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Abstract

Mass spectrometry-based proteomics has become an essential tool for qualitative and quantitative
analysis of cellular systems. The biochemical complexity and functional diversity of the ubiquitin
system are well suited to proteomic studies. This review summarizes advances involving the
identification of ubiquitinated proteins, the elucidation of ubiquitin-modification sites, and the
determination of poly-ubiquitin chain linkages, while offering a perspective on the application of
emerging technologies to mechanistic and functional studies of protein ubiquitination. [ox:]

Introduction

The ubiquitin system is a well characterized pathway involved in regulating nearly every
cellular process in eukaryotesl‘?’. In a series of elegant experiments, Hershko, Ciechanover,
Rose and colleagues posited that the ATP-dependent modification of protein substrates by
ubiquitin (termed APF-1 at the time) targeted them for degradation4' . This hypothesis was
substantiated when Varshavsky and colleagues demonstrated a role for ubiquitin in protein
turnover within cells® 7. Since that time, ubiquitination has emerged as a central regulatory
mechanism controlling not only protein stability, but also localization, interactions, and
functional activity for a vast number of protein substrates (Fig. 1). [ox]

The hallmark of the ubiquitin system is post-translational modification of protein substrates
by ubiquitin, a highly conserved 76 amino acid polypeptide. The C-terminal glycine of
ubiquitin is covalently linked through an isopeptide bond to the side chain of lysine(s) within
the substrate. Substrates can be modified, either by a mono-ubiquitin, multiple mono-ubiquitins
(multiubiquitination), or a poly-ubiquitin chain(s) (polyubiquitination) [ox] (Fig. 1). In addition
to ubiquitin, an entire family of ubiquitin-like (Ubl) proteins has been discovered. These
proteins share significant sequence homology to ubiquitin, and in many cases, form covalent
post-translational modifications by similar mechanisms. However, while ubiquitin often acts
as a degradation signal, Ubl modifications appear to modulate exclusively non-proteasomal
endpoints. Among these Ubl proteins are SUMO (Small Ubiquitin-like mdifier)S, 1ISG15
(Interferon-Stimulated Gene of 15 kDa)9, and NEDDS8 (NEural precursor cell-expressed and
Developmentally Down-regulated gene)lo’ 11

Due to improvements in instrument sensitivity, mass accuracy, peptide fragmentation, and
database searching, mass spectrometry (MS)-based proteomics is becoming a mature platform
for the systematic characterization of both the ubiquitin and Ubl systems. This review will
focus on the existing and future applications of MS-based proteomics in such analyses. We
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will discuss the use of shotgun sequencing to identify protein substrates, and ubiquitin/Ubl
modification sites, as well as enzymes involved in conjugation (ligases), deconjugation
(DUBs), and ubiquitin-dependent proteolysis (26S proteasome). Ongoing work in this area
seeks to develop a more complete understanding of the structure and function of poly-ubiquitin
chains, and to define the role and specificity of ubiquitin-binding proteins. Since these and
other mechanistic studies require carefully controlled comparisons between samples, pertinent
subtractive/differential display approaches will be discussed. Finally, the focus will shift to the
looming impact of stable isotope based quantitative approaches and their unequaled potential
for further elucidation of the ubiquitin system.

Shotgun sequencing by MS as a biological assay

The term “shotgun sequencing,” coined by Yates and colleagues, refers to the automated
identification and cataloging of proteins directly from complex mixturesl2. At the heart of
shotgun sequencing is the acquisition of thousands of tandem mass (MS/MS) spectra. In this
approach, proteins are enzymatically digested into peptides, separated via reversed-phase
chromatography and analyzed automatically by a mass spectrometer. Since each MS/MS
spectrum represents the measurement of fragment ions produced from a single peptide (Fig.
2A), peptides are “sequenced” by the correlation of each MS/MS spectrum against a sequence
database using softwarel3: 14, Complex samples containing hundreds of proteins can be
sequenced during a single analysis. This approach can be used as a biological assay to probe
specific cell states by collating lists of identified peptides (cataloging proteomics), enumerating
differences in peptide composition between samples (subtractive proteomics), or by comparing
protein profiles between cell states using stable isotope labeling (quantitative proteomics)
[DKs](Fig. ZB)

