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Estimating Single-Channel Kinetic Parameters from Idealized
Patch-Clamp Data Containing Missed Events

Feng Qin, Anthony Auerbach and Frederick Sachs
Department of Biophysical Sciences, State University of New York at Buffalo, Buffalo, New York 14214 USA

ABSTRACT We present here a maximal likelihood algorithm for estimating single-channel kinetic parameters from idealized
patch-clamp data. The algorithm takes into account missed events caused by limited time resolution of the recording system.
Assuming a fixed dead time, we derive an explicit expression for the corrected transition rate matrix by generalizing the theory
of Roux and Sauve (1985, Biophys. J. 48:149-158) to the case of multiple conductance levels. We use a variable metric
optimizer with analytical derivatives for rapidly maximizing the likelihood. The algorithm is applicable to data containing
substates and multiple identical or nonidentical channels. It allows multiple data sets obtained under different experimental
conditions, e.g., concentration, voltage, and force, to be fit simultaneously. It also permits a variety of constraints on rate
constants and provides standard errors for all estimates of model parameters. The algorithm has been tested extensively on
a variety of kinetic models with both simulated and experimental data. It is very efficient and robust; rate constants for a
multistate model can often be extracted in a processing time of approximately 1 min, largely independent of the starting
values.

INTRODUCTION

Ion channels have been proposed to exist in a finite number
of discrete conformation states, with transitions between
states governed by a first-order Markov process (Colquhoun
and Hawkes, 1983). In certain conformations, selected ions
can flow through the channel, and in other conformations
the channel is closed. With the technique of patch-clamp
recording, we are able to record the current flowing through
a single channel (Neher and Sakmann, 1992). However,
these recordings provide only a reduced view of the time
course of the underlying conformational changes because of
the aggregation of different kinetic states into the same
conductance levels. A central goal of single-channel kinetic
analysis is to provide a complete description of the gating
mechanism of the ion channel in question from the record-
ings, including estimates of all transition rates.
The traditional technique for single-channel kinetic anal-

ysis is the fitting of lifetime histograms, in which dwell
times of a channel in a given conductance level are plotted
in bins on the abscissa and the number of events observed in
each bin is plotted on the ordinate (Colquhoun and
Sigworth, 1983). The histogram, when scaled properly, is an
estimate of the probability density for the lifetime at that
conductance level. For Markov models, the lifetime distri-
butions are sums of exponentials with as many components
as states at a given conductance level. Thus, certain kinetic
information can be derived by fitting the observed dwell
time distribution directly with sums of exponentials or via
the predicted distribution from a specific model. Because
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the cross-correlation information between adjacent events is
not included in such one-dimensional data, the histogram
fitting techniques can resolve only a maximal number of
2(N - 1) kinetic parameters where N is the number of
states. This is generally inadequate for complex models with
loops. Two-dimensional histogram fitting has been used to
account for correlation between adjacent durations (Fredkin
et al., 1985; Magleby and Weiss, 1990), but the method has
been found to be less accurate than the likelihood procedure
(Ball and Sansom, 1989). Perhaps more importantly, histo-
gram methods cannot be easily applied to nonstationary
data such as that resulting from inactivating or adapting
channels.
To alleviate the inherent limitations of histogram fitting

techniques, Horn and Lange (1983) introduced the use of a
full maximal likelihood approach to estimate single-channel
kinetic parameters. Given a kinetic model, the parameters
are determined to maximize the probability of the observed
samples. In their method, the computation of the likelihood
is carried out recursively over individual samples, and the
search of the likelihood surface is accomplished by a non-
linear regressive method where the required partial deriva-
tives of the likelihood function are calculated numerically.
Because the probability at every data point needs to be
evaluated, the method requires considerable computing time
and a large memory space. Thus, it is applicable only for the
patches having a small number of channels, few transition
rates, and a limited number of experimental runs. To im-
prove speed, several authors including Horn and Lange have
proposed computing the likelihood over dwell times rather
than data points (Horn and Lange, 1983; Chay, 1988; Ball
and Sansom, 1989). It was shown that the likelihood of a
sequence of dwell times may be obtained by accumulating
the transition density matrices for individual dwell times
(Fredkin et al., 1985). Because there are many fewer dwell
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times than there are samples, the resultant algorithms have
significantly reduced computation requirements.

Inherent in methods based on dwell time analysis is the
issue of missed events. Because of limited time resolution of
the recording system, very short transitions cannot be de-
tected. The missing dwell times will lead to overestimation
of apparent dwell times; for example, consecutive openings
separated by undetected closures will appear as a single
opening. A great deal of work has been done in an attempt
to predict the effects of missed events on observed channel
lifetime distributions (see, for example, Sachs et al., 1982;
Roux and Sauve, 1985; Blatz and Magleby, 1986a; Ball and
Sansom, 1988; Milne et al., 1988; Crouzy and Sigworth,
1990; Hawkes et al., 1992; Magleby and Weiss, 1990).
Unfortunately, all results are restricted to the case of
binary conductances. Furthermore, no attempt has been
made to analyze the effects of missed events on the
likelihood function.

In this paper, we present a general approach for estimat-
ing single-channel kinetic parameters from idealized patch-
clamp data. The approach employs the joint probability
density of the idealized dwell time series as the likelihood
and makes use of analytically calculated derivatives for
maximizing the likelihood. It has the explicit capacity of
dealing with multiple conductance levels and multiple chan-
nels. It takes into account the effects of missed events.
Assuming a fixed dead time, we derive the explicit expres-
sion for the corrected transition rate matrix by generalizing
the theory of Roux and Sauve (1985) to the case of multiple
conductance levels. The method allows data sets obtained
under different experimental conditions, e.g., concentration,
voltage, and force, to be fit as a single data set. It also
permits typical constraints on rate constants, e.g., detailed
balance constraints. The method has been tested extensively
on a variety of kinetic models with both simulated and
actual experimental data. It is shown to be exceedingly
efficient; e.g., a set of rate constants for a multistate model
can often be extracted from a few seconds of real time data
in a processing time of less than 1 min.
The paper is structured as follows. The following section

presents a brief review of the maximal likelihood estimation
of an aggregated Markov process without missed events.
The third section describes how to correct the likelihood
method for the effects of missed events. The fourth section
discusses some practical issues encountered in single-chan-
nel data analysis, such as global fitting, constraints, and
multiple channels. Simulation and testing of the method are
presented in the fifth section. Finally, some discussions
about the advantages and disadvantages of the method are
given in the last section.

THE LIKELIHOOD FUNCTION:
ITS EVALUATION AND MAXIMIZATION

We consider a channel with N kinetic states. The kinetics of
the channel is modeled as a continuous-time Markov pro-

cess. The rate constants for transitions between states i and
j, i * j, are the elements, qij, of the transition rate matrix Q.
The elements of Q have the dimension of reciprocal time,
and the diagonal elements, qii, are defined so that the row
sums to zero; thus -l/qii is the mean lifetime of a dwell in
state i.

Patch-clamp data report the current going through a
channel at a given moment. Thus, the conductances of
different kinetic states determine the distinguishability of
kinetic states. Suppose the channel has M (M ' N)
conductances. Throughout the paper, we denote a con-
ductance, or equivalently, the set of the kinetic states in
a conductance, by the letters a, b, c, etc. Suppose there
are na kinetic states in conductance a. Partition the Q
matrix into submatrices, Qab, each of which are of size na
by nb and collect all transition rates between the states in
conductance a and b. Then the transitions of the channel
from one conductance to another in a given duration can
be described by a probability density matrix (Colquhoun
and Hawkes, 1981)

Gab(t) = exp(Qaat)Qab, (1)

where the (i, j)th element represents the probability den-
sity that the channel enters conductance a from its ith
state, stays in a throughout the time interval [0, t], and
then exits into the jth state of conductance b.
A set of patch-clamp data can be described as a series

of dwell times during which a channel is in a given
conductance. Let t = tI, t2, *. tL be the list of
time intervals and a = a,, a2, ... aL the list of conduc-
tances. Let 0 designate the set of the unknown parameters
of the channel. Then the likelihood of obtaining t and a
given the model 0 can be formulated as (Fredkin et al.,
1985)

L

f( ) = wal 7 Gajaj+ I(tj) 1, (2)
j=1

where Ta is a row vector of the entry probabilities into
the states in conductance a, aL+1 refers to the subset of
the states that do not belong to aL, and the 1 denotes a
column vector of ones. In other words, the likelihood is
obtained by the entry probability vector, multiplied by
the probability density matrix for the first dwell time,
multiplied by the probability density matrix for the sec-
ond dwell time, and so on.

