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ABSTRACT 

A model for the evolution of the probabilities of genetic identity within and 
between loci of a multigene family in a finite population is formulated and 
investigated. Unbiased intrachromosomal gene conversion, equal crossing over 
between tandemly repeated genes, random genetic drift and mutation to new 
alleles are incorporated. Generations are discrete and nonoverlapping; the dip- 
loid, monoecious population mates at random. Formulas for the equilibrium 
values of the probabilities of identity and a cubic equation for the rate of 
convergence are deduced. Numerical examples indicate the following. The 
amount of homology at equilibrium generally decreases as the mutation rate, the 
population size and the number of repeats increase; it may increase or decrease 
with increasing crossover rate. The intralocus homology has an intermediate 
minimum, whereas the interlocus homology increases, as the rate of gene con- 
version increases. The intralocus homology decreases, whereas the interlocus 
homology increases, as the proportion of symmetric heteroduplexes increases. 
The characteristic convergence time can be sufficiently short to imply that 
intrachromosomal gene conversion may be an important mechanism for main- 
taining sequence homogeneity among repeated genes. The convergence time 
decreases as the conversion rate and the proportion of symmetric heteroduplexes 
increase; although exceptions occur, it generally increases as the population size 
and the number of repeats increase; it may increase or decrease with increasing 
crossover rate. 

HERE has been a great deal of recent interest in the evolution of multigene T families under gene conversion; DOVER (1 982), NAGYLAKI and PETES 
(1982), OHTA (1982, 1983a, b, 1984) and OHTA and DOVER (1983) discuss the 
relevant data and the biological importance and background of this problem. 
NAGYLAKI and PETES (1 982) studied the maintenance of sequence homogeneity 
among tandemly repeated genes under intrachromosomal gene conversion. They 
showed for a single chromosome lineage that a small conversional bias can have 
a dramatic effect on the fixation probability of a new variant and that conversion 
can act sufficiently rapidly to be an important mechanism for producing and 
conserving sequence homogeneity. Recent investigations of the influence of 
biased interchromosomal gene conversion on population dynamics at a single 
locus (NAGYLAKI 1983a, b; WALSH 1983) indicate that the extension of the 
analysis of NAGYLAKI and PETES (1982) to the population level is not only 
important but also probably nontrivial. 

Genetics 106: 529-548 March, 1984. 
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The data on interchromosomal gene conversion reviewed by LAMB and HELMI 
( 1  982), NAGYLAKI and PETES (1 982) and NACYLAKI (1 983a) suggest that evolu- 
tionarily significant disparities are probably common in intrachromosomal gene 
conversion. Those data also suggest, however, that in many cases the disparities 
may be extremely small, possibly even zero. In this special but informative 
situation, the population problem can be analyzed in terms of probabilities of 
genetic identity (OHTA 1982, 1983a,b, 1984; OHTA and DOVER 1983). This 
approach, which we follow in this paper, leads directly to the equilibrium values 
of the intralocus and interlocus homologies and to the rate of approach to 
equilibrium. In the absence of mutation, the latter yields the characteristic 
time to sequence homogeneity. 

Here, we shall study the evolution of a multigene family under the joint action 
of unbiased intrachroniosomal gene conversion, equal crossing over between 
tandenily repeated genes, random genetic drift and mutation to new alleles. In 
FORMULATION, we shall offer a detailed formulation of our model; in particular, 
w e  shall present explicitly the assumptions and parameters that relate to gene 
conversion. If all evolutionary forces are weak, all heteroduplexes are asymmetric 
(MESELSON and RADDING 1975) and OHTA’S conversion rate is suitably identified, 
then our recursion relations for the probabilities of identity reduce to hers (OHTA 
1982; 1983a, b). In EQUILIBRIUM, we shall examine the amount and pattern of 
homology at equilibrium; we shall investigate the rate of convergence in CON- 

VERGENCE. We shall consider extensions of and alternatives to our model in 
DISCUSSION. 

FORMULATION 

Generations are discrete and nonoverlapping; the diploid, monoecious popu- 
lation mates at random. The life cycle starts with N adults; n represents the 
number of repeats, which are arranged in tandem. We use three probabilities of 
identity to summarize the genetic structure of the population; these provide 
much important biological information but do not fully specify the state of the 
population. The term “identity” must be interpreted in accordance with the type 
of data available: at the most detailed level, it refers to identity of the DNA 
sequences of two genes; if less information is available, it can signify coincidence 
of restriction sites or the ability to hybridize. We assume that the 12 loci are 
exchangeable (if., equivalent). Let 5 denote the probability that two distinct 
genes at the same locus, chosen at random from adults just before gametogenesis 
in generation t (= 0, 1, 2,  . . .), are identical. Then f represents the expected 
homozygosity; h = 1 -J the expected heterozygosity, is a measure of intralocus 
genetic variability in the population. Let gr denote the probability that two 
distinct genes on the same cliromosome, chosen at random from adults just 
before gametogenesis in generation t ,  are identical. Clearly, g is an index of 
homology between repeats within a chromosome. Finally, let I ,  denote the 
probability that two genes at different loci and on different chromosomes, chosen 
at random from adults just before gametogenesis in generation f, are identical. 
Thus, 1 incorporates both intralocus and interlocus variation. We posit the life 
cycle shown below; x designates the vector of the probabilities of identity, and 
the prime signifies the next generation. 
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Gametes 7GXzGiPzygotes- Adults gametogenesis) mutation 
N, x 00, x* 00, x* 