When more complex mixtures (e.g., cell lysates) are analyzed, additional separation is required
for maximal protein coverage. To date, reports identi?ing more than 1,000 proteins have used
either gel-based separation of;aroteins (GeLC-MS)1 » 16 or multi-dimensional
chromatography of peptides1 , 18 prior to tandem mass spectrometry[oxs] (Fig. 2C). Multi-
dimensional chromatography, performed following enzymatic digestion, typically employs a
step of strong cation exchange chromatography prior to reversed phase separation. Two high-
profile studies of the malaria parasite, Plasmodium falciparum, provide examples of how these
two different approaches can be used for large scale proteomic analyse515v 7 While
generating an enormous amount of data, a significant amount of analysis time is required to
process and analyze each sample individually. The original multi-dimensional approach,
multidimensional protein identification technology (MUDPIT), partially circumvents this
problem by coupling the two chromatographic steps online with detection via mass
spectrometry in an automated fashion, effectively eliminating many of the intermediate sample
handling stepslg. An advantage of multi-dimensional chromatography in ubiquitin analyses
is that since proteins in the sample are digested together, rather than separated by molecular
weight as in GeLC-MS approaches, maximum sensitivity is obtained for each individual
substrate. The loss of sensitivity resulting from molecular weight separation can be partially
overcome in GeLC-MS, since it is possible to load as much as 10 mg protein lysate on a
preparative SDS-PAGE gel under optimized conditions.

Identification of substrates for ubiquitin and Ubl proteins

Initial contributions of MS-based proteomics to the study of ubiquitin and Ubl proteins have
demonstrated that as many as one thousand ubiquitinated proteins can be identified within a

single experimentls. Typically, substrates are purified via an N-terminal epitope tag[oxo] fused
to ubiquitin, digested using trypsin, and analyzed by proteome-scale shotgun sequencing. To
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date, this basic approach [oxi]has been used to identify both ubiquitin- and SUMO- substrates
en masse.

The first reported large scale analysis of ubiquitinated proteins using shotgun sequencing
identified 1075 candidate substrates from yeast expressing epitope-tagged ubiquitin18. In
subsequent studies, similar approaches were used to characterize defined subsets of
ubiquitinated proteinszol 21 as well as proteins modified by SUM022-26 These approaches
have been extended into mammalian systems for both ubiquitin27 and SUM028-31 |
addition, a transgenic mouse expressing (His)g-ubiquitin has been described that may be useful
for isolating conjugates from mammalian tissues32. For large-scale studies, yeast offer a
distinct advantage over mammalian systems since the multiple genes encoding ubiquitin can
be genetically inactivated prior to introduction of epitope-tagged ubiquitin, making it the sole
form of ubiquitin within cells33, Nontagging strategies for enriching targets, such as using
ubiquitin-binding proteinsZL 34 may help overcome this difficulty by avoiding the use of
epitope-tags completely, allowing for large scale analysis of ubiquitinated proteins from
untransfected cells, animal tissues, or possibly even clinical specimens.

While identification of cellular substrates is optimal, several reports demonstrate that in vitro
systems can be used effectively to identify targets for both ubiquitin and Ubl proteins35‘37
In vitro systems have been particularly useful in focused studies characterizing substrates for
ubiquitin ligases such as the tumor suppressor BRCA138, 39 ang erythrocyte spectrin40, as
well as the SUMOylation of CENP-C by Ubco?L. [oxi2]