Maximization of f(O) with respect to 0 yields the
maximal likelihood estimates of the kinetic parameters of
the channel for a given data set. We have recently de-
veloped an efficient procedure for the maximization of
f(0) (F. Qin, A. Auerbach, and F. Sachs, submitted for
publication). One of the most attractive features of the
method is that it exploits analytically calculated derivatives
for search of the likelihood surface. In the rest of this
section, we present a brief outline of the procedure.
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Central to the method is a forward-backward recursive
procedure, as follows:

ak = ak_lGakak+l(tk), k = 1, 2, * * , L (3)

13k = Gakak+l(tk)gk+1, k = L, L - 1, * *, 1, (4)

where the initial conditions are a = 7ral and (L3L+I = 1. The
forward vector ak is essentially a vector of the probability
densities of the partial dwell time series from the beginning
to the kth dwell time and then leaving for the states in
conductance ak+l± Similarly, the backward vector (3k rep-
resents the probability densities of the partial dwell time
series from the kth dwell to the end given the starting states
being in conductance ak.
The probability density matrix Gab(t) involved in the

forward and backward recursions can be efficiently calcu-
lated by using the spectral decomposition of the matrix Q.
(Colquhoun and Hawkes, 1977):

na

Gab(t) = > Aaiexp(Aa,it) Qab, (5)
[i=l

where Aaj is the ith eigenvalue of Q. and Aa,i is a matrix
determined from the corresponding left and right eigenvec-
tors. It should be noticed that the quantities Xai and Aa,i do
not vary with t and thus need to be evaluated only once for
a given 0.
From the forward and backward vectors as well as the

spectral decomposition results, it is possible to determine
the likelihood and its partial derivatives analytically. The
likelihood is simply the sum of the components of the final
forward vector aL; i.e.,

f(0) = aTLl . (6)
The derivatives of the likelihood function with respect to the
elements in the Q matrix are given by

af na L

LAa E ak- IPT+ exp(Aa,itk) (7)

VQb =k=Aa] ak~3+ 7ak=aak+ =b

df na na [L
=Q >2 Aa, aak-1kI+lYa,ii(tk) Aaj' (8)aQaa i=a= =

where ya,ij(t) is a scalar function of t defined by

teAait j = j

'YaJj (t) = 4 eAait - eAjt (9)

'a,j aj .
Maximization of the likelihood is accomplished by the

variable metric method of David, which uses the
Fletcher-Powell approximation to the inverse of the Hes-
sian matrix of second derivatives and an exact line search
with adaptive step sizes (Fletcher, 1981). This optimizer

has several advantages. First, it converges rapidly, and
the convergence becomes quadratic when the parameters
are sufficiently close to the maximum point. Secondly, a
programmed version of the method exists in most numer-
ical libraries, making it almost universally available.
Finally, it has been successfully applied to solve a wide
range of problems, demonstrating its practicability and
reliability.
The standard errors for the parameter estimates are ob-

tained from the curvature of the likelihood surface at its
maximum (Cox and Miller, 1965):

Cov(O) -H-'(0) (10)

where Cov is the covariance matrix, and H is the Hessian
matrix of second derivatives. The exact Hessian matrix may
be calculated numerically but involves intensive computing.
A faster, although less accurate, way is to directly use the
approximate inverse Hessian matrix generated by the opti-
mizer. This is another reason why the variable metric
method is chosen for optimization.

Finally, we notice that the forward and backward recur-
sions in Eqs. 3 and 4 may run into numerical problems.
Because the probability density matrix for a dwell time
often has elements less than one, the forward vectors usually
decay with increasing k and the backward vectors with
decreasing k. For sufficiently large k, the dynamic range of
these vectors will exceed the machine precision range. For-
tunately, this problem can be circumvented by making use
of an ongoing scaling procedure.

MISSED EVENT CORRECTION

In practice, very short transitions may not be detected as a
result of limited time resolution of the recording system.
The missed events result in distortion in the dwell time
likelihood as an observed dwell time in a conductance level
may actually contain transitions into other conductance
levels. In this section, we describe how to correct the
likelihood for such distortion. In particular, we show that an
approximate correction may be made by appropriately mod-
ifying the transition rate matrix of the channel. We also
show how to efficiently calculate the corrected transition
rate matrix as well as its sensitivities to the original transi-
tion rate matrix.

The corrected Q matrix

We make the usual assumption that the missed events can
be characterized by a constant dead time, td, such that all
dwell times shorter than td are not detected, but all longer
dwell times are detected. It should be emphasized that the
specification of a dead time depends on the detection pro-
cedures. If noise-free data are idealized via threshold cross-
ing (Sachs et al., 1982), then td is the event duration that just
reaches the threshold and can be calculated precisely from
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the system response properties. However, the noise in the
record makes the td value imprecise because some events
that are actually shorter than td will cross the threshold
whereas others that are longer than td will go undetected. If
the data are idealized using hidden Markov modeling
(Chung et al., 1990; Fredkin and Rice, 1992b) or other
nonthreshold techniques (Draber and Schultze, 1994), the
dead time again cannot be precisely defined. Given these
ambiguities, and to satisfy the assumption of an absolute
dead time that is required for the derivation below, we
enforce a fixed dead time by concatenating any dwell time
below td.

If the channel has a buzz mode with many short transi-
tions in a row, two problems occur: (1) idealization of
band-limited data becomes difficult and (2) the approxima-
tion used below, i.e., the total duration of missed events is
small compared with the observed duration, becomes in-
valid. Thus, the method presented here is not accurate for
such data and other approaches such as the point likelihood
methods (Walsh and Sigworth, 1992; Fredkin and Rice,
1992a; Qin et al., 1994; Albertsen and Hansen, 1994) and
the iterative simulation method (Magleby and Weiss, 1990)
are preferable.
A general theory for analyzing the effect of missed events

on channel dwell time distributions was first established by
Roux and Sauve (1985). Here we extend the theory to
correct the effects of missed events on the likelihood func-
tion and allow for multiple conductance levels. From Eq. 2
we see that the likelihood of a series of dwell times is
determined by the probability density matrix Gab(t) of indi-
vidual dwell times. Consequently, the key to correct the
likelihood is to correct Gab(t) for missed events. Below we
denote by eGab(t) the corrected probability density matrix of
an apparent dwell time, i.e., the matrix of the probability
densities that the channel stays in conductance a for a
duration t without any observable leaving and then exits into
conductance b.
The corrected probability density matrix eGab(t) is essen-

tially the sum of the probability density matrices of all
possible transition paths that yield the observed dwell time.
Thus, to derive eGab(t), we need to implement all these paths
by including the underlying missed transitions. For a path
containing n undetected leavings, it may be implemented in
two exclusive ways, as shown in Fig. 1, one with all n
leavings occurring inside the observed dwell time and the
other with n - 1 leavings occurring inside and one leaving
at the end of the dwell time. In each implementation, the
first stay in a must be longer than td so that the entire dwell
time is observed, and all leavings from a must be shorter
than td so that they are not detected. In other words, the
implementations must satisfy

E T, = t

The probability density matrices for such implementations

are respectively given by

n1
G~a(T2i-I)G-aa(T2i)jGab(T2n+1)

-= I

(12)

and

f1 Gaa(T2i GaaIG(T2j)IGac(T2n-l)Gcb(T2n)-
L i

(13)

Thus, CGab(t) can be obtained by integrating Eqs. 12
and 13 over all possible Tj subject to the constraints
and then summing the results over all n 2 0. The final
result may be stated as (see Appendix for the detailed
derivation)

eGab(t) = -2 eQatd e jw(t -td)

_00 (14)

l[jWI + Qaa - Qa(I - e(iwI+QWtd)(jcU&I + Qa-)lQ]]1
[Qab - Qac(I - e WI+Qct)(jcI + Qcc) Qcb] dco,

where Qai, Qia and Qaa are the submatrices of Q parti-
tioned in an obvious manner.

