or phenylalanine residue at its S1 subsite, this preference seems to be determined by the prime site of the substrates. These findings also suggested that the effects observed in rats overexpressing hK1 should consider the activation of B1 receptors by des-[Arg9]bradykinin. For further comparison, two short internally quenched fluorescent peptides that bind to hK1 with affinity in the nM range and some inhibitors described previously for hK1 were also assayed with mK1 and rK1.
Full Text
The Full Text of this article is available as a PDF (180.4 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Agata Jun, Chao Lee, Chao Julie. Kallikrein gene delivery improves cardiac reserve and attenuates remodeling after myocardial infarction. Hypertension. 2002 Nov;40(5):653–659. doi: 10.1161/01.hyp.0000036035.41122.99. [DOI] [PubMed] [Google Scholar]
- Alhenc-Gelas F., Marchetti J., Allegrini J., Corvol P., Menard J. Measurement of urinary kallikrein activity. Species differences in kinin production. Biochim Biophys Acta. 1981 Nov 5;677(3-4):477–488. doi: 10.1016/0304-4165(81)90262-2. [DOI] [PubMed] [Google Scholar]
- Araújo-Viel M. S., Juliano M. A., Oliveira L., Prado E. S. Horse urinary kallikrein, II. Effect of subsite interactions on its catalytic activity. Biol Chem Hoppe Seyler. 1988 May;369(5):397–401. doi: 10.1515/bchm3.1988.369.1.397. [DOI] [PubMed] [Google Scholar]
- Baumgarten C. R., Nichols R. C., Naclerio R. M., Proud D. Concentrations of glandular kallikrein in human nasal secretions increase during experimentally induced allergic rhinitis. J Immunol. 1986 Aug 15;137(4):1323–1328. [PubMed] [Google Scholar]
- Bhoola K. D., Figueroa C. D., Worthy K. Bioregulation of kinins: kallikreins, kininogens, and kininases. Pharmacol Rev. 1992 Mar;44(1):1–80. [PubMed] [Google Scholar]
- Bourgeois L., Brillard-Bourdet M., Deperthes D., Juliano M. A., Juliano L., Tremblay R. R., Dubé J. Y., Gauthier F. Serpin-derived peptide substrates for investigating the substrate specificity of human tissue kallikreins hK1 and hK2. J Biol Chem. 1997 Nov 21;272(47):29590–29595. doi: 10.1074/jbc.272.47.29590. [DOI] [PubMed] [Google Scholar]
- Chagas J. R., Hirata I. Y., Juliano M. A., Xiong W., Wang C., Chao J., Juliano L., Prado E. S. Substrate specificities of tissue kallikrein and T-kininogenase: their possible role in kininogen processing. Biochemistry. 1992 Jun 2;31(21):4969–4974. doi: 10.1021/bi00136a008. [DOI] [PubMed] [Google Scholar]
- Chagas J. R., Portaro F. C., Hirata I. Y., Almeida P. C., Juliano M. A., Juliano L., Prado E. S. Determinants of the unusual cleavage specificity of lysyl-bradykinin-releasing kallikreins. Biochem J. 1995 Feb 15;306(Pt 1):63–69. doi: 10.1042/bj3060063. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chao J., Chao L. Experimental kallikrein gene therapy in hypertension, cardiovascular and renal diseases. Pharmacol Res. 1997 Jun;35(6):517–522. doi: 10.1006/phrs.1997.0179. [DOI] [PubMed] [Google Scholar]
- Chen Z., Bode W. Refined 2.5 A X-ray crystal structure of the complex formed by porcine kallikrein A and the bovine pancreatic trypsin inhibitor. Crystallization, Patterson search, structure determination, refinement, structure and comparison with its components and with the bovine trypsin-pancreatic trypsin inhibitor complex. J Mol Biol. 1983 Feb 25;164(2):283–311. doi: 10.1016/0022-2836(83)90078-5. [DOI] [PubMed] [Google Scholar]