Adults ' +Adults --jAdults 
conversion regulation 

00, x** 00, x' N ,  x' 

We neglect the dependence of the probabilities of identity on the positions of 
the genes sampled. This dependence is absent if, and only if, there are only two 
repeats or there is no crossing over. We shall discuss this simplifying assumption 
in DISCUSSION. 

We suppose that at least one generation of panmixia has occurred before we 
examine the population. If two genes are chosen from distinct individuals, we 
neglect the second-order probability that gene conversion has occurred in both 
individuals. Then the corresponding probabilities of identity within and between 
individuals are equal. At the beginning of the life cycle, N adults produce 
infinitely many gametes, which fuse at random to form zygotes. Thus, a propor- 
tion l/iV of zygotes are produced by self-fertilization. If r denotes the frequency 
of equal reciprocal recombination between two distinct loci chosen at random, 
then the probabilities of identity in zygotes read 

f *  = e + (1 - e) f ,  

g* = (1 - r )g  + rl, 

i* = eg + (1 - e)i, 

( 1 4  

(1b) 

( 1 4  
where 0 = 1/(2N). Equation (la) is standard (WRIGHT 1931; MAL~COT 1946, 
1948; KIMURA 1963); we owe (lb) and (IC) to KIMURA (1963). 

The crossover probability r will generally be an increasing function of the 
number of repeats, r 7 ,  whereas the probability of equal crossing over between 
two adjacent loci, P, should not depend on n .  We assume that at most one 
crossover occurs per generation in the entire multigene family. This is a reason- 
able approximation if there is complete positive interference or, more likely, if 
( 1 2  - l)P << 1. To express r in terms of P, note that the probability of first 
choosing locus i (1 5 i 5 r z )  and then locusj ( j  # i) is [ n ( n  - l)]-', and that I i - 
j I P gives the probability of crossing over between i andj.  Therefore, 

as given by OHTA (1983a). Her previous definition of P is different, and hence 
the factor 12 + 1 is absent in OHTA (1982). 

Mutation is next. We suppose that every allele mutates to a new allele at rate 
U (0 5 U 5 1). This model of "infinite alleles" was proposed by MAL~COT (1946, 
1948) for identity by descent and by WRIGHT (1949) and KIMURA and CROW 
(1964) for identity in state. After mutation, we have 

f **  = U f ,  * g " * = v  g*,  I** = v l* ,  (3) 
where I I  = (1 - U)'. 

To incorporate gene conversion, we posit the following. First, an interaction 
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between two alleles cannot produce a third allele. All previous work on this 
problem (NAGYLAKI and PETES 1982; OHTA 1982, 1983a, b; OHTA and DOVER 
1983) is subject to this restriction, which is discussed in NAGYLAKI (1983a). 
Second, each interaction involves the formation of heteroduplexes between two 
repeated genes. The heteroduplexes may be either symmetric (HOLLIDAY 1964) 
or asymmetric (MESELSON and RADDING 1975). Third, interactions occur be- 
tween repeats within a single tandem array (intrachromatid conversion), before 
chromosome duplication. We neglect sister-chromatid and interchromosomal 
interactions. Fourth, there is at most one interaction per individual per genera- 
tion. If an interaction occurs, it does so between two randomly chosen genes. 
Fifth, all mismatches are repaired. Sixth, parity (FOGEL, MORTIMER and LUSNAK 
198 1 ; NAGYLAKI and PETES 1982) obtains for both the initiation of asymmetric 
heteroduplex formation and the repair of mismatches. Seventh, if symmetric 
heteroduplexes are formed, the direction of correction of one heteroduplex is 
independent of that of the other. Eighth, crossing over is not associated with 
gene conversion. Consult NAGYLAKI and PETES (1982) for discussion of assump- 
tions 2 to 8. 

We introduce now the basic parameters that describe gene conversion, and we 
derive some simple preliminary relations. Let p designate the probability per 
individual per generation that an interaction occurs. We denote by I b  and x b  the 
events that gene b interacts with some other gene and that it does not, respec- 
tively. Similarly, Ibr  and x b c  represent the events that genes b and c interact with 
each other and that they do not, respectively. T o  calculate the corresponding 
probabilities, observe that an interaction occurs on the chromosome b is on with 
probability p/2 and this interaction involves b with probability 2/n. Therefore, 

P(Ib) = (p/2)(2/n) = P/?Z. (4) 

Since there are ?Z(H - 1)/2 combinations of two genes on a chromosome, we 
have 

P ( Z b , )  = (p/2)[n(n - 1)/2]-' = p [ n ( n  - I)]-'. ( 5 )  
The probability p should increase at least linearly with n and may increase as fast 
as quadratically (NAGYLAKI and PETES 1982). Hence, the parameters 

= iP(Ib) = p/(4?Z), (6) 

(7) LY = +P(Zb,)  = p/[2n(,z - l)] 

will depend more weakly on 11 than p does. We shall call the interaction 
probabilities X and LY conversion rates. 