Equation 14 provides the exact solution to the cor-
rected probability density matrix of an apparent dwell
time. However, it involves the integral of inversion of a
complex matrix function, making computation intracta-
ble. A more useful solution is the so-called first-order
approximation, obtained by ignoring the contribution of
the durations of missed events to the total duration of an
observed dwell time (Roux and Sauve, 1985), as follows
(see Appendix):

eGab(t) = exp(e Qaat)eQab, (15)

a

;, T2 T3 4 T2n 2n+l

a .

T; I ;2 T3 ;4 '2n-2 r2n-1 '2n

a, ... '.L

a a a

FIGURE 1 An apparent dwell time containing n undetected leavings
may be implemented in two ways, one with all leavings occurring inside
the dwell and the other with n - 1 leavings inside and one leaving at the
end of the dwell. Here, a refers to the set of the kinetic states that do not
belong to conductance a, and c = a n b. For binary channels, a = b, and
c = 0; thus, only the first implementation is possible and the second one
does not exist.
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where eQ. and eQab are defined as

eQ = Qaa - Q -(I eQtd)Qi-1 Qaa

Qab= exp[tdQai(I- eQaacd)QajQaa]

X [Qab- Qac(I-eeQcctd QQcb].

Let Uk and Vk be the kth terms of the series in Eqs. 19
and 20, respectively. Then, we can solve for Uk and Vk
inductively by

(17)

Equation 15 has the same form as in the case of no
missed events. This suggests that we can look at the
observed dwell times as if generated from another aggre-
gated Markov process with the transition rate matrix
given by eQ = [eQab] In other words, the effects of
missed events may be corrected by simply using the eQ
matrix to calculate the likelihood. Below we consider
some details on the calculations of eQ as well as its
sensitivities to Q.

Computation of eQ and tQIq1j
Inspection of Eqs. 16 and 17 shows that there are two major
difficulties involved in the calculations of eQ and aeQ/aqij.
One is how to calculate a matrix exponential and its sensi-
tivities with respect to the original matrix. The other is how
to calculate the following matrix:

Raa = [I - exp(Qaat)]Qaa (18)

as well as its sensitivities to Qaa. Once these two
problems are solved, the overall calculations of eQ
and aeQ/aqij become just plain matrix additions and
multiplications.
The first problem can be solved by using an efficient

recursive procedure based on the series expansion of a
matrix exponential (Qin et al., 1994). Here we show that
this procedure can also be extended to solve the second
problem.
We expand the matrix exponential in Eq. 18 into its

power series to eliminate the matrix inversion, yielding

n tk
Q

Raa = aa 19
k=O (k + 1)! aa (19)

where the value of n is determined from a prescribed trun-
cation error. By differentiating the power series with respect
to the (i, j)th element of Q., we derive

aRaa

aqa,i,j (20)

n tk
k

E (k + 1)! [QaajEij + Qaa 2EijQaa + aa.+

where Eij is a constant matrix in which only the (i, j)th
element is one and all other elements are zero.

Equations 19 and 20 provide the theoretical formulae for
Raa and its sensitivities to Q.. The practical calculations of
these formulae may be carried out in a recursive manner.

t
Uk+1I k UkQaak+ [

Vk+Ik + [QaaVk + EijUk],

(21)

(22)

where the initial conditions U0 = I and V0 = 0. The required
matrix Raa and its sensitivities &Raaqaij are simply the
sums of Uk and Vk, respectively.

After the sensitivities aeQ/aqij are obtained, we can then
calculate the derivatives of the corrected likelihood function
with respect to the original Q matrix, simply by combining
aL/aeQ and aeQ/aqij using the chain rule.

GLOBAL FITTING, CONSTRAINTS, AND
MULTIPLE CHANNELS

We have seen that the likelihood method may be corrected
for the effects of missed events by appropriately modifying
the Q matrix. In this section we further consider some
practical issues often encountered in analysis of single-
channel data and show how to extend the likelihood method
to account for these issues. In particular, we show how to
apply this method to global fitting, i.e., combining data sets
obtained at different experimental conditions (Ball and
Sansom, 1989; Vandenberg and Bezanilla, 1991; McManus
and Magleby, 1991; Weiss and Magleby, 1992; Auerbach,
1993). We also show how to deal with typical constraints
imposed on rate constants and how to analyze data con-
taining the activity of multiple identical or nonidentical
channels.

Global fitting

To allow global fitting, we need to identify the intrinsic
parameters of a channel that do not vary with experimental
conditions and then formulate the rate constants of the
channel in terms of these intrinsic parameters. The rate
constants of a biological channel are scaled by the experi-
mental variables in two ways. For voltage-gated channels,
the rates typically depend on voltage in an exponential
manner. The same is true for force in treating mechanosen-
sitive channels. For ligand-gated channels, the rates change
linearly with ligand concentration. A unified representation
of such dependencies may be written as

qij= Cijexp(,ij + vijv) (23)

where V is the voltage and Cij is the normalized concentra-
tion of the ligand to which the rate qij is sensitive. Obvi-
ously, we can simply set Cii = 1 for the rates that are not
sensitive to any ligand, and set vij = 0 for the rates that are
independent of voltage. The parameters puij and vij usually
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do not vary with the experimental conditions. They are
intrinsic parameters of a channel.

In addition to allowing global fitting, the above represen-
tation also offers several computational advantages. First,
the rate constants are automatically restricted to be non-
negative. Second, the constraint of detailed balance, which
is highly nonlinear in the domain of qij, is now reduced to be
linear in the domain of ,uij and vij. As described below, this
property greatly facilitates the handling of detailed balance
constraints. Third, as suggested by numerical examples,
using puij and vij as free parameters often results in a more
symmetrical likelihood surface, which helps optimization.

Constraints

Typical constraints imposed on rate constants include hold-
ing some rate constants at fixed values, linear scaling by
other rate constants, and detailed balance conditions. It is
easy to see that all of these constraints are essentially linear
on the parameters puij and vij. Consequently, we can cast
them into the form

Fo= (, (24)

where 0 = (,** ,uij, -* - )', F is a coefficient matrix, and
g is a constant vector. For simplicity, we assume that the
imposed constraints are independent of each other; that is,
the F matrix has a full rank.

For linearly constrained variables, it is possible to for-
mulate them into linear combinations of a set of uncon-
strained variables. This is accomplished by the QR decom-
position of the coefficient matrix (Golub and Van Loan,
1989). Let F = UR be the QR factorization of F, where U
is an orthogonal matrix and R is an upper triangular matrix.
Partition R into

R = [RI, R2]

and 0 into

[02]-

Then Eq. 24 can be written as

01 = -R1 'R202 + R1 'U-(.

Let x = 02; then we can restructure the above equation into
the following form:

0 = Ax + b (25)

where

A =[ I ] and b [= I ].

The significance of Eq. 25 is that it allows the constraints
imposed on rate constants to be eliminated by choosing x as

the variables to be optimized. The problem of maximizing

the likelihood subject to constraints (Eq. 24) is thus reduced
to an equivalent unconstrained maximization problem.

Conversion of the x variables to rate constants is straight-
forward from Eqs. 25 and 23. Furthermore, the derivatives
of the likelihood with respect to x can be obtained by
combining the derivatives a /aqij and dqij/axk with the chain
rule. The derivative aqij/axk is given by

aqij
-

qi a 021-1x qij02 a 021
aXk a 021-1 aXk () 021 aXk (26)

= qij(a21-1k + Va2l,k),
where we assume yij = 021-1 and vij = 021.