- Christiansen S. C., Proud D., Cochrane C. G. Detection of tissue kallikrein in the bronchoalveolar lavage fluid of asthmatic subjects. J Clin Invest. 1987 Jan;79(1):188–197. doi: 10.1172/JCI112782. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Clements J., Hooper J., Dong Y., Harvey T. The expanded human kallikrein (KLK) gene family: genomic organisation, tissue-specific expression and potential functions. Biol Chem. 2001 Jan;382(1):5–14. doi: 10.1515/BC.2001.002. [DOI] [PubMed] [Google Scholar]
- Cordova M., Jara J., Del Nery E., Hirata I. Y., Araújo M. S., Carmona A. K., Juliano M. A., Juliano L. Characterization of two cysteine proteinases secreted by Fasciola hepatica and demonstration of their kininogenase activity. Mol Biochem Parasitol. 2001 Sep 3;116(2):109–115. doi: 10.1016/s0166-6851(01)00309-7. [DOI] [PubMed] [Google Scholar]
- Del Nery E., Chagas J. R., Juliano M. A., Juliano L., Prado E. S. Comparison of human and porcine tissue kallikrein substrate specificities. Immunopharmacology. 1999 Dec;45(1-3):151–157. doi: 10.1016/s0162-3109(99)00077-6. [DOI] [PubMed] [Google Scholar]
- Del Nery E., Chagas J. R., Juliano M. A., Prado E. S., Juliano L. Evaluation of the extent of the binding site in human tissue kallikrein by synthetic substrates with sequences of human kininogen fragments. Biochem J. 1995 Nov 15;312(Pt 1):233–238. doi: 10.1042/bj3120233. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Del Nery E., Juliano M. A., Lima A. P., Scharfstein J., Juliano L. Kininogenase activity by the major cysteinyl proteinase (cruzipain) from Trypanosoma cruzi. J Biol Chem. 1997 Oct 10;272(41):25713–25718. doi: 10.1074/jbc.272.41.25713. [DOI] [PubMed] [Google Scholar]
- Diamandis E. P., Yousef G. M., Luo L. Y., Magklara A., Obiezu C. V. The new human kallikrein gene family: implications in carcinogenesis. Trends Endocrinol Metab. 2000 Mar;11(2):54–60. doi: 10.1016/s1043-2760(99)00225-8. [DOI] [PubMed] [Google Scholar]
- El Moujahed A., Brillard-Bourdet M., Juliano M. A., Moreau T., Chagas J. R., Gutman N., Prado E. S., Gauthier F. Kininogen-derived fluorogenic substrates for investigating the vasoactive properties of rat tissue kallikreins--identification of a T-kinin-releasing rat kallikrein. Eur J Biochem. 1997 Jul 15;247(2):652–658. doi: 10.1111/j.1432-1033.1997.00652.x. [DOI] [PubMed] [Google Scholar]
- Evans B. A., Drinkwater C. C., Richards R. I. Mouse glandular kallikrein genes. Structure and partial sequence analysis of the kallikrein gene locus. J Biol Chem. 1987 Jun 15;262(17):8027–8034. [PubMed] [Google Scholar]
- Evans B. A., Drinkwater C. C., Richards R. I. Mouse glandular kallikrein genes. Structure and partial sequence analysis of the kallikrein gene locus. J Biol Chem. 1987 Jun 15;262(17):8027–8034. [PubMed] [Google Scholar]
- Fiedler F. Effects of secondary interactions on the kinetics of peptide and peptide ester hydrolysis by tissue kallikrein and trypsin. Eur J Biochem. 1987 Mar 2;163(2):303–312. doi: 10.1111/j.1432-1033.1987.tb10801.x. [DOI] [PubMed] [Google Scholar]
- Furuto-Kato S., Matsumoto A., Kitamura N., Nakanishi S. Primary structures of the mRNAs encoding the rat precursors for bradykinin and T-kinin. Structural relationship of kininogens with major acute phase protein and alpha 1-cysteine proteinase inhibitor. J Biol Chem. 1985 Oct 5;260(22):12054–12059. [PubMed] [Google Scholar]