We write b = c and b # c to signify the identity and nonidentity of alleles b 
and c, respectively. The notations b -+ c and b + c mean, respectively, that b is 
converted to c and that it is not. T o  describe the effect of gene conversion o n 5  
g and 1, we shall require the probabilities 

p = P(b + c 16 # C, Zbr),  

4 = P(b + C, C 

(8) 

(9) b I b # C, I b c ) .  

Let U (0 5 U 5 1) and 1 - U represent the proportions of symmetric and 
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asymmetric heteroduplexes. Since all mismatches are repaired and parity holds 
for mismatch repair, the probability that a single be heteroduplex yields b (or e) 
is 1 /2. If heteroduplexes are symmetric, this gives factors of 1 /2 and ( 1  /2) ( 1  / 
2) for the events in (8) and (9), respectively. If heteroduplexes are asymmetric, 
for both events heteroduplex formation must be initiated by the DNA molecule 
that contains e; this has conditional probability 1/2, because we have posited 
parity for the initiation of heteroduplex formation. Then c % b automatically, and 
b -+ r has conditional probability 1 /2. Consequently, 

p = 4 / 2 )  + (1 - 4(1/2)(1/2) = P/4, 

q = g(1/2)(1/2) + (1 - ~)(1/2)(1/2) = 1/4. 

(10) 

( 1  1 )  

where p = 1 + CJ ( 1  5 p 5 2), and 

We are now prepared to relate (f), g', 1') to (f**, g**,  I**). In Figure 1 ,  we 
focus attention on two repeats on each chromosome; d,  e and i denote the genes 
N ,  b and c after conversion, respectively. We choose e at random. Solely for the 
calculation off), if b interacts, define c as the gene with which it does so. Bearing 
in mind that there is at most one interaction per individual and appealing to (4), 
we deduce 

f' = P(d = e )  

= P(d = e I I,, Ib)P(la, l b )  + 2P(d = e I la, h,)P(la, zb) 

P 
n 

+ 2P(a = elZb,) - 

[P(a = elZbc) -f**]. =f** + -  2P 
n 

From (8) we obtain 

P(a = e I Ibr )  

= P(u = e I b = e, Zb,)P(b = c I Zb,) 
+ P(a = e I b # e, b % c, Zb,)P(b # c, b % c I Zbc) 
+ P(a = e lb  # c, b -+ e, Z@(b # c, b + clZbC) 

= P(a = b I b = c)P(b = c) 

+ P(a = b I b # c)P(b 74 c I b # c, Zb,)P(b # c I&,) 
+ P(a = c I  b # c)P(b + c l  b # e, Ib,)P(b # C l Z b C )  

+ P(a = c I b # c)pP(b # c) 

- P(u = b I b = c)P(b = c) - P(a = b I b # c)P(b # e)] 

= P(a = b I b = c)P(b = c) + P(a = b I b # c)(l - p)P(b # e) 

= P(a = b) + p [ P ( a  = c l b  # c)P(b # e) + P(a = c ( b  = c)P(b = c) 

= f** + p[P(a  = c) - P(a = b)] 

= f**  + p(l** - f**) .  
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FIGURE 1 .-The probabilities of identity before and after gene conversion. 

Therefore, (7), ( 1  0) and ( 1  2 )  yield 

J" = [ l  - 0 2  - l)paV*" + 0 2  - l)pal**. (1 3 4  
Henceforth, i designates a repeat chosen at random, subject only to the 

condition that e and i be on the same chromatid at distinct loci. We invoke (5 ) ,  
(7), (9) and ( 1  1): 

g' = P(P = i) 

= P(e = i I Ibr)P(lbc) + P(f = i I Ibr)P(Ibr) 

+ P(e = i I b # c;  b -+ c and c + b, or b f ,  c and c + b; Zhc)' 

.P(b # c; b + c a n d c + b , o r b + c a n d c f , b I I b r )  

+ 2P(e = i I b # e ,  b + e ,  c f ,  b,  Ib,)P(b # c,  b + e ,  c f ,  b I Ibc)] 

[ ( l )g**  + 0 
=g**[ l  - CL I +  P 

= g * * [ l  - CL I +  P 

H(12 - 1 )  1 1 ( n  - 1) 

-t- 2( 1)P(b --+ C, c f ,  b I b # C, Ib,)p(b # c I Ib,)] 

k** + 2 d l  -g**)l  U(?Z - 1) ,Z(H - 1 )  

= a + ( 1  - a),**. 