At the end of optimization, it is necessary to convert the
error estimates on x variables back to the error estimates on
rate constants. This can be accomplished by making use of
the following relation (Kendall and Stuart, 1977):

(27)

where Var denotes variance and Var(xk) corresponds to the
diagonal elements of the covariance matrix given in Eq. 10.

Multiple channels

Often, there will be more than one channel in a patch of
membrane from which the recording is made. Suppose the
patch contains n channels and the ith individual channel has
ki kinetic states. The patch at any time can be fully charac-
terized by a vector

S = (s1) (2) . .. (n)
t st , St 9 ) St J (28)

where s(i) specifies which state the ith channel is in at time
t. If the constituent channels are statistically independent,
then the Markov models for s(i), i = 1, 2, * * *, n induces a
Markov model for st. The state space of st has a dimension
of k, k2 ... kn. The transition rate matrix of st can be
obtained from those of the constituent channels. Specifi-
cally, the rate constant for the transition from

(il, * * , il, * ' , in) to (il, * * , il, * ' , in)
is equal to the rate from il to ij in the Ith channel.

In other words, the data of multiple channels can be
treated as if generated from a single channel, of which
the states are defined as vectors and the transition rates are
constrained to be those of constituent channels. Therefore,
we can apply the likelihood method directly to these data
by operating on the induced Markov model for st and by
imposing appropriate constraints on its rate constants. For-
tunately, all constraints are of the linear scaling type and are
thus accommodated by Eq. 24.
The above approach is generally applicable to both iden-

tical and nonidentical channels. However, it should be em-
phasized that for identical channels there exists a more
efficient way, as suggested by Horn and Lange (1983). In
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this approach, we define the state vectors as

nt = (n(), n(2), . . ., n(k)) (29)

where n(i) represents the number of channels in state i at

time t, and clearly

k

E n('i) = n.
i=l

The state space for n, corresponds to all possible composi-
tions of n into k parts. The dimension of the state space is
thus given by the binomial coefficient (n+k- ). The rate
constant for the transition from

(MI, *mi, *mj,* ,MO
to

(ml,** mj,*** mj + 1, * ,MO
is equal to miqij, where the qij values are the rate constants
of the constituent channel.
The composition vectors nt for given n and k may be

generated automatically by a standard combinatorial analy-
sis algorithm (Nijenhuis and Wilf, 1978). Because (n+k-l) iS
often much smaller than ke, the state space of nt is much
smaller than that of st. Considering that the computation
involved in the likelihood calculation is typically quadratic
on the number of states, one may expect a considerable
reduction in both processing time and memory space by
using nt for modeling multiple identical channels. This
reduction is attributed to the fact that the state vector nt fully
exploits the indistinguishibility of constituent channels.

EXPERIMENTAL RESULTS

We present a number of examples illustrating various fea-
tures of the likelihood method described in the previous
sections. These examples are divided into five groups, the
first illustrating the performance of the missed event cor-

rection, the second showing the applicability to nonstation-
ary data, the third showing the capability of fitting data
containing multiple channels, the fourth showing the capa-

bility of global fitting across different experimental condi-
tions, and the last showing the applicability to real experi-
mental data.
The program was written in ANSI C language. The

subroutines for variable metric optimization, matrix singu-
lar value decomposition, and matrix eigenvalue calculation
are taken from Press et al. (1992) with some modifications.
The calculations were done on an IBM RS/6000 model 590,
which is a 200 SPECfp computer, approximately four times
faster than a Pentium 90.

For simulated data, the dwell times were generated by
using exponentially distributed random numbers (Lauger,
1988). For real data, they were idealized by using a hidden
Markov modeling procedure based on the segmental k-
means method (Rabiner et al., 1986). This procedure, as

compared with the traditional threshold detection, has
greater accuracy, requires less filtering, and allows more

short events to be detected. The dead time td is imposed
retrospectively; that is, all events of duration less than a

chosen td were deleted, the corresponding times being added
to the preceding observed dwell.

Missed event correction

Binary conductance levels

We first investigate the performance of the method on

missed event corrections in the case of binary conductance
levels. The studies were carried out by imposing a sequence

of dead times increasingly until the program failed to un-

cover the underlying rates. The model we employed in the
simulation was based on a three-state linear gating scheme:

k,2 k23
C1 ' O 'C2

k2l k32

Scheme 1

where k12 = 100, k21 = 40, k23 = 60, and k32 = 5000, all
with units in s-1. Because the mean lifetime of C2 was
much shorter than the other two states, brief closures oc-
curred during opening. Thus, the imposition of a dead time
would cause the apparent opening duration to be longer than
what it should be.

Table 1 presents the parameter estimation results for
different dead times. It can be seen that the estimates are
very close to the underlying true values until a dead time of
0.7 ms. Notice that the mean lifetime of C2 is 0.2 ms; thus
td = 0.7 ms resulted in a considerable loss of the simulated
data. Approximately 60% of the total events and nearly all
of the second closures were omitted. In this case, the
method seems to have been very successful in correcting for
the effects of missed events. We also see from Table 1 that
only the rates between C2 and 0 are affected by missed
events, whereas the rates between Cl and 0 remain un-
changed. This is because the majority of missed events
came from the transitions between C2 and 0, as k32 is
relatively large. If td is made longer than 0.7 ms, the
likelihood space is so flat that the optimizer will not con-
verge (see Fig. 2).

TABLE 1 Parameter estimates for Scheme I with different
dead times

td k12 k2, k23 k32
0 99±4 43±2 60+2 5,285+215
0.1 97 3 42 ± 1 62 3 5,329 ± 234
0.2 98±3 41 ± 1 61 4 5,182±296
0.3 97 3 41 ± 1 64 8 5,279 ±410
0.4 99 2 39 ± 1 58 8 5,005 351
0.5 100 1 39± 1 63 12 5,254±408
0.6 100 1 40±0 63 18 5,299±510
0.7 99 1 39 ±0 58 18 5,006 ±469
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notice similar findings reported in the literature (Horn and
tcj=0.7 Lange, 1983; Ball and Sansom, 1989).

Xt0.4 The error limits on parameter estimates tend to increase
as the dead time increases, as seen from Table 1. This agrees
with our intuition that we should have less confidence in the

\t>0 fits when more events are missed. This observation is fur-
ther confirmed by examining the likelihood surface. Fig. 2
shows the likelihood surface as sections passing through the
maximum point and cut parallel to the parameter axes. Only
the sections of k23 and k32 are presented as the other two
rates are not affected by missed events. It is seen that the
maximum is particularly distinct in the absence of missed

0.5 1.0 events, less so for larger dead times, and becomes extremely
flat when td = 0.7 ms.
We stress that even for this relatively simple model the

correction for missed events is important. When no correc-
tj0.7 tion was applied, the estimates of k23 and k32 became highly

biased, even with a small dead time. For example, when
td = 0.1 Ims, the estimation results without correction are

k12 = 100, k2l = 42, k23 = 39, and k32 = 2895, of which k23
i0.4 and k32 are nearly 50% biased from their true values.

Multiple conductance levels

We now explore the performance of the missed event cor-

td=0 rection in the case of multiple conductance levels. The
I model we tested is a cyclic doubling of that in Scheme 1, as

0.5 1.0 follows.

FIGURE 2 Sections of the likelihood surface for Scheme 1 at different
dead times. The sections are cut parallel to the parameter axes and pass
through the maximum.