While cataloging proteomics often offers insights into the breadth of ubiquitin- and Ubl-
pathways, comparative biology requires more stringent subtractive approache542. Subtractive
proteomics takes advantage of the fact that a mass spectrometer is a concentration-sensitive
detector. Since the number of peptides identified from a given protein within a mixture is
roughly proportional to its abundance, comparing the number of peptides identified for a single
protein in parallel samples can be semiquantitative. For example, ubiquitinated proteins were
classified as substrates of the endoplasmic-reticulum associated degradation (ERAD) pathway
if they displayed a ‘down-up-down’ profile for the number of peptides identified during
analysis of wild type, npl4-1 mutant, and npl4-1Ubc7/4 double mutant strains20. This profile
was predicted based upon observations that npl4-1 mutants displayed increased levels of
ubiquitinated proteins which were reversed in the absence of the E2 Ubc7. In another example,
subtractive proteomics was used to identify ubiquitin-substrates whose degradation relied upon
the ubiquitin-binding protein an1021.

Comparisons of enriched pools [oxi<]of ubiquitinated proteins from wild type and mutant cells,
cells in different metabolic states, or cells grown under different conditions, have the potential
to globally define ligase-substrate-DUB relationships. While subtractive approaches have
proven useful, our belief is that differences between samples are best quantified using stable
isotope labeling. Useful stable isotopes that are readily distinguishable by MS include
deuterium, 13C, and 1°N, which each provide a mass increment of ~1 Da/atom. Two common
approaches used for incorporation of stable isotopes are metabolic Iabeling43‘45 and post-
harvest derivatization#®. Both methods facilitate the comparison of proteins between two or
more samples following differential labeling (Fig. 3). Quantification in both strategies relies
on the fact that unlabeled and labeled versions of a peptide are chemically identical and co-
elute during reverse-phase chromatography, so long as 13c and 15N isotopes are used for
labeling. A peptide derived from a protein present at 2-fold higher concentration in one sample
than the other is represented by a pair of peptides with peak intensities differing by 2-fold (Fig.
3). Since the large-scale characterization of ubiquitinated proteins is often partially obstructed
by huge excesses of peptides from ubiquitin, any method which is transparent to ubiquitin
peptides offers a unique analytical benefit. Since the isotope coded affinity tagging (ICAT)
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strategy is based upon enrichment of cysteine containing peptides, a residue which is
completely lacking within ubiquitin, the quantification of ubiquitinated proteins using ICAT
offers this benefit (Fig. 3). In any case, by adapting workflows for shotgun proteomics (Fig.
2B), thousands of peptides and their corresponding isotopic pairs can be sequenced and
quantified from a single sample.

Although mass spectrometry offers a powerful tool for identifying ubiquitin- and Ubl-
substrates, a number of unresolved issues remain. Despite many advances, MS data is
inherently biased toward more abundant substrates. The effects of epitope tags on ubiquitin
and Ubl proteins remain incompletely understood, including whether purification biases exist
and whether ubiquitin pathway enzymes [oxis]utilize tagged and wild-type ubiquitin with equal
efficiency. Ongoing work seeks to determine if ubiquitin-binding proteins or ubiquitin
antibodies may work efficiently as affinity reagents[oxis] in order to lessen the need for epitope
tagged ubiquitin.

Validation of database matched proteins as true substrates remains a major endeavor since
ubiquitin/Ubl- and substrate-associated proteins can co-purify with true targets, particularly
when affinity purifications are performed solely under non-denaturing conditions,. Several non
MS-based approaches may be useful for validating conjugates and identifying low abundance
substrates. Genetic methodologies, including two- hybrld screens and high-copy suppressor
screens, have been used to identify SUMO substrates2®. High-throughput
immunoprecipitation and western blot anal¥5|s of epitope-tagged proteins, recently used to
identify direct and indirect SUMO targets , may be a feasible approach for systematic
validation for substrates of ubiquitin and other Ubls identified by shotgun sequencing.