For l ' ,  (5) gives 



535 

= P(cc = c I b = c)P(b = e )  + P(a = c I b # c)(l - p)P(b # c) 

+ P(a = b I b # c)pP(b # e )  

= P(0 = e)  + p[P(ct = b I b # c)P(b # e )  + P(a = b I b = c)P(b = e)  

= I""  + p[P(a = b)  - P(u = C)] 

= 1"" + p (  f** - I!**). 

- P(u = c I b = c)P(b = C) - P(a = c I b # c)P(b # e)] 

Hence, (7) and (1 0) lead to 

I' = paf** + (1 - pa) l * * .  (134 
Substituting (3) into (13) and then (1) into the result produces the exact 

recursion relations for our model: 

g' = a + u( l  - a)[(l - r)g + rl], 
1' = v[paO + pa( 1 - ey + e( 1 - pa)g + (1 - 0)( 1 - pa)l].  

(14b) 

(14c) 
The system (1 4) involves six parameters: U (or U ) ,  0 (or N ) ,  n,  a (or p or A), p (or 
U )  and r (or p). It depends on the order of the evolutionary forces in the life 
cycle. However, our assumptions concerning recombination are plausible only if 
both crossing over and gene conversion have low probabilities, and we lose no 
biological generality by positing weak mutation and random drift. If U ,  na (or 
A), 0 (or 1,") and r (or np) are all much less than unity, (14) becomes 

f' = 0 + [ l  - 2u - 0 - (12 - l)pa]f+ (17 - l)pal, 

g' = a + (1 - 2u - a - r)g + rl, 

1' = paf + eg + (1 - 2u - 0 - p a y .  

(154 

(15b) 

(154 
Here and later, we  simplify writing by not indicating explicitly that (1 5) and all 
subsequent equations are approximate. In the approximate system (1 5), the 
evolutionary forces are additive, and this system is independent of the order of 
these forces. 
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If all heteroduplexes are asymmetric ( p  = l) ,  (1 5 )  reduces to the equations of 
OHTA (1 982, 1983a, b). Hence, (6) reveals the precise biological interpretation 
of her parameter A. 

EQUILIBRIUM 

The solution of (1 5 )  converges to the unique equilibrium given by 

f =  [e  + ( 1 2  - l)pai]/[2u + e + (n - l)paI, 

g = (a + ri)/(2u + a + r), 
i = a0[2u(1 + p)  + e + pr + ~ z p a ] / D ,  

D = (2U + e)(2u + 4(2U + e + npa) + r[epa + 242u + e + npa)l. (i6d) 

If all heteroduplexes are asymmetric ( p  = l) ,  (16) simplifies to OHTA'S (1982, 
1983b) result. The equilibrium (16) depends on five independent parameters: n ,  
p,  'Va, Nr and Nu. Some limiting cases of (16) are instructive and provide checks. 
As U + 0, all variability disappears: f ,  g, i + 1. We also obtain the expected 
limits in the absence of gene conversion: as a + 0, (16) yields f +fo and g, 
[+ 0, where 

fo = e/(2u + e) = i/(i + 4 ~ 4 .  (17) 
Equation (17) is just the standard result (MAL~COT 1946, 1948; KIMURA and 
CROW 1964) for the balance between mutation and random drift. Obviously, 
without gene conversion, theAinterlocus homologies must vanish at equilibrium. 
I f O + O ( N + w ) ,  we findf, l+Oandg+gl ,where  

g1 = a/(2u + a + r ) .  (18) 
In an infinitely large population, there is no homology at equilibrium between 
chromosomes. 

Some simple bounds illuminate the rather complicated solution (16). Since 
i > O ,  wehavef>fi  a n d g > g l ,  where 

fi = 8/[2u + e + ( 1 1  - l)pa] = 1/[1 + 4N(u + PA)]. (19) 
By discarding terms independent of a in (16d) and noting that 11 > 1, we ob- 
tain a lower bound on D; inserting this into (16c) leads to i <fo. This upper 
bound on i and (1 6a) reveal that f <fo and f - i > 0.  Finally, f < 1 and (1 6b) 
imply g < go, where 

go = (a + r)/(2u + a + r ) .  (20) 
Thus, we have shown 

f l  <f<j& gl <g<go ,  0 kf, (21) 
wherefo,fi, go and g1 are given by (1 7) to (20). 

I t  is intuitively expected that interaction with other loci should lower the 
probability of intralocus identity (f < fo). The result i < f is also reasonable. 
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Perhaps surprisingly, however, I > i can occur; in fact, algebraic manipulation 
of (1 6) shows that it does so if, and only if, 

2u + n p a  e ( p  - 1)8, (22) 
which requires some admixture of symmetric heteroduplexes ( p  > 1). For 
example, if nA= p = 2, X = 0 = U and 8 = 20u, then for any U > 0, i = 70/139 = 
0.5036 and 1 = 72/139 = 0.5180. This phenomenon is not caused by the fact 
that (16) is the lowest-order approximation in U ,  a, r and 8: since the homologies 
given by (1 6) are homogeneous functions of degree zero in these parameters, by 
multiplying all four parameters by the same constant, we can make (1 6) arbitrarily 
accurate without altering it. From Tables 1 and 2 we see that f > g and g > f 
both occur. Hence, the possible relative magnitudes are f > i > f ,  > f > f ,  
andj’> f > i. 

