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Likelihood estimates of local rates of evolution within proteins
reveal that selective constraints on structure and function are
quantitatively stable over billions of years of divergence. The
stability of constraints produces an intramolecular clock that gives
each protein a characteristic pattern of evolutionary rates along its
sequence. This pattern allows the identification of constrained
regions and, because the rate of evolution is a quantitative mea-
sure of the strength of the constraint, of their functional impor-
tance. We show that results from such analyses, which require only
sequence alignments, are consistent with experimental and mu-
tational data. The methodology has significant predictive power
and may be used to guide structure-function studies for any
protein represented by a modest number of homologs in sequence
databases.

he principle that the rate of molecular evolution is inversely

correlated with the strength of selective constraints has long
been known (1, 2). The average evolutionary rate of a protein
reflects the overall importance of the protein for organismal
functions, whereas rate variation within the protein reflects
intramolecular differences in structural and functional con-
straints. Intramolecular rate variation has been the subject of
many studies focused on devising more realistic models of
sequence evolution that do not assume rate constancy among
sites (e.g., refs. 3-6). A more recent application of estimating
rate variation within proteins has been the inference of structural
and functional constraints (7-9).

To identify evolutionarily constrained regions (ECRs) we
devised a general approach to inferring rate variation within
proteins. We construct a multiple sequence alignment of or-
thologs and/or closely related paralogs and build the maximum
likelihood tree. Holding the branching structure of the tree fixed,
we then calculate the number of substitutions in each window of
a fixed width over the entire alignment. The “relative rate” in the
window is obtained by dividing the number of substitutions per
site in the window by the average of all windows. Plotting the
windows’ relative rates as a function of their position generates
a rate profile (RP), and a heuristic algorithm automatically
identifies ECRs and ranks them by their rate of evolution. This
approach allows us to infer both the existence of constrained
regions in a protein and, because the rate of evolution is a
quantitative measure of the strength of the constraint, the
relative importance of the identified region.

Our method requires only a multiple sequence alignment and
is sufficiently powerful to allow analyses involving a relatively
small number of fairly closely related sequences. It enables us
(7) to use sequences for which the quality of the alignment over
most its length is indisputably robust, and (i) to use alignments
of orthologs and closely related paralogs for which conservation
of structural and functional constraints can be reasonably
assumed. We show below that the method identifies known
domains with a high degree of accuracy, that its rankings are
consistent with experimental and mutational data, that it allows
the inference of previously unknown constrained domains, and
that it can pinpoint the origin of novel functional regions in the
evolutionary history of paralogs.
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Methods

Overview of Steps of Evolution-Structure—-Function (ESF) Analyses.
(i) Choose query protein sequence and identify closely related
sequences by similarity search with WUBLASTP (ref. 10; http://
blast.wustl.edu). (i/) Build multiple sequence alignment with
CLUSTALW (ref. 11; ftp://ftp.ebi.ac.uk/pub/software/unix/
clustalw/). (iif) Infer maximum likelihood tree of the sequences
with PROTML 2.3 (ref. 12; ftp://ftp.ism.ac.jp/pub/ISMLIB/
MOLPHY/). (iv) Estimate local rates of evolution in a sliding
window with CODEML (ref. 13; http://abacus.gene.ucl.ac.uk/
software/paml.html). (v) Plot rates as a function of position in
alignment, detect ECRs, and rank ECRs by slowest evolving
window.

Similarity Search and Alignment. Default parameters are used.
Very similar sequences that would only contribute a small
number of substitutions are removed to minimize computational
time. We attempt to maximize two competing quantities to
optimize predictive power: (i) the fraction of the alignment in
which positional homology is virtually certain—we discard se-
quences that disproportionately introduce or extend the areas of
uncertain homology around gaps— and (ii) the number of
substitutions in the regions where homology is certain—we use
proteins for which a reasonably diverse set of homologs (usually
orthologs) has been sequenced. A typical alignment contains
between 8 and 20 sequences with pairwise differences ranging
from 5% to at most 50% and fewer than one-third of the
positions residing in areas of dubious homology.