In efforts to increase the stringency of ubiquitin/Ubl substrates identified by shotgun
sequencing, a general trend towards double-affinity purification procedures has emerged
22,24, 25 seyeral groups studying both ubiquitin and SUMO have demonstrated that these
approaches can be useful for identifying low-abundance conjugates while minimizing the
number of false positives. Two papers using a single-step versus a double-affinity purification
provide a relevant ba5|s for comparing and contrasting the enrichment and analytical aspects
of these methods[mm] 3,24 \While generating largely overlapping lists, an optimized MUDPIT
analy5|s23 successfully identified more proteins than double-affinity purification coupled to
GeLC-MS24. One advantage of the double-affinity approach was that it acted as independent
confirmation that identified proteins were true substrates, even in the absence of follow up
studies. Interestingly, both protocols have issues with false negatives. Despite identifying more
proteins, the incidence of false negatives following single-step purification may actually
underestimate the number of modified proteins, since many proteins are ruled out as potential
substrates based on their identification in the negative control sample. By contrast, stringency
inherent to the multi-step purification results in the loss of some true substrates prior to MS
analysis.

Characterization of enzymes regulating ubiquitin and Ubl systems

In addition to analyses focused on substrate identification, MS-based proteomics has been
useful in characterizing many enzymatic components of the ubiquitin system. Tandem mass
spectrometry[omslzhas been used to identify novel members of the yeast anaphase promoting
complex (APC) 9 and to characterize a network of Skp-Cullin-Fyox (SCF) ubiquitin-
Ilgases50 o1 Enzymes re _/gulatln ubiquitination of substrates such as p53

IkappaB55 hlstones;5 57 ¢-Junv8 , and the EGF receptor 59 have also been studled
Comprehensive analyses of the mtact 26S proteasome have yielded a number of novel
proteasome-associated proteins including both the APC and SCF E3 IigasesGO, while helping
demonstrate that the Rpn11 subunit acts as a deubiquitinating enzyme for incoming proteasome
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substrates®L. In a series of reports, activity-based probes, coupled with MS, have been used to
characterize known DUB enzymes, identify a novel family of DUBs, and to perform expression
profiling of DUBs in various cells and tissues62-64 The versatility of these probes was further
extendgg to the characterization of deconjugating[oxis] enzymes for SUMO, Nedd8 and
ISG15

Identification of ubiquitin and Ub-like modification sites

Large scale analysis of post-translational modifications, particularly protein phosphorylation,
remains a fruitful area of research for MS-based proteomics . By using mass spectrometry
coupled to phosphopeptide enrichment strategies such as |mm0b|I|zed metal affinity
chromatography®®, strong cation exchange chromatography , Or peptide
immunoprecipitatlon70, thousands of modification sites have been identified. Recently, these
approaches have been modified in order to identify ubiquitination sites. Unlike with
phosphorylation, the identification of consensus ubiquitination sites based upon primary
sequence seems unlikely. Rather, we feel that the combination of MS approaches with three
dimensional protein structures will be useful in identifying exposed surfaces on which protein
modification is occurring at a number of similarly positioned lysines. As the number of
identified ubiquitination sites increases, one related benefit may the identification of
recognition motifs for enzymes such as ligases or DUBSs. Since only a handful of bona fide
ubiquitination sites are currently known, significant efforts are needed in this area. [okz]

A number of studies have demonstrated that precise ubiquitination sites can be identified using
MS, by taking advantage of the fact that isopeptide-linked ubiquitin is cleaved by trypsm at
the J7unct|on between Arg-74 and Gly-75, producing a -GG signature peptide (Fig. 4) 18, 20,

Two large scale studies have been performed to |dent|1}/ ubiquitination sites from
yeast18 O In more focused studies, modification sites on Gpal Y- —tubulin3®, TRAF-174,
Smad4’, and Met4’3 have been identified using similar methods. Another noteworthy report
used MS to characterize the N-terminal ubiquitination of both p21 and ERK372