OHTA (1 982, 1983b) has tabulated some numerical examples for asymmetric 
heteroduplexes. In Tables 1 and 2, we exhibit for various parameter values the 
extreme cases of purely asymmetric ( p  = 1) and purely symmetric ( p  = 2) 
heteroduplexes. Unless otherwise specified, the parameters in Table 1 are X = 
5 x n = 50 and 1%’ = 5 x lo4; the default values in 
Table 2 read X = p = lo-’, n = 50 and N = 5 X lo4. Much more 
extensive computations indicate the following. 

All three probabilities of identity decrease as n (with X fixed) and U increase. 
The intralocus homology ( f )  has an intermediate minimum, whereas the inter- 
locus homologies (i and f )  increase, as X increases; ? decreases, whereas 2 and ; 
increase, as the proportion of symmetric heteroduplexes (U) increases. The 
behavior of the homologies as a function of n with a fixed is generally similar to 
their dependence on n with X fixed. At least for small n and p > 1, however, 2 
and ?can increase as n increases with a fixed: take p = 2, a = 

and N = 5000; then for n = 2 and 3, ( f ,  i, ;) = (0.8947, 0.0961, 
0.10 18) and (0.8808,0.0973, 0.1026), respectively. Although it appears that the 
homologies usually decrease as P increases, at least for p > 1 and relatively weak 
conversion, they can increase: choose n = 10 and p, a, U and N as above; then 
for p = and (f, i, f )  = (0.7960, 0.1019, 0.1052) and (0.7988, 0.1239, 
0.1249), respectively. Finally, although the homologies usually decrease as N 
increases, Na, NP << 1 : for 
example, take p = 2,p = ?, a = then for N = 
5000 and 10,000, ( f ,  g, I )  = (0.9807, 0.5022, 0.5066) and (0.9627, 0.5039, 
0.5 1 17), respectively. 

The results of this section show that, especially if symmetric heteroduplexes 
occur ( p  > 1) and conversion is relatively weak, random drift and gene conversion 
can interact to produce complex, intuitively surprising equilibrium behavior. 

U = lo-*, p = 
U = 

U = 5 x 
= 

and f can increase if p > 1, n is fairly small and 0 
U = 5 X lo-’ and @ = 

CONVERGENCE 

We now study the rate of convergence to the equilibrium (1 6). From (1 5) we  
infer that the column vector k = (f - f ,  g - g, I - i)‘ satisfies k’ = Bk, where 
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TABLE 1 

The probabilities of ideutitj at equilibrium 

Parameter 

104x 
0.01 
1 

100 

1 07u 
0.1 
1 

10 

1 04p 
0.1 
1 

10 

I 0-4s 
0.1 
1 

10 

I 1  

10 
100 

1000 

i 

0.937 
0.910 
0.956 

0.916 
0.660 
0.475 

0.920 
0.917 
0.916 

0.998 
0.982 
0.846 

0.981 
0.857 
0.599 

p = l  

0.629 0.629 
0.906 0.906 
0.957 0.956 

0.835 0.835 
0.334 0.334 
0.044 0.044 

0.842 0.842 
0.835 0.835 
0.835 0.835 

0.909 0.909 
0.894 0.894 
0.770 0.770 

0.963 0.963 
0.715 0.7 15 
0.200 0.200 

0.925 
0.910 
0.956 

0.913 
0.596 
0.350 

0.915 
0.913 
0.913 

0.998 
0.981 
0.840 

0.981 
0.846 
0.500 

p = 2  

i 
~ 

0.743 0.743 
0.908 0.908 
0.957 0.956 

0.870 0.870 
0.400 0.400 
0.059 0.059 

0.873 0.873 
0.87 1 0.871 
0.870 0.870 

0.951 0.95 1 
0.935 0.935 
0.801 0.801 

0.972 0.972 
0.770 0.770 
0.250 0.250 

B = C - 2uI, I is the 3 x 3 identity matrix and 

). (23) 
1 - 0 - ( n  - 1)pa 0 (n  - lba  

e = (  0 1 - a - r  r 
P a  8 1 - 8 - p a  

T h e  eigenvalues g of B are given by g = [ - 2u, where [ represents the eigenvalues 
of C. We use = 2/( 1 - g f n ) ,  where gNI designates the maximal eigenvalue of the 
non-negative matrix B, as the characteristic convergence time. If there is no 
mutation, this reduces to OHTA’S (1983a) measure, 

T = 2/(1 - tm) = 2/tm, 

T = T/(1 + Tu), 

(24) 

(25) 

where t = 1 - E .  Since we may calculate T from 

we focus our  attention on T, the typical time to loss of genetic variability in the 
absence of mutation. 