The minimal number of events necessary to yield good
estimates seems to vary with the imposed dead time; with
larger dead times, more events are needed. However, the
exact minimal number is difficult to define, as it depends on
the model, the dead time, and the desired accuracy. To
obtain the results in Table 1, we used approximately 3,000
events (after omission of short events) for td = 0-0.3, 6,000
for 0.4, 12,000 for 0.5, 20,000 for 0.6, and 40,000 for 0.7.
The algorithm was fast. Even with 40,000 events, it took
only -26 s to converge to the optimal parameter values,
each evaluation of the likelihood and its derivatives taking
-4 s. The initial guesses of the parameters were the values
used to generate the data. Poor initial guesses may require a
greater number of iterations, but not significantly. Typi-
cally, the program converged within 10-20 iterations, even
with grossly inaccurate starting points.
One might expect that there are local maxima points on

the likelihood surface, as the likelihood function is highly
nonlinear on model parameters. However, our experience
showed that this was usually not the case. Different starting
points were tried, and the same final results were obtained,
suggesting that the likelihood surface was smooth within a
reasonably large range. In this context, it is interesting to

Cl 4 C2

V/I 02 V

Scheme 2

We assumed that the two branches ClOC2 and C102C2 have
the same kinetics but different conductances. The states are
numbered as C1 = 1, 01 = 2, C2 = 3, and °2 = 4. The rate
constants employed in our simulation were based upon those
for k12 = k14 = 100, k, = k4l = 40, k3 = k43 = 60, and k32
= k34= 5000, all with units in s-1. As with Scheme 1, the
channel exhibited brief closures during openings. However, the
behavior is more complicated because these brief closures
occurred from two different conductance levels.

Parameter estimation was done by imposing the symmet-
ric constraints, i.e., k12 = k14, k2l = k4l, k23 = k43 and
k32= k34, so there were four independent variables. Table 2
presents the estimation results for different dead times.
Maximization was repeated by using different initial
guesses, with the same final result. The number of events
used to obtain these estimates was --16,000 for td ' 0.4,
30,000 for 0.4, and 50,000 for 0.5. The processing time to
find a maximum was - 12 s (six iterations) in the case of no
missed events and 36 s (nine iterations) for td = 0.5. The
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TABLE 2 Parameter estimates for Scheme 2 with different
dead times: symmetric constraints

td k12 = k14 k2, = k4l k23 = k43 k32 = k34

0 98±2 39 1 62 1 5,074+87
0.1 99±2 39 1 61 1 5,079±79
0.2 100± 1 40 1 60 1 5,100±80
0.3 100± 1 40 1 59 1 5,198±95
0.4 100± 1 40 1 58 1 5,229±99
0.5 100 ± 1 40 3 57 3 5,774 ± 375

processing time appears to increase linearly with the number of
events but does not seem to increase with the dead time.
From Table 2, we see that good estimates were obtained

with a dead time up to 0.5 ms, which is as large as five times
the minimal mean lifetime of the states in the model. This is
quite remarkable in light of the complexity of the model as
well as the considerable loss of the original data, approxi-
mately 50% of the total events and nearly all of the fast
closures. The parameter error estimates are very small in the
case of no missed events but increase with the dead time,
especially for k32 (k34). Examination of the likelihood sur-
face confirms that the section of k32 (k34) becomes flatter as
the dead time gets larger, as illustrated in Fig. 3, and when
td = 0.5 the maximum becomes poorly defined.
The success of the method does not seem to depend upon

the imposition of the symmetric constraints. We also inves-
tigated fitting the model to the same data sets, but only with
the detailed balance constraint; i.e., the clockwise and the
anticlockwise products of the rate constants must be equal.
The final parameter estimates were comparable to those ob-
tained with the symmetric constraints, although the running
time became a little longer as there were three more free
parameters to be optimized. As an example, Table 3 lists the
estimation results for td = 0.5 ms. The processing time taken
for this example is approximately 1 min in 13 iterations.

Again, the correction for the effects of missed events was
essential for parameter estimation with this model. For
example, the estimates of those rates related to the fast

1.00

0.99 -

0.98H

-1.0 -0.5 0.0

109(k2/k32)
0.5 1.0

FIGURE 3 The k32 (k34) section of the likelihood surface for Scheme 2
at different dead times.

TABLE 3 Parameter estimates for Scheme 2 with dead time
0.5 ms: detailed balance constraints

Rate Estimate SD

k12 101 1
k2l 41 3
k23 57 2
k32 5,787 572
k14 98 2
k4l 39 1
k43 57 2
k34 5,753 575

closures deviated by more than 30% from their true values
after deleting events shorter than 0.1Ims. An increase to 0.2
ms without correction caused the algorithm not to converge
because of numerical instability.

More examples on the missed event correction

In the previous examples we have deliberately chosen the
underlying gating kinetics to satisfy the first-order approx-
imation for the missed event correction (Roux and Sauve,
1985). However, we have also tested a number of examples
in which this condition was less true, notoriously in buzz
mode. For example, using the two-state model given by
Magleby and Weiss (1990),

2000
C I - 0

1000

we found that for an original data set of 200,000 events, the
rate constants could be extracted with 10% accuracy using
dead times up to 0.3 ms. With longer dead times, the rates
oscillated, giving kco = 2264 and koc = 1367 at td = 3 ms. In
contrast, the simulation method (Magleby and Weiss, 1990)
was able to extract accurate rates with dead times up to 3 ms.

For models that do not have such serious buzz mode
kinetics, the likelihood method can yield good estimates
with the imposed dead time at least as large as the minimal
mean lifetime of the states in the model. Below we present
several examples constructed on realistic gating schemes
reported in the literature.

Scheme 3 is a widely used kinetic model for the nicotinic
acetylcholine receptor. Table 4 presents the true values of
the rate constants used in the simulation and their estimates
obtained with td = 0.058 ms. This dead time was approxi-
mately five times the mean lifetime of C3 and resulted in a

TABLE 4 Parameter estimates for Scheme 3 with dead time
0.058 ms

Rate True value Estimate SD

k12 200 201 7
k21 500 527 31
k23 400 417 91
k32 25,000 25,443 9,147
k34 60,000 59,054 22,555
k43 240 240 125

tdQ.5r

ri (47
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TABLE 5 Parameter estimates for Scheme 4 with dead
time 0.66 ms

Rate True value Estimate SD

k12 34 32 1
k2l 180 176 11
k23 285 292 25
k32 600 585 257
k24 120 112 43
k42 2,860 3,036 654
k35 3,950 4,632 1,464
k53 322 390 270

loss of approximately 70% of the simulated events. The
estimation was based on 15,000 events and took approxi-
mately 20 s, including 11 iterations and 24 evaluations of
the likelihood function.

k12 k23 k34

Cl ' C2 ' C3 ' 0
k2l k32 k43

Scheme 3

Scheme 4 is a model for Ca2+-activated K+ channels
in cultured rat muscle (Magleby and Pallotta, 1983). The
two open states are of the same conductance but have
different kinetics. The values of the rate constants in the
model are given in Table 5. Also shown in Table 5 are the
estimation results from a sequence of 6000 simulated
events, obtained with a dead time of 0.66 ms. This dead
time was approximately three times the mean lifetime of
C3 and led to a loss of 84% of the simulated events. The
processing time for this example was approximately 21 s,
including 17 iterations and 30 evaluations of the likeli-
hood function.

k12 k23

Cl ' C2 C3
k2 k k32

k42 k24 k53 k35

01 02
Scheme 4

Scheme 5 is a simplification of a possible mechanism
for fast CF- channels in rat skeletal muscle (Blatz and
Magleby, 1986b). This model contains up to 10 indepen-

TABLE 6 Parameter estimates for Scheme 5 with dead time
0.0625 ms

Rate True value Estimate SD

k,2 105 109 9
k2l 172 202 31
k23 521 589 129
k32 287 316 61
k34 913 887 40
k43 2,898 2,902 70
k35 180 199 18
k53 1,438 1,408 102
k46 14,200 14,085 281
k64 1,450 1,401 23

TABLE 7 Parameter estimates for Scheme 6 with dead time
0.125 ms

Rate True value Estimate SD

k12 10 10 0
k2l 100 101 3
k14 10 10 0
k4l 100 97 2
k23 100 79 2
k32 4,000 3,328 88
k43 100 79 2
k34 4,000 3,311 90
k24 400 409 6
k42 400 413 6

dent parameters. The values of these parameters are listed
in Table 6. Parameter estimation was done with a set of
35,000 events and with the imposition of td = 0.065 ms.
This dead time was approximately equal to the minimal
mean lifetime of the six states and resulted in the loss of
-55% of the simulated events. The estimation results are
presented in Table 6. The running time to obtain these
estimates was -210 s, each evaluation of the likelihood
function and its derivatives taking approximately 6 s.