Despite these successes, the identification of ubiquitinated lysines has proven to be difficult
for many proteins. Whereas site-directed mutagenesis of ubiquitinated residues in Gpal and
TRAF1 nearly eliminated substrate modification’L: 74, in many cases, downstream function
requires that only one of a subset of lysines be ublqultmated76 77 When identifying
ubiquitination sites on a protein, it is common to find that each individual lysine is modified
in only a fraction of the sample. This multiple lysine effect [oxz1] decreases the abundance of
each individual -GG signature peptide. Since many proteins are heterogeneously poly-
ubiquitinated, indicated by ubiquitin smears which extend >100 kD on an SDS-PAGE gel,
common methods such as gel band analysis must be optimized for each individual substrate.
In several cases, this problem has been overcome using multi-dimensional chromatography
approaches cougled to MS, in which proteins are digested in solution without SDS-PAGE
separatlon . Additionally, because of the missed lysine cleavage at the ubiquitin
modification site, some -GG signature peptides become too large for standard analyses, and
require alternate digestion strategies.

In attempts to circumvent some of these complications, several groups have sought to develop
new techniques for detecting precise ubiquitination sites. The high mass accuracy of Fourier-
transform ion-cyclotron resonance mass spectrometry has been beneficial for identifying
ubiquitination sites’8. Alternate enzymes can be used to digest substrates and generate
significantly longer signature peptide (e.g. STLHLVLRLRGG for GIuC) , reminiscent of the
lysine modifications encountered following tryptic digestion of several Ubl proteins (SUMO-2,
SUMO-3, Hubl). In contrast, if -GG signature peptides lack basic residues and are effectively
too long for analysis, the use of multiple enzymes may be beneficial /3. One disadvantage of
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using trypsin is that it forms identical -GG signature peptides for ubiquitin, as well as the Ubl
proteins NEDD8 and ISG15. Alternate enzymes which produce slightly larger signatures easily
differentiate between the three. These alternate or multiple enzyme strategies are particularly
effective when focusing on a single protein, in experiments where the approach can be directly
tailored based upon the amino acid sequence of the substrate.

Another approach involves amino-terminal labeling of -GG signature peptides either by
sulfonation80 or modification by fluorous affinity tagsSl. One potential benefit of such a post-
digest modification is that since —GG signature peptides effectively have two amino-termini,
and typical tryptic peptides only one, enrichment of multiplé/ modified peptides may be an
effective strategy for concentrating -GG signature peptides 1 Additionally, strategies
developed for large-scale phosphopeptide identification such as peptide
immunoprecipitation70 or ion exchange chromatography69 may also be useful for capturing
—GG signature peptides. While further work is needed to test the utility of newly developed
methods in the large scale identification of ubiquitination sites from in vivo substrates, work
involving phosphopeptides suggests that prefractionation of -GG signature peptides will be a
key component of any successful strategy.

Defining the structure of poly-ubiquitin chains

The formation of a poly-ubiquitin chain provides an opportunity for increased regulatory
complexity within many ubiquitin-dependent processesB2 (Fig. 1). Much of the current
understanding of the function and frequency of various poly-ubiquitin linkages is derived either
from experiments performed using lysine-to-arginine mutant forms of ubiquitin33v 83,84 o
studies performed with synthetic poly-ubiquitin chains®>-87. Additional reports suggest that
antibodies with preferences for and/or against specific forms of ubiquitin may be used to
differentiate between monoubiquitin and poly-ubiquitin in samples88—90. [ox22] The indirect
nature of these molecular approaches relies upon a number of assumptions. While preventing
the formation of certain ubiquitin-ubiquitin linkages, substitution of highly conserved lysines
within the ubiquitin sequence could also have uncharacterized effects on protein-protein
interactions, enzyme activities, or poly-ubiquitin chain formation within a complex system.
Synthetic chains are a proven biochemical tool, but may not be representative of all substrates
carrying a similar modification. Despite the proven utility of these molecular strategies, there
remains a need for a direct, quantitative method to analyze poly-ubiquitin chain composition.
Since trypsin digestion of a poly-ubiquitin chain produces unique -GG signature peptides for
each possible linkage, analysis of these peptides can allow direct measurement of linkage types
and frequencies (Fig. 4).