From the row sums of the non-negative matrix C we obtain for the maximal 
eigenvalue Em the inequalities (GANTMACHER 1959, pp. 63, 68) 

1 - max(8, a) I tm 5 1, (26) 
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TABLE 2 

The prohubilities of identity ut  equilihriuin 

Parameter - 
p =  1 p = 2  

f i -  i f i 
1 0 9  

0.01 
1 

100 

0.350 0.059 
0.104 0.102 
0.512 0.606 

0.059 
0.100 
0.512 

0.248 
0.102 
0.5 12 

0.072 
0.102 
0.606 

0.072 
0.100 
0.512 

1 07u 
0.1 
1 

10 

0.9 18 0.918 
0.529 0.528 
0.104 0.102 

0.917 
0.526 
0.100 

0.918 
0.528 
0.102 

0.918 
0.528 
0.102 

0.918 
0.527 
0.100 

1 05p 
0.01 
1 

100 

0.790 0.947 
0.500 0.590 
0.104 0.102 

0.790 
0.498 
0.100 

0.790 
0.499 
0.102 

0.947 
0.590 
0.102 

0.790 
0.498 
0.100 

10-4s 
0.1 
1 

10 

0.853 0.8 18 
0.368 0.354 
0.055 0.055 

0.817 
0.353 
0.053 

0.849 
0.363 
0.054 

0.831 
0.357 
0.055 

0.830 
0.355 
0.053 

11 

10 
100 

1000 

0.432 0.462 
0.055 0.051 
0.010 0.005 

0.429 
0.050 
0.005 

0.43 1 
0.052 
0.007 

0.462 
0.05 1 
0.005 

0.430 
0.050 
0.005 

whence 

0 5 cm I max(8, a). (27) 

T I min(4N, 2/a) .  (28) 

Therefore, 

Returning to (23), we find that t satisfies 

(29) 
[ e  - 8 - (r7 - I ) p a ] [ ( c  - a - r)(c - 8 - p a )  - re] 

- ( n  - l )p2a2(e - a - r )  = 0, 

which becomes 

c3 - ni t2  + as€ - U 3  = 0, ( 3 0 4  

(30b) 

(304  

( 3 0 4  

where 

N I  = r + 28 + (1 + rzp)a, 

a2 = e [ r  + e + (2 + Izp)4 + npa(r + a) ,  

ci3 = a8(8 + pr + npa) .  
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If all heteroduplexes are asymmetric (p = 1) and we replace E by 1 - E ,  then 
(30) simplifies to the result of OHTA (1983a). Putting r = iVc and multiply- 
ing (30a) by N 3 ,  we see that 7 depends on four independent parameters: n ,  p, 
a0 = Na (or Xo = N A )  and ro = N r  (or PO = llr/3). Therefore, so does the scaled 
characteristic convergence time 

r = T/iV = 2/q,. (31) 
Equation (29) factors in the absence of gene conversion, random drift or 

crossing over. If a = 0, (29) yields 

E = 0, 8, r + 0, 

in agreement with the work of KIMURA (1963). If 8 = 0 ( N  = a), (29) gives 

E = 0, npa, a f r.  

(32) 

(33) 

(34) 

If P = 0, we have 

E = 8, a, 8 + npa, 

which was derived by OHTA (1983a) for p = 1. Even without mutation, only 
in the last of these special cases is there convergence to complete homogeneity. 
From (24) and (34) we obtain the characteristic time 

T = max(4N, 2/a), (35) 
which is, of course, at least as great as the lower bound (28). If 21V 2 l / a ,  
then T = 4N, which is both the exact characteristic convergence time (WRIGHT 
1931; M A L ~ C O T  1946, 1948; KIMURA 1963) and the approximate mean con- 
ditional fixation time (KIMURA and OHTA 1969) of a new neutral mutant under 
pure random drift in a large population. If 21V < l / a ,  

T 2/a = 417(?2 - l)/p. (36) 
Equations (4b) and (12a) of NAGYLAKI and PETES (1982) show that, in a single 
chromosome lineage with parity and one interaction per chromosome per gen- 
eration, the mean conditional fixation time of a new mutant is 2(n - 1)‘. For 
an average of p/2 interactions per chromosome per generation, as in this 
paper, this scales to 

(37) T * -  1 - 4(?z - 1)‘/p. 

Thus, T = r; if the number of repeats is large ( n  >> 1). Observe that the 
proportion of symmetric heteroduplexes does not influence (37). From (4b) 
and (12a) of NACYLAKI and PETES (1982) we can see that this conclusion is 
false if sister-chromatid interactions are incorporated. 