Tree Reconstruction. We use the likelihood implementation in
PROTML with the JTT stochastic model (14). Alignments with
fewer than 12 sequences allow an exhaustive search of all trees;
for those with more, a heuristic search is used. Positions of
uncertain homology are removed before analysis, in accordance
with standard practice in phylogenetic reconstruction.

Estimating Local Relative Rates. For every window of nineteen
amino acids in the alignment, we calculate the number of
substitutions per site by likelihood, using the JTT model and the
branching pattern inferred from the step above. The relative rate
in the window is obtained by dividing the number of substitutions
per site in the window by the average of all windows. The window
width was chosen to maximize the signal-to-noise ratio for the
detection of constraints on regions, not individual amino acids,
and to reduce the statistical uncertainty associated with esti-
mates of the number of substitutions in slowly evolving regions.
Window widths could be narrowed for other applications. Gaps
in the alignment are almost always part of regions of uncertain
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(A and B) Overlays of RPs from homologous proteins. x axis, position in sequence alignment; y axis, relative rate calculated from the ratio of substitutions

within each window, divided by the total number of substitutions in the alignment. Rates were first calculated and normalized independently, and plots were
then overlaid in register with the sequence alignment. Small insertions in single sequences were removed before analysis. (C) Overlay of the rate plot of p53
(eleven sequences) and the frequency of missense mutations isolated from somatic tumors. Blue Roman numerals denote the canonical domains as described
in the p53 literature (17); tet, tetramerization domain. Red numbers are the inferred ECRs, ranked according to the rate of the slowest evolving window. (D)
Correlation of the average rate of evolution with the density of point mutations in the canonical domains (blue) or ECRs (red).

positional homology, and are therefore filled with alanines. This
results in high relative rates whose values can be regarded as
arbitrary.

Detection of ECRs. Relative rates for all windows are smoothed using
a ten-position-wide moving window arithmetic average and then
plotted as a function of alignment position in a two-dimensional
array. Scanning the array from the bottom (minimum) to top
(maximum) yields a ranked list of local minima. Each minimum
defines an ECR whose maximum extent is bounded by the first
positions to the left and to the right where the first derivative is
zero—i.e., by the peaks neighboring the trough.

Difference in Rate Plots of Independent Datasets. As a measure of
difference between rate plots X and Y, we define the distance p
as p(X,Y) = (1/n) X | log(X;/Y:) |, where X; and Y; are the rates
calculated in the window centered at position i for plots X and
Y, respectively, and i ranges from positions 1 to » of the plots. p
satisfies the formal criteria for a distance metric. We use X;/Y;
as the relative rate of X; with respect to Y; because X;/Y; is the
factor by which the rate calculated at position i in plot X differs
from that calculated at position i in plot Y. The value | log(X;/Y;)
| is a symmetric measure of the size of this difference, and p(X,Y)
computes the average of these differences across the whole of the
plots.

Note that for ¢ > 1, | log(cx/x) | = log c. It follows that
p(cX,X) = log c is the calculated distance between plot X and the
rate plot obtained from scaling X by a factor of c. We invert this
relationship to relate calculated distances to a scaling factor, c,
with ¢ = ePXY), In the case of hemoglobin, we calculated the
distance between plots of the a and B chains as p(e,B) = 0.12.
An equivalent distance is p(ca,a), where scaling factor ¢ = %12
= 1.13. In other words, the RP of alpha hemoglobin exhibits a
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difference to that of beta hemoglobin as if each relative rate
differed by 13%.