Large-scale shotgun sequencing studies have identified -GG signature peptides from the
various types of poly-ubiquitin chains. For example, in yeast, it was shown that all seven lysines
in ubiquitin can participate in poly-ubiquitin chain formation in vivo [DK23]18. Furthermore, in
the same study, a branched ubiquitin peptide was also identified in which a single ubiquitin
was simultaneously modified at two adjacent residues (K29 and K33). These observations
suggest that chain formation through alternative lysines within ubiquitin may provide new
levels of regulatory complexity. Analysis of ubiquitinated Met4 purified from yeast showed it
to be modified by K48-linked chains, despite the fact that the substrate was stable and not being
targeted for degradation73. Subsequent reports have also used mass spectrometry to examine
poly-ubiquitin linkages formed during in vitro reactions. In two such examples, the yeast Ufd2
ligase complex was shown to synthesize both K48 and K63 chains91, while the BRCAL/
BARD1 heterodimer generated K6 Iinkagesgz’ 93 1n all of these studies which utilize either
shotgun sequencing or more focused MS/MS approaches to identify the presence of specific
poly-ubiquitin chain linkages, caution should used. Because of peptide specific
chromatographic properties, as is the case with the diminutive K29 branched peptide, or MS
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insensitivity, as with the K11 branched peptide from yeast, absence of evidence should not
necessarily be construed as evidence of absence.

Many labs are involved in understanding the biological consequences of protein
polyubiquitination through noncanonical ubiquitin-ubiquitin linkages. Whereas K48 and K63
linked chains have been tied to many effects within cells, little is known about chains formed
through K6, K11, K29 and others. Recently, MS was used to demonstrate the effect of
biotinylation and/or mutation of K6 in processes such as ubiquitin-conjugation and proteasomal
degradation94. Another group purified and identified linkage specific binding proteins
associated with K29-linked chains, including two proteins from the ubiquitin pathway, Ubp14/
Isopeptidase T and Ufd393. The extension of these studies to other chain linkages should
further elucidate the mechanisms through which poly-ubiquitin chains dictate biological
functions.

MS-based proteomics [oxes]has begun to make progress towards a direct, quantitative method
for analyzing poly-ubiquitin chains (D.K. and S.G. manuscript in preparation). The absolute
quantification (AQUA) method 96 may be useful in revalidating many basic tenets within the
ubiquitin field, including discoveries made using mutant ubiquitin in genetic and biochemical
analyses. For example, the in vivo role of specific poly-ubiquitin linkages, including the highly
abundant K48-linkage, on chain formation, processing, and substrate degradation are not fully
understood. The modification of substrates by multiple mono-ubiquitins[ox.s] has been reported
to have distinct effects on the localization of proteins such as p5397 and receptor tyrosine
kinasesgo, while oligo-ubiquitination (short poly-ubiquitin chains, e.g. Ub3) was recently
shown to be a regulated intermediate in protein degradation®. In both cases, since AQUA
would facilitate measurements of frequency for monoubiquitination and various poly-ubiquitin
chain linkages, it may be useful in testing the generality of these observations and the possibility
of extending them into a broader biological context.

[DKZG]

Emerging concepts and concluding remarks

The 2004 Nobel Prize in chemistry was awarded to Hershko, Ciechanover and Rose in
recognition of the central importance of ubiquitin in regulating protein degradation. Since that
initial discovery, the ubiquitin system has matured from a biochemical explanation for how
proteins are degraded to a ubiquitous regulatory network deserving of its name. Nonetheless,
a number of fundamental questions remain as to the biochemical mechanisms and functional
consequences of ubiquitination. Simple questions, such as which ligases are responsible for
targeting individual substrates for degradation, are already being addressed using shotgun
sequencing methods and stable isotope based quantitation. Subsequently, it will be important
to validate recent advances in our understanding of ubiquitin receptors/ubiquitin binding
factors98: 99 in the format of large scale experiments looking at bulk substrate turnover. In the
case of proteasome-independent signaling by ubiquitin, the continued identification of
substrate modification sites and poly-ubiquitin chain linkages will be necessary to understand
mechanistic specificity. In all cases, the coupling of MS-based approaches with genetic
mutants33, small molecule perturbantsloo, or technologies such as siRNA, has the potential
to define both substrate specific and global aspects of protein ubiquitination.