- Harvey T. J., Hooper J. D., Myers S. A., Stephenson S. A., Ashworth L. K., Clements J. A. Tissue-specific expression patterns and fine mapping of the human kallikrein (KLK) locus on proximal 19q13.4. J Biol Chem. 2000 Dec 1;275(48):37397–37406. doi: 10.1074/jbc.M004525200. [DOI] [PubMed] [Google Scholar]
- Hosoi K., Tanaka I., Ishii Y., Ueha T. A new esteroproteinase (proteinase F) from the submandibular glands of female mice. Biochim Biophys Acta. 1983 Mar 31;756(2):163–170. doi: 10.1016/0304-4165(83)90088-0. [DOI] [PubMed] [Google Scholar]
- Hosoi K., Tsunasawa S., Kurihara K., Aoyama H., Ueha T., Murai T., Sakiyama F. Identification of mK1, a true tissue (glandular) kallikrein of mouse submandibular gland: tissue distribution and a comparison of kinin-releasing activity with other submandibular kallikreins. J Biochem. 1994 Jan;115(1):137–143. doi: 10.1093/oxfordjournals.jbchem.a124288. [DOI] [PubMed] [Google Scholar]
- Kato H., Enjyoji K., Miyata T., Hayashi I., Oh-ishi S., Iwanaga S. Demonstration of arginyl-bradykinin moiety in rat HMW kininogen: direct evidence for liberation of bradykinin by rat glandular kallikreins. Biochem Biophys Res Commun. 1985 Feb 28;127(1):289–295. doi: 10.1016/s0006-291x(85)80157-1. [DOI] [PubMed] [Google Scholar]
- MacDonald R. J., Margolius H. S., Erdös E. G. Molecular biology of tissue kallikrein. Biochem J. 1988 Jul 15;253(2):313–321. doi: 10.1042/bj2530313. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Melo R. L., Alves L. C., Del Nery E., Juliano L., Juliano M. A. Synthesis and hydrolysis by cysteine and serine proteases of short internally quenched fluorogenic peptides. Anal Biochem. 2001 Jun 1;293(1):71–77. doi: 10.1006/abio.2001.5115. [DOI] [PubMed] [Google Scholar]
- Melo R. L., Barbosa Pozzo R. C., Pimenta D. C., Perissutti E., Caliendo G., Santagada V., Juliano L., Juliano M. A. Human tissue kallikrein S1 subsite recognition of non-natural basic amino acids. Biochemistry. 2001 May 1;40(17):5226–5232. doi: 10.1021/bi002003u. [DOI] [PubMed] [Google Scholar]
- Meneton P., Bloch-Faure M., Hagege A. A., Ruetten H., Huang W., Bergaya S., Ceiler D., Gehring D., Martins I., Salmon G. Cardiovascular abnormalities with normal blood pressure in tissue kallikrein-deficient mice. Proc Natl Acad Sci U S A. 2001 Feb 20;98(5):2634–2639. doi: 10.1073/pnas.051619598. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Okada Y., Tsuda Y., Tada M., Wanaka K., Hijikata-Okunomiya A., Okamoto U., Okamoto S. Development of plasma kallikrein selective inhibitors. Biopolymers. 1999;51(1):41–50. doi: 10.1002/(SICI)1097-0282(1999)51:1<41::AID-BIP5>3.0.CO;2-Y. [DOI] [PubMed] [Google Scholar]
- Olsson A. Yvonne, Lundwall Ake. Organization and evolution of the glandular kallikrein locus in Mus musculus. Biochem Biophys Res Commun. 2002 Nov 29;299(2):305–311. doi: 10.1016/s0006-291x(02)02629-3. [DOI] [PubMed] [Google Scholar]
- Pimenta D. C., Chao J., Chao L., Juliano M. A., Juliano L. Specificity of human tissue kallikrein towards substrates containing Phe-Phe pair of amino acids. Biochem J. 1999 Apr 15;339(Pt 2):473–479. [PMC free article] [PubMed] [Google Scholar]