From (30) we can derive the asymptotic behavior of T in the limits a + 0 
and 8 --., 0. In both cases, according to (32) and (33), 3 0, whence (30) 
implies that E,,, - ~ / 3 / ~ 2 .  Therefore, from (24) and (30) we infer 
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as a! + 0 and 

4nN(r + a)  
r + na 

T -  

as 0 3 0 ( i . e . ,  ,V + m>. 
OHTA (1983a) has presented for p = 1 some graphs of T as a function of Xo 

(with n and Po fixed), as a function of 80 (with n and Xo fixed) and as a function 
of J I  (with Xo and 80 fixed). In Figures 2, 3 and 4 we display such graphs for 
p = 2. We exhibit 7 as a function of n (with p = 2 and (YO and Po fixed) and 
as a function of p (with 11,  Xo and Po fixed) in Figures 5 and 6. Figure 7 shows 
T as a function of N (with p = 2 and n, XO and Po fixed). Extensive calculations 
as well as these and other plots indicate the following. The unscaled charac- 
teristic convergence time T decreases as X (with p, n, N and /3 fixed) and p 
(with 11, N, A and fixed) increase; T may increase or decrease as p increases 
(with p, n, N and A fixed), the decrease occurring if p > 1 and (YO << 1. The 
time T increases as n increases if p,  N, X and P are fixed; T increases more 
slowly with increasing n if cy is fixed instead of X and even decreases for 
p > 1, a0 << 1, Po 5 1 and n fairly small. Finally, T generally increases with 
increasing iV if p,  n,  X and 6 are fixed, but T can decrease for p > 1 and 
(Yo << 1. 

280 ""F 
2 4 0 1  

p = 2.0 

$=0.2, n=20: - 
j*=I.O, n=10: --- 
j0=0.2, n = 10 : ----- 

FIGURE 2.-The scaled convergence time as a function of the scaled conversion rate. 
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p =  2.0 

-+-------.----- --- - 

{/ 
- 

-- -  --- -.cc ---- ------- .- - --- cc /--- 

* / -  

=o.04, n = 5  
x,=o.eo, n=10 1 - - - 
A,= 0.20, n = 5 : ----- 
x,=5.00, fl=lO:--- 

Thus, the convergence time exhibits complex, intuitively surprising behavior 
if symmetric heteroduplexes occur and gene conversion is relatively weak. The 
same condusion was drawn at the end of EQUILIBRIUM for the equilibrium 
values of probabilities of identity. 

DISCUSSION 

We have formulated and investigated a model €or the evolution of the prob- 
abilities of genetic identity within and between loci of a multigene family in a 
finite population. These probabilities converge globally to an equilibrium, 
which corresponds to complete homology within and between loci if, and only 
if, there is no mutation. The amount of homology at equilibrium ranges from 
zero to one; it depends sensitively on the mutation, conversion and crossover 
rates, the population size and the number of repeats, and less sensitively on 
the proportion of symmetric heteroduplexes. The  characteristic convergence 
time depends strongly and less strongly on the same respective parameters; in 
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- 

- A,= 0.1, ~,=O.I : - 
- A,= 0.2, B0=0.2:--- 

- 

- 

- 

- 

- 

I 
0 IO 20 30 40 

0 

n 
FIGURE 4.-The scaled convergence time as a function of the number of repeats, with A0 fixed. 

many cases, if mutation is negligible, essentially total sequence and population 
homogeneity will be attained in an evolutionarily short time. 

If there is no mutation, we can easily evaluate the probability that a repeat 
of type A, is ultimately fixed. Let u,(t)  represent the total number (summed 
over all loci and all individuals) of A, alleles just before gametogenesis. Detailed 
consideration of our model confirms that the expectation of U,' conditional on 
the state of the population in the previous generation is simply U,, as expected 
intuitively. Hence, u,( t )  is a martingale, and a straightforward application of 
the Optional Stopping Theorem (see, e.g., KARLIN and TAYLOR 1975, p. 261) 
to our finite, absorbing Markov chain proves that A, is fixed with probability 
u,(0)/(2iVn), which is precisely its initial frequency (regardless of position) in 
the population. 

In the remainder of this section, we shall discuss extensions of and alterna- 
tives to our model. 

SZOSTAK et 01. (1 983) have recently proposed a double-strand-break repair 
model of recombination. A reinterpretation of our parameters a and p shows 
that o u r  formulation and results apply to a model that incorporates asymmetric 
heteroduplexes (probability y), symmetric heteroduplexes (probability U )  and 
double-strand-break repair conversion (probability 6; y + U + 6 = 1). To 
deduce this generalization, we must recalculate p and q ,  defined by (8) and 
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p = 2.0 
a ,n I-- 

- -- -- 4"r n :+- IO I 30 I 40 -I 
20 
n 

FIGURE 5.-The scaled convergence time as a function of the number of repeats, with (YO fixed. 

(9); we find 

p = j(2 - y), q = t(l + 6).  (38) 

(394 

(39W 

(39c) 

Therefore, instead of (13) we obtain 

f' = [l  - (I2 - 1)(2 - 7)a]f** + (I2 - 1)(2 - y)al**,  

g' = (1 4- &)cy + [ l  - (1 + 6)a]g**, 

I' = (2 - y)af** + [l  - (2 - y)a]l**.  

Comparing (39) with (13) reveals that all our expressions hold if we make the 
replacements 

a -4 & = (1 f 6)a, p 3 ?, = (2 - ?)/(I -t 6). (40) 
Thus,  the effective conversion rate is increased, but not more than twice. Since 
I 5 j c: 2, the range of this parameter is unaltered. 