Results

A critical test of the methodology we are proposing is whether
local rates of evolution are quantitatively stable, and whether
likelihood inference of relative rates is reproducible. If so,
independent data sets of the same protein should give similar
RPs regardless of taxonomic sampling. Because we plot the
relative rate of evolution, RPs derived from different paralogs
that evolve at different overall rates or from orthologs repre-
senting diverse taxonomic sampling should be directly compa-
rable. We chose two test cases, eukaryotic glyceraldehyde-3-
phosphate dehydrogenase (GAPDH), and vertebrate
hemoglobins. For GAPDH, one alignment contained sixteen
sequences from fungi, and the other had sixteen non-fungal
sequences mostly from plants and animals. Because inference is
done on unrooted trees, the evolutionary history of the two
datasets is independent. The sequences span a divergence of
1,718 point substitutions accumulated over a total of several
billion years, with the fungal dataset having a slightly larger
number of substitutions than the other eukaryotes. We find that
the RPs track each other closely (Fig. 14).

RPs from closely related paralogs are also quite similar, as
evidenced by the analyses of alpha and beta hemoglobin (Fig.
1B). These RPs were generated from the same 14 organisms,
which allowed us to calculate the difference in the average rate
between the two globins without having to make assumptions
about divergence times. Alpha evolves 1.2 times faster than beta,
and yet the RPs superimpose.

To estimate how different superimposed RPs are, we devised a
distance measure (see Methods). The mean distances in relative
rates between the RPs of GAPDH and hemoglobin are 0.22 and
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0.13, respectively. These are small values considering that the rates
within an RP can differ by as much as two orders of magnitude.

Having shown that constraints are reproducibly detected we
turned to four tests designed to elucidate the biological signif-
icance of RPs and ECRs. We first asked whether there is a
correlation between a protein’s RP and the degree of functional
impairment by point mutations. We used the frequency distri-
bution of 11,360 missense mutations in p53 isolated from somatic
tumors (15) as an indirect measure of functional impairment of
a protein. (The tumors in which these mutations were identified
represent one phenotypic effect of somatic mutations in p53,
whereas the rate of evolution is a function of the severity of any
phenotypic effect of germline mutations. We would have pre-
ferred to use a database of germline mutations whose phenotypic
effect had been measured but we are not aware that such a
database currently exists.) In agreement with a previous study of
p53 that correlated a different measure of evolutionary rates
with mutational density (16), Fig. 1C shows qualitatively that
missense mutations are more likely to promote the development
of tumors when they occur in slowly evolving regions. To
quantify the inverse correlation between density of point mu-
tations and rate of evolution, we compared the number of
missense mutations in the ECRs and in the domains as described
in the literature (17), with their rates of evolution. We detect
eight ECRSs in p53, six that mostly overlap with the domains and
two that reside between canonical domains III and IV. The
average relative rate of evolution and number of mutations per
site are more strongly correlated for the ECRs than for the
canonical domains (Fig. 1D). This result validates the ECR as a
meaningful concept in studying protein function.

Second, we asked whether the RPs are in general agreement
with accepted principles of protein folding and function. In
GAPDH (Fig. 24), buried amino acids that are responsible for
folding and stabilization of the tetrameric interface, NAD"
cofactor binding, and enzyme catalysis evolve more slowly (blue)
than the solvent exposed residues (red). This pattern is in striking
contrast to proteins that bind other proteins or DNA, and whose
functionally most important residues reside on the surface. In
pS3, the most highly constrained region is a surface patch that
forms the DNA binding interface (Fig. 2B). In Hedgehog (Fig.
2C), the C-terminal domain, which is not directly involved in
signaling (20, 21), evolves 4-fold faster than the N-terminal
domain, the bioactive part of the protein (22). Within the
C-terminal domain, the core exhibits the slowest rates of evo-
lution. Within the N-terminal domain, the rate of evolution is
much lower in the part that is oriented away from the C terminus.
This constraint is likely due to the presence of surface residues
that bind the receptor, Patched.

In a third test, we asked whether there is a consistent
correspondence of the location of ECRs and that of known
structural domains. In Notch (Fig. 34), for example, 34 of 36
EGF-like repeats and all Lin/Notch and Ankyrin repeats are
accurately inferred in the sense that each contains one local
minimum bordered by local maxima. Similarly, in B-catenin (Fig.
3B), all twelve armadillo repeats are detected, with repeat
number 10, which contains a quickly evolving insertion, having
two minima.