Arguably, the largest remaining void in the ubiquitin research field is our understanding of the
structure and function of poly-ubiquitin chains. As was the case with ubiquitin function, the

mechanisms of poly-ubiquitin chain formation are more complex than originally envisioned.
Circumstantial evidence points toward the possibility that a proportion of poly-ubiquitin chains
may be synthesized with mixed linkages, although neither the frequency nor relevance of such
structures has been sufficiently addressed. Specifically, it is known that forked poly-ubiquitin
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chains can form within cells [ox7]through adjacent lysines within ubiquitin (e.g., K29-33)18.
Does poly-ubiquitin chain forking occur through non-adjacent lysines within ubiquitin, and if
so, how abundant is it within cells? Furthermore, are these heterogeneous chains or forked
structures esoteric, or rather, indicative of an additional level of regulatory complexity
reminiscent of complex carbohydrate signaling? With regards to K48-linked chains, given their
defined role in proteolysis, how can the high relative abundance of these chains within living
cells be explained? Currently, it is only possible to speculate at models such as the inherent
stability of some K48 chains, the presence of linkage specificity factors regulating assembly
or disassembly of non-K48 linkages, and/or preferences of E2 enzymes for K48 synthesis.
Only direct, quantitative analysis of poly-ubiquitin chains in vitro and in vivo will address these
questions.

MS-based proteomics, and particularly the development of stable isotope based quantitation,
has helped transition many questions within the ubiquitin field from the arena of theory and
speculation into a landscape where they may be addressed by hypothesis-driven
experimentation. Proteomic experiments will allow researchers to directly address numerous
biochemical and functional aspects of the ubiquitin system which have been transparent[oxas]
to existing molecular techniques. Only through the union of these two fields can the full
biological scope of protein ubiquitination be revealed.
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Mechanisms of protein modification by ubiquitin (a) and Ubl proteins (b). (a) Protein substrates
are modified by ubiquitin and Ubl-proteins at a lysine (K) residue(s). (1) Ubiquitin attachment
to a substrate is catalyzed by the coordinated actions of an E1[okz] activating enzyme, E2
conjugating enzyme, and E3 ligase (2) Poly- ubiquitin chains can be formed through any of 7
lysine residues within ubiquitin. Deubiquitinating enzymes (DUBSs) reverse ubiquitination and
shorten poly-ubiquitin chains. (3) A subset of factors, termed E4 enzymes, can further lengthen
poly- ubiquitin chains. (4, 5) Degradation of ubiquitinated proteins occurs through a
mechanism largely dependent on ubiquitin-ubiquitin linkages formed through K48 of
ubiquitin. Poly- ubiquitin chain binding proteins such as Rad23/Hhr23 and Dsk2/Ubiquilin
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[oxa] facilitate recognition and degradation of ubiquitinated substrates by the 26S proteasome.
Substrate modifications by mono-ubiquitin, K63-linked chains, or by Ubl-proteins (b) regulate
a series of proteasome independent cellular processes. Biological significance of other
ubiquitin linkages and many Ubl proteins remain poorly characterized. (b) [oxa:](1) Ubl
attachment occurs through a mechanism analogous to ubiquitination, involving E1, E2, and
E3 enzymes. Ubl deconjugating enzymes remove Ubl modifications from substrates. (2) Poly-
Ubl chains can be formed for SUMO. Poly-chain formation for other Ubls is currently under
investigation. Modification by Ubl proteins can block ubiquitination sites, activate enzymes
(including Ub E3 ligases), and affect protein localization.
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Figure 2.