If the population does not reproduce in the ideal manner of our model ( i . ~ . ,  
by sampling from an infinite gametic pool), we must replace everywhere the 
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320r X,=O.I, /30=s.o, n=20: 
280 - X,=o.2, /3,=I.o, n=20:--- 

A,= 1.0, /~,=o.I , n=40:------ 

, 
1.0 1.2 1.4 I .6 1.8 2 .o 0 

P 
FIGURE 6.-The scaled convergence time as a function of p (= 1 + U, where U is the proportion 

of symmetric heteroduplexes). 

actual population number, N, by the inbreeding effective population number 
(CROW and KIMURA 1970, pp. 345-352, 361-364), Ne. Thus, 0 = 1/(2Ne). 

We assumed that gene conversion occurs before chromosome duplication. 
We could equally reasonably posit conversion after chromosome duplication. 
If we neglect second-order terms that arise because sister chromatids may 
differ after conversion, then (1) and (3), which describe gametogenesis and 
mutation, remain unaltered. If p is still the interaction probability per individ- 
ual, since conversion now occurs at the four-strand stage, CY must be replaced 
by a / 2  in (13) and all the ensuing equations. 

We have supposed, for the sake of simplicity, that conversion is due solely 
to intrachromatid interactions. The method of FORMULATION also yields the 
equations corresponding to (39) for sister-chromatid interactions. In the life 
cycle of FORMULATION, we assume that chromosome duplication occurs im- 
mediately after mutation. As in the previous paragraph, p is the interaction 
probability per individual. If b and c are on sister chromatids, instead of (4) 
and (5) we obtain 

P(Zb) = p/(2n), P(Zb,) = p/(2n2). (41) 
We again incorporate the model of SZOSTAK et al. (1983), so (38) applies. 
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I- = 
(s, 
0 - 

r2.0, p=10- 4 
P 9r 

6 8 c a=zxio-, ~ 5 0 : -  

0 1 2 3 4 5 2 

log N 
IO 

FIGURE 7.--The dependence of the unscaled convergence time on the population number. 

Instead of (39), now we find 

f’ = [ l  - ( n  - l)&]f** + (n  - l)LUl**, 

g’ = a + (1 - &)g**, 

I’ = &f** + (1 - ay**, 

(424 

(42b) 

(42c) 

where a = (2 - r)p/(4n2). Comparing (42) with (13) informs us that the results 
for sister-chromatid conversion may be obtained from those for intrachromatid 
conversion by replacing p by 1 and a by ti. Since a/4 6 a < a, sister-chromatid 
conversion behaves like intrachromatid conversion with purely asymmetric het- 
eroduplexes and a somewhat lower conversion rate. 

We have neglected the dependence of the homologies on the positions of 
the genes sampled. Since the probability of crossing over increases with sepa- 
ration and g and l differ from each other, this position dependence is absent 
if, and only if, there are two repeats (n = 2) or there is no crossing over 
( p  = 0). Let the homologies J ,  g,J and l,J refer to distinct loci i and j and 
denote the corresponding crossover probability by rrJ = pli - j l .  Then for 
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intrachromatid conversion and n 3 3, the techniques used in FORMULATION 
lead to the “exact” linearized system 

(434 f: = e + [ i  - 2u - e - o2 - qpa3f; + o2 - i)paii, 

where 

The system (43) is not translation invariant, i . e . ,  it does not have a solution of 
the form f ;  = f, g ,  = g , , ,  1, = L1. Since 4n(n + 1) independent homologies 
appear in (43), the analytical and numerical investigation of this model is 
unlikely to be trivial. Studies of unequal crossing over (KIMURA and OHTA 
1979; OHTA 1981, 1983b) suggest that (15) may be a reasonable approxima- 
tion to (43). 

Recall that our measure of the characteristic time to genetic homogeneity 
(in the absence of mutation) is based on the dominant eigenvalue of the re- 
cursion relations satisfied by the probabilities of identity. Hence, it is inde- 
pendent of the initial state of the population. A more complete analysis of our 
stochastic process would yield more information; the mean absorption and 
mean conditional fixation times would be of particular interest. 

Since random drift leads to intralocus homogeneity (in the absence of mu- 
tation), in a finite population, interchromosomal gene conversion also produces 
sequence homogeneity. This process has been analyzed for unbiased conver- 
sion; the results will be reported in another publication. 

Since biased gene conversion probably has considerable evolutionary impor- 
tance (LAMB and HELMI 1982; NAGYLAKI and PETES 1982; NAGYLAKI 1983a, 
b; WALSH 1983), the most important (and difficult) extension of the work 
presented here is in that direction. 

I thank NICHOLAS BARTON, TOMOKO OHTA, THOMAS PETES and BRUCE WALSH for helpful 
communication and PAUL FORD for the numerical calculations. This work was supported by Na- 
tional Science Foundation grant DEB8 1-03530. 
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