- Pimenta D. C., Juliano M. A., Juliano L. Hydrolysis of somatostatin by human tissue kallikrein after the amino acid pair phe-Phe. Biochem J. 1997 Oct 1;327(Pt 1):27–30. doi: 10.1042/bj3270027. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pimenta Daniel C., Fogaça Sandro E., Melo Robson L., Juliano Luiz, Juliano Maria A. Specificity of S'1 and S'2 subsites of human tissue kallikrein using the reactive-centre loop of kallistatin: the importance of P'1 and P'2 positions in design of inhibitors. Biochem J. 2003 May 1;371(Pt 3):1021–1025. doi: 10.1042/BJ20021952. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Proud D., Togias A., Naclerio R. M., Crush S. A., Norman P. S., Lichtenstein L. M. Kinins are generated in vivo following nasal airway challenge of allergic individuals with allergen. J Clin Invest. 1983 Nov;72(5):1678–1685. doi: 10.1172/JCI111127. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rittenhouse H. G., Finlay J. A., Mikolajczyk S. D., Partin A. W. Human Kallikrein 2 (hK2) and prostate-specific antigen (PSA): two closely related, but distinct, kallikreins in the prostate. Crit Rev Clin Lab Sci. 1998 Aug;35(4):275–368. doi: 10.1080/10408369891234219. [DOI] [PubMed] [Google Scholar]
- Sampaio C. A., Sampaio M. U., Prado E. S. Active-site titration of horse urinary kallikrein. Hoppe Seylers Z Physiol Chem. 1984 Mar;365(3):297–302. doi: 10.1515/bchm2.1984.365.1.297. [DOI] [PubMed] [Google Scholar]
- Shimamoto K., Chao J., Margolius H. S. The radioimmunoassay of human urinary kallikrein and comparisons with kallikrein activity measurements. J Clin Endocrinol Metab. 1980 Oct;51(4):840–848. doi: 10.1210/jcem-51-4-840. [DOI] [PubMed] [Google Scholar]
- Silva J. A., Jr, Araujo R. C., Baltatu O., Oliveira S. M., Tschöpe C., Fink E., Hoffmann S., Plehm R., Chai K. X., Chao L. Reduced cardiac hypertrophy and altered blood pressure control in transgenic rats with the human tissue kallikrein gene. FASEB J. 2000 Oct;14(13):1858–1860. doi: 10.1096/fj.99-1010fje. [DOI] [PubMed] [Google Scholar]
- Southard-Smith M., Pierce J. C., MacDonald R. J. Physical mapping of the rat tissue kallikrein family in two gene clusters by analysis of P1 bacteriophage clones. Genomics. 1994 Jul 15;22(2):404–417. doi: 10.1006/geno.1994.1402. [DOI] [PubMed] [Google Scholar]
- Sueyoshi T., Uwani M., Itoh N., Okamoto H., Muta T., Tokunaga F., Takada K., Iwanaga S. Cysteine proteinase inhibitor in the ascitic fluid of sarcoma 180 tumor-bearing mice is a low molecular weight kininogen. Partial NH2- and COOH-terminal sequences and susceptibility to various glandular kallikreins. J Biol Chem. 1990 Jun 15;265(17):10030–10035. [PubMed] [Google Scholar]
- WILKINSON G. N. Statistical estimations in enzyme kinetics. Biochem J. 1961 Aug;80:324–332. doi: 10.1042/bj0800324. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yousef G. M., Chang A., Scorilas A., Diamandis E. P. Genomic organization of the human kallikrein gene family on chromosome 19q13.3-q13.4. Biochem Biophys Res Commun. 2000 Sep 16;276(1):125–133. doi: 10.1006/bbrc.2000.3448. [DOI] [PubMed] [Google Scholar]
- da S Emim J. A., Souccar C., de A Castro M. S., Godinho R. O., Cezari M. H., Juliano L., Lapa A. J. Evidence for activation of the tissue kallikrein-kinin system in nociceptive transmission and inflammatory responses of mice using a specific enzyme inhibitor. Br J Pharmacol. 2000 Jul;130(5):1099–1107. doi: 10.1038/sj.bjp.0703362. [DOI] [PMC free article] [PubMed] [Google Scholar]
- van Leeuwen B. H., Evans B. A., Tregear G. W., Richards R. I. Mouse glandular kallikrein genes. Identification, structure, and expression of the renal kallikrein gene. J Biol Chem. 1986 Apr 25;261(12):5529–5535. [PubMed] [Google Scholar]