k12 k23 k34

Cl .'- C2 ' C3 ' C4
k2l k32 k43

k53 k35 k64 k46

01 02
Scheme 5

As a last example on missed event correction, we
consider the following diamond model. The two open
states have different conductances where 01 is partly
open and 02 iS fully open. The channel is assumed to be
at thermodynamic equilibrium, and hence the rates on all
loops must satisfy the detailed balance constraints. Table
7 presents the values of the rate constants employed in
the simulation as well as the estimated values from a
sequence of 40,000 simulated events. The estimation was
done by imposing a dead time of 0.125 ms, which is more
than the mean lifetime of C2. The program took -33 s to
converge, each evaluation of the likelihood and its de-
rivatives taking -1 s.

y.L 01

C1
4

k42j,k24

1 02

7o C
W.0

Scheme 6

Nonstationary data

To examine the applicability of the maximal likelihood
algorithm to channels exhibiting nonstationarity, we em-
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ployed the following model:

k25 k45

k12 k23 k3

Cl ' C2, ' C3 ' 0

k2, k32 k43

Scheme 7

where the values of the rate constants are listed in Table 8.
This model was derived by Vandenberg and Bezanilla
(1991) as a possible gating mechanism for the sodium
channel in the squid giant axon. Assuming the channel
began in state C1, we simulated 3000 current responses to a

20-ms voltage step to 0 mV. As inactivation may occur

directly from a closed state, there were a significant number
of blank traces in which no channel openings occurred.
Because the opening rate is very fast, the lifetime of the
third closed state C3 is short, leading to brief closures
occurring before inactivation takes place. There were 835
blank traces, 4340 openings, and 7340 closings, an average

of approximately 2 openings per trace.
Two sets of analyses were carried out: one with the

simulated perfect data and the other with the imposition of
a dead time td = 0.034 ms (approximately the mean lifetime
of the brief closures). The processing time was approxi-
mately 3 min. Table 8 presents the estimation results. These
estimates were obtained with the constraints k12 = k23 and
k2i = k32. Such constraints appeared to be necessary as the
program was unable to converge when they were allowed to
be independent. The same behavior was found by Vanden-
berg and Bezanilla (1991) when they fitted real experimen-
tal data using the method of Horn and Lange (1983). From
Table 8 we see that the estimates are reasonably good. The
inactivation rates from the closed state are underestimated
in both cases, suggesting the difficulty of extracting rates
from blank records. The leftward rates between the closed
states were overestimated in the presence of missed events,
and the overestimation continued to increase with the dead
time. The inability of the program to converge in the ab-
sence of constraints seems to be a fundamental problem of
the reaction scheme as data sets as small as 30 traces gave

comparable mean values (although having wider confidence
limits). The problem may be solved, however, by global
fitting across several voltages.

TABLE 8 Parameter estimates for nonstationary data

Estimates (± SD) Estimates (± SD)
Rate True value td = 0 td = 0.034 ms

k,2 = 2,969 3,052 ± 72 3,381 ± 93
k2l = 704 738 ± 130 1,145 ± 182

k34 28,932 29,823 ± 665 30,043 ± 1,253
k43 725 751 ± 16 747 ± 42
k25 1,117 710 ± 30 730 ± 34
k45 705 739 ± 16 722 ± 16

Multi-channel fitting

This is an example based on the three-state K+ channel in
Chara corallina (Albertsen and Hansen, 1994). The gating
mechanism of the channel follows Scheme 1. The rate
constants are k12 = 70, k2l = 1,000, k23 = 15,000, and
k32 = 300, all with units in s-1. We attempted to extract
these rates from a record containing four such channels. A
sequence of 30,000 events, totaling a duration of 15 s, were

simulated and used for analysis.
Table 9 presents the estimates of the rate constants of a

single channel. A dead time of td = 0.0625 ms was imposed.
This dead time was equal to the mean lifetime of the open

state and caused -70% of the simulated events to be lost.
Thus there were only 10,000 events that were actually used
in estimation. From Table 9 it can be seen that the parameter
estimates are close to their true values. The processing
time to obtain these estimates was approximately 11 min,
including 10 iterations and 17 evaluations of the likelihood
function.

It is worth comparing our method with the one recently
proposed for multi-channel data analysis (Albertsen and
Hansen, 1994). For the same model and the same number of
channels, but only one-third of our data length, their method
took as much as 24 h on a similar workstation (HP 9000).
We notice that they employed the Kronecker product tech-
nique for computing the transition probability matrix of
multiple channels from the individual matrices. As dis-
cussed previously, this technique is computationally much
more expensive than the composition technique. For n chan-
nels and k states, the composition technique yields a reduc-
tion by a factor of (N,/Nk)2 where Nc = and Nk =

(n+k-I). For n = 4 and k = 3, this factor is -29. In other
words, if the composition technique had been adapted, their
method would have been 29 times faster than it was.

Fig. 4 shows the increase of the computation time per

evaluation of the likelihood and its derivatives with the
number of channels. It is seen that the time increases dra-
matically as the number of channels increases.

Global fifting

Scheme 8 is taken from a model of a batrachotoxin-modi-
fied sodium channel in neuroblastoma cells (Huang, 1984).
All of the four rate constants in the model are voltage
dependent: ki = Kijexp(vijV). Thus there are actually eight
independent parameters. The true values of these parameters
are listed in Table 10. Simulations based on these parameter

TABLE 9 Parameter estimates for multiple channels

Rate True value Estimate SD

k12 70 61 20
k2l 1,000 1,008 665
k23 15,000 13,430 687
k32 300 255 20
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FIGURE 4 Increase of the time per evaluation of the likelihood and its
derivatives with the number of channels.

values were done at five different voltages: -90, -70, -50,
-30, and -10 mV, and approximately 3500 channel open-

ings were generated at each voltage.

k12 k23

C,l C2' '
k2, k32

Scheme 8

Parameter estimation was done by fitting the records of
the five voltages simultaneously. A dead time of 0.1 ms

was imposed. The estimation results are presented in
Table 10. It can be seen that the estimates are close to the
true values employed in the simulation, and the error

estimates are small. The processing time to obtain these
estimates was approximately 24 s, including 14 iterations
and 37 evaluations of the likelihood. The maximization
was repeated by using different initial guesses and was

shown to be robust.
The advantages of global fitting are apparent; the likeli-

hood surface is well defined, thus yielding more reliable
estimates. For this example, global fitting is not just helpful
but also necessary. Fredkin and Rice (1992a) have tried the
individual fitting of the model at -70 mV. They concluded
that good estimates on k12 and k2l were impossible no

matter how many events were analyzed because the closed
duration density can be well approximated by a single
exponential and a fit with two exponentials is inherently

TABLE 10 Global fitting across different voltages

Parameters True values Estimates SD

K12 3.39 3.15 0.22
K21 6,357 6,177 437
K23 12,345 12,428 458
K32 4.97 5.10 0.15
V12 -0.047 -0.048 0.0024
V21 0.105 0.103 0.0027
V23 0.079 0.079 0.0005
'V32 -0.042 -0.042 0.0005

unstable. Here we see that this problem can be successfully
resolved by fitting the model across a voltage range.