Having established that ECRs consistently correspond to
structural domains in modular proteins, we tested whether
constraints imposed by function could be detected by ranking the
ECRs according to their rate. In Notch, the most slowly evolving
domains (Fig. 34) are the Ankyrin repeats (transcriptional
coactivation), followed by the PEST sequence (degradation),
and then EGF repeat number 10 (binding the ligands, Delta, and
Serrate). Other ECRs that correspond to regions of known
function include the Lin repeats and the RAM region (23-25).
In B-catenin, the armadillo repeat region, which extensively
interacts with TCF and E-cadherin (26, 27), evolves most slowly.
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Fig. 2. Visualization of relative rates in structures using a color spectrum;
blue represents the slowest rates, orange and red the highest. This figure was
prepared using rRasmac Version 2.6 (ref. 18; http://www.umass.edu/microbio/
rasmol/) and modified Protein Data Bank (PDB) files (ref. 19; ht) in which the
temperature field was substituted with the relative rate scaled linearly to span
the range of available colors. (A) GAPDH tetramer (PDB ID code 1GD1). (B) The
p35 core bound to DNA (PDB ID code 1TUP). (C) Virtual fusion of the N terminus
of mouse Sonic Hedgehog (PDB ID code 1VHH) with the C terminus of
Drosophila Hedgehog (PDB ID code 1ATO0). Only three amino acids (3 aa) in the
alignment separate the structures of the two domains.

The strongest constraint resides in repeat four, in which Lys-312
has been shown to be essential for E-cadherin binding (26, 27).
In Mybs, the most slowly evolving ECRs are the Myb repeats
(data not shown).

Functional domains need not belong to known structural
modules to be detected. In the Mybs, the next-ranking ECRs are
the acidic domain in A- and C-myb (transactivation), and the
N-terminal part of the negative regulatory domain. In p53, the
two arginines that make DNA contact are in the middle of the
two most slowly evolving ECRs (Fig. 1C). In Smcl/cohesin (Fig.
3C), the most slowly evolving ECRs comprise the N- and
C-terminal ATPase domains. The hinge, which lacks discernable
sequence motifs but is known to be important for function, has
the next-highly ranking ECRs. Finally, the coiled coils, in which
only a small subset of residues are important for binding,
comprise the most quickly evolving ECRs. The striking symme-
try of the cohesin RP matches the model that has been proposed
from functional studies (28), but the multitude of detected ECRs
also suggests that each of the five known domains is comprised
of several smaller regions of functional importance.

The results from our tests support two major conclusions.
First, divergent evolution of homologs that are alignable over
most of their length follows stable patterns that manifest
themselves in quantitatively similar relative rates of evolution
even when the overall rate of evolution varies between the
homologs. Second, estimating the local relative rates of evo-
lution by likelihood analyses, and ranking inferred ECRs by
their rate, is predictive of functional importance. We now turn

Simon et al.
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RPs for five case studies. x axis, position in sequence alignment; y axis, smoothed relative rates for emphasis on detection of ECRs. Bars at y = 1 indicate

regions of uncertain alignment. Blue and/or red bars underneath ECRs indicate the rate of the most slowly evolving window in the ECR (position on y axis) and
the extent of the inferred ECR (extent along x axis). ECRs whose troughs are entirely contained with a region of uncertain alignment should be disregarded, but
note that the resolution of the graphic is limited. (A) Notch; ECRs at the start and end of the repeat regions are labeled with the number of the repeat to which
they correspond. Most-slowly evolving repeats are in italics. The gap just N-terminal to the PEST ECR corresponds to 180 highly divergent positions. (B)
B-catenin/armadillo; arrowhead points to quickly evolving insertion in repeat 10. (C) SMC1/cohesin with the five known regions labeled. Note that each region
contains several ECRs. (D) Overlay of the N-terminal RPs of Delta and Serrate prepared as described in Fig. 1. Gaps in the plots are due to alignment of the RPs
to each other. Novel predicted domains are labeled in bold. (E) Overlay of Wnt1/wg and Wnt5a/b plots. The ranks of the three most slowly evolving ECRs are
in the color corresponding to the paralog to which they belong. The sequences from human Wnt1 that correspond to the most slowly evolving windows in ECRs