Overview of shotgun sequencing from complex mixtures by mass spectrometry. a)
Representative tandem mass (MS/MS) spectrum of a peptide from the protein Urebpl. Amino
acid sequence for a single peptide can be deduced from the series of fragment ions present in
the spectrum. b) Large-scale peptide detection via shotgun sequencing can be interpreted in
three different ways to provide either lists (cataloging proteomics), differential identifications
(subtractive proteomics), or abundance comparisons (quantitative proteomics). ¢) For
proteome-scale analyses, huge numbers of MS/MS spectra are collected. Only two routes have
proven successful for identifying thousands of proteins from a single sample. Both strategies
utilize multiple[oxss] Steps to fractionate the original sample prior to MS analysis. In one
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strategy, SDS-PAGE separation followed by tandem MS analysis of many gel regions
(sometimes called GeLC-MS) is used. When using multiple-dimensional chromatography,
protein mixtures are directly proteolyzed, and the peptide mixture is separated first by strong
cation exchange [oxs]Jchromatography. In both cases, the final step involves reversed-phase
separation of peptides from multiple samples, followed by tandem MS analysis of multiple
samples. Both techniques provide the opportunity to collect hundreds of thousands of MS/MS
spectra from a single sample in less than 24 hrs.
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Figure 3.
Quantitative profiling of ubiquitin-conjugates using stable isotopes. The isotope coded affinity
tag (ICAT) strategy is shown for comparing ubiquitinated proteins between wild type cells and
mutant cells lacking a ubiquitin pathway enzyme (e.g. DUB, E2, E3). In an ICAT experiment,
proteln is harvested from two samples and differentially labeled at cysteinyl residues with either
12¢. or 13¢.- -containing reagent. After labeled proteins are mixed, ubiquitinated-proteins are
afflnlty purified and digested into peptides. The ICAT label allows for further enrlchment of
cystelne containing peptides, thus eliminating all peptides derived from ubiquitin. Since 12¢-
and 13¢c- -containing peptides co-elute by reverse-phase chromatography, they can be
simultaneously quantified during MS analysis. Rapid cycling between MS and MS/MS modes
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allows for the acquisition of both sequence and abundance information for isotopic peptide
pairs. In this example, protein “A” is exclusively ubiquitinated in mutant cells, while protein
“B” is ubiquitination is increased in mutant cells. Protein “C” is ubiquitinated equally in both
samples. Other potential strategies would utilize similar work-flows with minor modifications.
For example, metabolic labeling (e.g. SILAC) involves incorporation of isotopes into living
cells prior to harvest, and would not utilize the cysteine-enrichment step. A benefit of metabolic
labeling would be quantification of non-cysteine containing peptides, which would include
most —GG signature peptides.
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Detecting unique diglycine (-GG) signature peptides for each poly- ubiquitin chain linkage.
Each poly-ubiquitin chain conformation can be detected by monitoring a unique signature
peptide containing a -GG modified lysine residue, produced by trypsin cleavage. The full
amino acid sequence of human ubiquitin is shown at the top. Ubiquitin-ubiquitin linkages
correspond to isopeptide bonds formed between the C-terminal glycine (blue) of one ubiquitin
and the e-amino group of a lysine residue (red) within the second. These linkages can be formed
through any of seven lysine residues (K6, K11, K27, K29, K33, K48, and K63) (red). As an
example, K48, K63, and K11 chains are demonstrated. Digestion of these linkages with trypsin
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produces peptides with distinct amino acid sequences (see insets). Trypsin cleaves at lysine
and arginine residues within both primary and branched ubiquitin molecules (see arrows in
insets), but cannot cut at lysines modified by isopeptide linked ubiquitin (see underlined in
insets). The resulting tryptic peptides contain a GG modified lysine, bearing an additional
mass of 114.04 Da, denoting the original position of the modification. Database searching
algorithms can utilize both the missed cleavage and -GG modification as search criteria when
assigning precise sites of ubiquitination. In the case of a forked poly-ubiquitin chain, as
demonstrated through K29 and K33, two -GG modified lysines are detected on the same
peptide.
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