Application to experimental data

A nicotinic acetylcholine receptor channel

Our first experimental example is that of a mutant, recom-

binant mouse acetylcholine (ACh) receptor expressed via
transient transfection of human embryonic kidney cells
(Sine et al., 1995). The recordings were made from a

cell-attached patch with the agonist, 1 ,uM ACh, in the patch
pipette only. Although the data were recorded continuously
for extended periods, the currents occurred in clusters that
were well separated and could thus be unambiguously de-
fined. The sampling rate was 94 kHz, and the data were

low-pass filtered at 15 kHz using a digital linear phase
Gaussian filter. The idealization process was performed
with the segmental k-means method. A total of 5176 events
(--12 s) from 15 clusters was included in the fit. The model
fitted to the data was the standard kinetic model for the
activation of these receptors as given in Scheme 3.
The results of estimation are presented in Table 11. The

analysis imposed a dead time of 11 ,us. Longer dead times
were also tried, with similar results. As before, the maxi-
mization was repeated by using different starting points, and
the same final estimates were obtained. Examination of
likelihood surface sections shows that the maximum was

well defined. The processing time for this example was

approximately 18 s, starting from an initial guess of 100 for
all rates except k34, which was 10,000.
As a verification of the estimation results, we calculated

the open and closed interval duration distributions from the
fitted rates and compared them with the experimentally
obtained histograms. From Fig. 5, it can be seen that there
was good agreement. There was an excess of short-lived
open intervals (probably from mono-liganded receptors); to
account for these, a second open state would need to be
added to the model.

An N-methyl-D-aspartate (NMDA) receptor channel

Our second experimental example is that of a mutant, re-

combinant mouse NMDA-activated receptor expressed in
Xenopus oocytes. The recordings were made from outside-
out patches (Fig. 6, top trace). In these patches, only a

single channel was active. A total of -100 s of data was

TABLE 11 Parameter estimates for an ACh receptor channel

Rate (s- 1) Estimate SD

k12 239 35
k2l 1,316 305
k23 526 105
k32 3,885 215
k34 36,896 859
k43 580 12
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FIGURE 5 Analysis of a mutant ACh receptor kinetics. The theoretical
curve (solid line) was calculated as the integral over each bin of the pdf
derived from the fitted rates with allowance for missed events. It is not
smooth because the bin widths were rounded to multiples of the sampling
duration.

divided into 21 segments of equal duration. We selected
the data to analyze, choosing stable baselines and no

obvious noise spikes. The data were digitized at a sam-

pling rate of 20 kHz and low-pass filtered to 10 kHz. The
segmental k-means program was used to estimate the
amplitudes and to idealize the currents creating an

idealized dwell time list that contained 14,727 inter-
vals. The currents appeared to reside at three amplitude
levels: closed (0 pA), subconductance (-5 pA), and
open (-7 pA).

S3

k43 k34 4

04

k4 t A4 %is

S5

Scheme 9

Exploration of a variety of models suggested that there are

at least four closed states, two sublevel states, and one open

state. After some experimentation, we chose the seven-state
symmetric model shown in Scheme 9. Because the model has
several loops that need not be in equilibrium, we performed
two analyses, one with and one without detailed balance con-

straints. In both cases, a dead time of 0.1Ims, i.e., two sample
durations, was imposed. The optimal rate constants are shown
in Table 12. The corresponding duration histograms for each
conductance level are shown in Fig. 6. Although the calculated
duration distributions fit the experimental ones in both cases,

the log likelihoods are very different: 70,001 without con-

straints and 69,987 with constraints. Thus, the nonequilibrium

model was e14 106 times more likely. The outer loop of the
model (2-3-6-5) preferentially cycles in the clockwise direc-
tion, gaining approximately 0.7kbT per cycle, where kb is the
Boltzmann constant and T is the temperature. By readily solv-
ing for the rates of different models, the program provides a
simple tool for testing whether channels are in equilibrium. For
this example, the program took approximately 3 min to con-
verge with an initial guess of 100 s-1 for all 16 rates. The
results were independent of starting values.

Discussion

We have described a full maximal likelihood method for
estimating kinetic parameters of a single channel from ide-
alized dwell times. The method applies a correction for
missed events and works on stationary or nonstationary records
with multiple conductance levels and multiple channels. It also
allows data sets obtained at different independent variables
(concentration, voltage, or force) to be fit as a single data set.
The method is very fast, typically taking approximately 1 min
to extract the rate constants for a typical model.

There are two major improvements made by the present
method over the existing ones. One is the capability of
correcting for the effects of missed events. A general solu-
tion that provides a corrected transition rate matrix and
works on records with multiple conducting states was de-
rived and implemented. The other improvement made by
the method is the use of analytical derivatives of likelihood
function for optimization. This offers several computational
advantages. First, it avoids numerical calculation of likeli-
hood derivatives, thus yielding a significant reduction in
computation. Second, it greatly helps the search of the
likelihood surface, especially when the parameter space is
large or the likelihood surface is nearly flat. Finally, it
enables one to use the efficient variable metric optimizer.
This optimizer not only converges rapidly but also generates
good estimates of the curvature of the likelihood surface at
the maximum, thereby allowing the parameter error esti-
mates to be calculated without additional computation.
The program incorporates a unified representation of rate

constants by which global fitting across different experi-
mental conditions is made possible. This representation may
be interpreted physically as formulating transition rates in
terms of free energy. In addition to allowing global fitting,
it also has the advantage of converting nonlinear detailed
balanced constraints into linear ones that are computation-
ally easier to deal with. Another advantage is that it results
in a more symmetric likelihood surface, which may be
better approximated parabolically over a larger range in-
stead of just the vicinity of the maximum point. As a
consequence, optimization is made faster and error esti-
mates are more accurate.
The method has been tested extensively based on a vari-

ety of models with both simulated and experimental data.
The results have been encouraging. Examples with missed
events correction showed that good parameter estimates
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FIGURE 6 Analysis of a mutant re-
combinant NMDA receptor kinetics. A
portion of the actual and idealized cur-
rents are shown at the top, and the
duration histograms are shown at the
bottom. Calculated histograms were
made as described in Fig. 5 and are
displayed as lines. The calculated
curves obtained with the detailed bal-
ance constraint are plotted as dashed
lines and those obtained without con-
straints are shown as solid lines. The
curves can only be distinguished for
the closed state.
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could be revealed even after the majority of the data were
omitted. For models that met the first-order approximation
condition, a dead time as long as several times the minimal
mean lifetime of the states in a model could be imposed. For
models that did not satisfy this condition, a dead time longer
than the minimal mean lifetime could still be imposed
without changing estimation results significantly. The
method was also shown to be effective for data containing
multiple channels and data scaled by different experimental
variables, e.g., voltage, force, and concentration. Finally, anal-
ysis of two examples, one with an ACh receptor and the other
with an NMDA receptor, indicated that the current method
performed well with real patch-clamp data, suggesting its
applicability to more general and complicated problems.

TABLE 12
channel

Parameter estimates for an NMDA receptor

Estimates (±SD) Estimates (±SD)
Rate (s 1) unconstrained constrained

k12 32 ± 5 37 ± 6
k2l 47 ± 8 655 ± 111
k23 25 ± 3 835 ± 110
k32 14 ± 2 37 ± 4
k34 342 ± 6 342 ± 19
k43 367 ± 7 366 ± 21
k45 181 ± 6 181 ± 11
k54 2,700 ± 84 2,688 ± 167
k36 35±3 10±1
k63 1,140±165 15±1
k56 477 ± 61 1,387 ± 81
k65 1,360 ± 142 127 ± 11
k67 446 ± 82 26 ± 4
I76 3±0 5± 1

Although global fitting should be better than fitting individ-
ual data records, we have found that in practice there may be
enough variability in the channel kinetics from patch to patch
to reduce the potential advantages. The assumption in global
fitting is that the same reaction scheme is present in all of the
data sets and when that is not the case, global fitting can be
misleading. In our experience, fitting of individual data sets is
often adequate and simpler than global fitting.