1, 2, and 3 are, respectively, CKCHGMSGSCTVRTCWMRL, VNRGCRETAFIFAITSAGV, and CNSSSPALDGCELLCCGRG.

to analyses that show the full range of hypotheses that can be
generated.

Of all EGF repeats in Notch, number 26 is the second-most
slowly evolving (Fig. 34). It contains a conserved fucosylation
consensus sequence (29) that may be the site of modification by
Fringe, the glycosyltransferase that modulates Notch’s sensitivity
to its ligands. Consistent with this prediction is the fact that the
abruptex mutations in Notch, which genetically interact with
alleles of Fringe, cluster between repeats 24 and 29 (30).

In the N termini of Delta and Serrate, four ECRs that do not
correspond to previously identified domains stand out as evolv-
ing sufficiently slowly to have important functional roles (Fig.
3D). Two of them, B and C, evolve just as slowly as the DSL

Simon et al.

domain, which is the defining domain of this gene family. In
addition, EGF repeats 2 and 3 of both Delta and Serrate evolve
about twice as slowly as the DSL domain, with the greatest
constraint neatly centered on their border. This constraint is
unlikely to be due to structural requirements because the relative
rate of evolution in most other EGF repeats of Notch, Delta, and
Serrate is much higher, with the minima much less skewed
toward one end of the domain. We predict that this region and
probably the novel domains as well are important for the main
function of these ligands, their interaction with the Notch
receptor.

As an example for predicting the functional importance of
ECRs in nonmodular proteins we analyzed the Wnts, which are
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Fig.4. The Myb case study forillustration of inference of evolved differences
between paralogs. (A) Differences in relative rates between A myb and B myb
(red), and C myb and B myb (green). Purple bar delineates the region C-
terminal to the myb repeats that contains the acidic activator domain in A-and
C-myb, comprising alignment positions 200-372. (B) Trees for each paralog
relating the orthologs from human (H), mouse (M), chick (C), and Xenopus
(X), with branch lengths proportional to the number of substitutions. Left set
of trees are calculated from the entire alignment; right set of trees are
calculated from just the positions corresponding to the region indicated in
purple in A. This region is constrained equally in A and C, but in B it evolves
much faster by comparison. (C) Most likely position of the origin of the
constraint, which is shared between A and C, but not present in B and
invertebrates. Yellow diamonds are gene duplications; vertebrate subtrees
are simplified for display.

signaling molecules that bind to and activate the Frizzled recep-
tors (31). It is currently unknown which regions in the Wnts are
responsible for receptor binding but, given the results from our
tests above, the most slowly evolving ECRs are good candidates
for bearing this important function. As a test of the consistency
of our predictions, we independently analyzed two ancient
paralogous Wnts that had been shown to evolve at 2-fold
different average rates (32), Wntl/wg and Wnt5a/b. Overlay of
the RPs and ranking of their ECRs shows that the most slowly
evolving ECRs of both paralogs are close in location and have
similar relative rates (Fig. 3E). We predict that these regions
contain residues that make the most important contacts with
their cognate Frizzled receptors.

The results from the comparisons involving ancient paralogs
such as Delta/Serrate and Wntl/Wnt5 show that the location of
ECRs and their relative evolutionary rates can be well con-
served. Conversely, different patterns in related proteins provide
the opportunity to define the evolutionary origin of a new
constraint. We chose the Myb gene family as a test case because
despite fairly high levels of sequence similarity, a functional
difference has been hypothesized between homologs: A- and
C-myb can act as transcriptional activators, whereas B-myb and
the single invertebrate myb probably do not (33).