For most nonlinear optimization problems, initial guesses
of parameters are important as poor starting values may lead
to local maxima. Most surprising to us, local maxima do not
seem to occur in our case. We have tried different starting
points and obtained the same results. This suggests that the
likelihood surface for this kind of problem is smooth. Sim-
ilar results have been reported by other authors (Horn and
Lange, 1983; Ball and Sansom, 1989). Nevertheless, cau-
tion must be taken and different initial guesses should be
tried, especially for large and complicated models.
One problem encountered when applying this method in

practice is that of defining a dead time. Our suggestion is to
start with a value calculated from the analog system re-
sponse time as presented by Colquhoun and Sigworth
(1983); td = 0.179/fc wherefc is the 3-db cutoff frequency
of the low-pass filter. We then search a range of dead times
for a region in which the rates are stable. This at least
provides a self-consistent answer.
The method assumes the availability of an explicit kinetic

model. Sometimes, the model can be derived from the data.
The minimal number of states for a given amplitude class
can be ascertained by determining the number of exponen-
tials that is required to fit the interval duration histogram of
that class. The connectivity between states can be tested by
comparing their best log likelihood fits, for example, using
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the Akaike information criteria (Akaike, 1974). Models may
also be constructed from a priori ideas. In this sense, models
can contain global information that may or may not be
available within a single data set. For example, structural,
pharmacological, and biochemical results may tell us that a
protein has exactly two sites for binding a drug. Then, we
may start with a kinetic model that incorporates two binding
sites before we even examine the characteristics of the data.

Here is not the place to discuss the details of idealization;
however, the success of the method does depend on the
availability of an accurately idealized dwell time list. Tra-
ditionally, the idealization process has been performed with
threshold detection (Sachs et al., 1982; Colquhoun and
Sigworth, 1983) that relies on heavy filtering, leaving fast
transitions undetected. Alternative idealization procedures
have recently been proposed (Chung et al., 1990; Fredkin
and Rice, 1992b; Draber and Schultze, 1994). We have used
a hidden Markov modeling procedure based on the segmen-
tal k-means method (Rabiner, et al., 1986). It should be
emphasized that, although the present method has the ability
to correct for missed events, more perfect data, whenever
possible, are still desirable.
The applicability of the program is not likely to be limited

by the size of the model. The program is usually fast and
requires only a small memory space. For example, the
NMDA receptor example we tested involved as many as 16
independent variables, and the program converged in a few
minutes. One limitation is the adequacy of the missed events
correction. If a higher order correction can be developed this
would extend the applicability of the current method. In the
absence of that, point likelihood methods may help (Walsh
and Sigworth, 1992; Fredkin and Rice, 1992a; Qin et al.,
1994; Albertsen and Hansen, 1994).
The method suffers from a problem common to all

kinetic analyses, that of identifiability, as illustrated
above for the two sodium channel models. The problem
can be reduced by using nonstationary data (in time or
across different values of the rate constants) as in Scheme
8. Imposing constraints on rates, such as detailed balance,
can also improve identifiability. The problem of identi-
fiability arises primarily from the aggregation of states. If
mutant channels are constructed so that more states have
distinguishable conductances, the problems of identifi-
ability are reduced.

on the falling phase. (Rather arbitrarily, missed events on the rising phase
are lumped with the previous dwells.) Let FI(n) be the probability density
matrix of the first case, containing n undetected leavings. Similarly, let
r2(n) be the probability density matrix of the second case. Then the
probability density matrix of the observed dwell time after correcting for
missed events is given by

eGab(t) = I [FI(n) + F2(n)]. (Al)
n=O

Thus the derivation of eGab(t) reduces to the derivations of rl(n) and r2(n).
We first consider rF(n). The probability density matrix for a given set

of missed events (see the upper panel of Fig. 1) is given by

[nfl Ga(T2i- )Gaa(T2i)lGab(T2n+1) Fn(T17 ** T2n+ 1)

(A2)

Here T, must be greater than td; otherwise it would be grouped into the
previous dwell. T2i must be less than td so that all the leavings go unde-
tected, and the sum of all Ti values must be equal to the duration of the
observed dwell. Then rI(n) can be obtained by integrating Eq. A2 over all
possible values of Tj; i.e.,

Fr(n) = . . Fn(T * *, T2n+ 1) dTj dT2 . . . dT2n+ I -

E Tr=t

Ti >td
T2i,td

This is an integral of a matrix function over a restricted region of a (2n +
1)-dimensional hyperplane. By subtracting td from T, and introducing a
Dirac function into the integrand, we can eliminate the constraints T1 ' td
and rTi = t from the integration limits, yielding

rF(n) = eQaatd .ff . . 5(fT( - t')
O0T2i- <X (A3)
0'--T2i C-td

X Fn(T, T*2n+1) dTr dT2 ... dT2.+1

where t' t - td. Representing the Dirac function in the Fourier domain as

8(x) 2 J ewx dw
-co

and substituting for F(T1, *T2, T2n+ ), we may rewrite the integrand in
Eq. A3 as

i(Z Ti -t')Fn(TI, *Ts2n+l)
APPENDIX

We present here a derivation for the corrected probability density matrix
eGab(t) given by Eq. 14 as well as its first-order approximation given by Eq.
15. The method employed here is a generalization of the one introduced by
Roux and Sauve (1985) in the case of binary conductance levels. A minor
error occurred in their derivation, where the constraint that the first stay T,
(Fig. 1) must be greater than td was not taken into account. We have made
the correction in the following derivation. In addition, we present the
derivation with more commonly used notation.

As shown in Fig. 1, there are two exclusive ways to implement an

apparent dwell time of a channel with multiple conductance levels, one

without missed events on the falling phase and the other with missed events

2 e-I)tw4H eiAT2i- 'Gaa('T2i- 1)ei(OT2'Gaa(T2i)1

X eiwT2n+'Gab(T2n+l) dco (A4)

=2ir e j:t n e(ijw+Qaa)T2i-lQa_e(iIo'+Qaa)T2iQ5]

X e(ij I+Qaa)T2n+IQabdco.
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Substituting Eq. A4 into Eq. A3 and then making use of the following
equalities:

J e(I+Qu)T dT = -U(i I + Qaa)1 i a(W)

e(iwI+Q )T dT = -(I - eOI+Q00)td)(jI+ Qaa) -Pa(G)

it follows that

F1(n) (A5)

1 r
- J e-) [(Da(o)QaPs(cd)Qi(Fa(CO)Qab dco.

By similar arguments, we can show that

1Tr
F2(n) = 2 Qat eiw)t'[1aa(wt)QasPs(c))Qsa]n

_x ~~~~~~(A6)
X (Fa(WO)QacTc(WO)Qcb dw.

So far, we have derived F1(n) and F2(n). Now, substituting Eqs. A5 and
A6 into Eq. Al and noting that

EAn= (I-A)-'
n=O

we obtain

eGab(t) =-eQaat e 1j[I- (Pa(CO)QatP5((O)QiaY1

X (Da(CO)[Qab + QacPc(W))Qcb] dw.

If we substitute (Fa(S) and Ta(S) by their definitions, then Eq. A7 becomes
Eq. 14.

First-order approximation
Under the first-order assumption, i.e., that the total duration of missed
events is much less than the duration of the observed dwell time, we have

Ti - t) 1(Ti t

i odd

Replacing the Dirac function in Eq. A3 with the above one and then
repeating the subsequent derivation, it follows that

eGab(t) eQ t t'[I - (Da((O)QaPiP(O)Qiaa1
"-CO (A8)

cDa(co)[Qab + QacJ(O)Qcb] dco.

In other words, the first-order approximation of Eq. A7 is obtained by
simply replacing the matrix function ta(s) with its value at s = 0.

Noticing that

[I - a((O)Qa0Pi(O)Qaa] sa(&J)

= [(a_(CO) - Qa5Pi(O)QiaIV
and making use of the equality

e-ist(jwI + A)-' dw = exp(At),

we can further simplify Eq. A8 into Eq. 15; i.e.,

eGab(t) = exp(e Qaat)eQab, (A9)

where eQ. and 'Qab are defined as

Qaa = Qaa - Qaa(I- e )Qaa Qa

eQab = exP[tQa(I - e '")QaaQaa] (A10)

X [Qab - Qac(I - e )Qcc b]

Note that Eq. A9 has the same form as in the case of no missed events. This
suggests that we may view the observed process after incorporating missed
events as generated from another channel, the transition rate matrix of
which is determined by Eq. AIO.
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