In these analyses, differences between aligned RPs of paralogs
are first used to identify candidate regions where rates greatly
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differ. Then, the rate of evolution in the candidate region, not
just in the windows, is calculated and compared with the average
rate of the entire protein. In the alignment of the Mybs, the
section from position 200 to 372 exhibits the greatest difference
in relative rates between A-myb or C-myb and B-myb, with A and
C having similar rates and B obviously evolving more quickly
(Fig. 44). In both A-myb and C-myb, this region contains a
domain that has been shown to be capable of transcriptional
activation (34, 35) and binding to the coactivator, CBP (36).
Whether the corresponding section in B-myb is also capable of
activating transcription is controversial (33). Our analyses show
a lack of constraints in that section of B-myb, with a 6.6-fold
faster rate than the average of the entire protein (Fig. 4B). In
contrast, in both A-myb and C-myb, the corresponding section
evolves only 1.4 times faster than the average, and the transcrip-
tional activation domain is one of the most slowly evolving ECRs
(data not shown). Given the evolutionary relationship of the
Myb genes, we can map the origin of the constraint, and the likely
origin of the transcriptional activation function, on the ancestral
lineage of A- and C-myb, after the B-myb lineage diverged
(Fig. 4C).

Discussion

We show that local rates of protein evolution are generally
stable regardless of the strength of the constraint, a phenom-
enon that manifests itself as virtually superimposable RPs of
independent sets of sequences for the same protein. This
stability extends to more distant paralogs such as Wntl and
Wnt5 despite differences in their average rates. This finding
has the interesting implication that, even in the absence of a
true molecular clock for the absolute rate of each protein’s
evolution, there is a relative clock for the local rate of evolution
that is primarily governed by physicochemical constraints on
protein structure and function. Our analyses uncover this clock
with normalization of the windows’ rates by the average rate
of the protein, which factors out time and those contributions
to the evolutionary rate that are due to organismal and
population parameters.

We term the methodology described here “Evolution—
Structure—Function” (ESF) analyses. ESF analyses estimate
rates within a window, normalize the local rates by the average
rate, smooth the rates to detect ECRs, and then rank the ECRs
by the rate of the most slowly evolving window. This combi-
nation of algorithms distinguishes the method from similar
approaches that either require structures (7, 8), do not predict
or rank ECRs, or separately estimate rates for each position
(9). One key assumption we make is that of a strong correlation
of rates in sites that are close in the alignment. We make this
assumption to increase power (allowing analyses of rather
closely related sequences) and to reduce the statistical uncer-
tainty associated with estimates of rates in single positions.
One potential drawback of this approach is a loss of sensitivity
with respect to detection of small conserved regions. Another
drawback, which may be counterbalanced by post-ESF scrutiny
of the alignment for fully conserved positions, is that the
resolution of the method is region-based and not focused on
the individual amino acid.

ESF analyses provides specific, first-principle hypotheses as to
where a protein’s functional regions most likely reside. The
dissociation of functional from structural constraints is perhaps
the most important practical feature of ESF analyses. It is best
illustrated by the EGF repeats in Notch and its ligands, which,
despite very similar structures, evolve at vastly different rates.
Depending on the resolution desired, ESF analyses alone, or in
combination with other comparative analyses such as the one
described above for the conserved fucosylation site in EGF
repeat 26 of Notch, can generate precise, experimentally testable
predictions of function.

Simon et al.



Natural selection has generated an extraordinary trove of exper-
imental data that is hidden in extant sequences by testing millions
of point mutants and rejecting the vast majority with a probability
proportional to their deleteriousness. Because average evolutionary
rates of proteins vary greatly in the proteome (2), the species that
will reveal these data with the best signal-to-noise ratio range from
closely to distantly related. Thus, the information gained from
comparative analyses such as the ones described here would be
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