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Anomalous Diffusion Due to Binding: A Monte Carlo Study
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ABSTRACT In classical diffusion, the mean-square displacement increases linearly with time. But in the presence of
obstacles or binding sites, anomalous diffusion may occur, in which the mean-square displacement is proportional to a

nonintegral power of time for some or all times. Anomalous diffusion is discussed for various models of binding, including an

obstruction/binding model in which immobile membrane proteins are represented by obstacles that bind diffusing particles
in nearest-neighbor sites. The classification of binding models is considered, including the distinction between valley and
mountain models and the distinction between singular and nonsingular distributions of binding energies. Anomalous diffusion
is sensitive to the initial conditions of the measurement. In valley models, diffusion is anomalous if the diffusing particles start
at random positions but normal if the particles start at thermal equilibrium positions. Thermal equilibration leads to normal
diffusion, or to diffusion as normal as the obstacles allow.

INTRODUCTION

In unobstructed diffusion, the mean-square displacement of
the diffusing particle is proportional to time. But obstruction
or binding may lead to anomalous diffusion, in which dif-
fusion is hindered and the mean-square displacement is
proportional to a fractional power of time less than one
(Bouchaud and Georges, 1988, 1990; Haus and Kehr, 1987;
Havlin and Ben-Avraham, 1987; Scher et al., 1991). In
earlier work (Saxton, 1994) we considered obstruction by
inert obstacles; here we treat several models of binding.
Anomalous diffusion has been reported in single-particle

tracking experiments on the low-density lipoprotein (LDL)
receptor on human skin fibroblasts (Ghosh, 1991), single-
particle tracking experiments on a neural cell adhesion
molecule in muscle cells (Simson, 1994), and fluorescence
photobleaching recovery experiments on IgE receptors in
rat basophilic leukemia cells (Brust-Mascher et al., 1993;
Feder, 1993). Anomalous diffusion in cell membranes may
depend on metabolic energy; in the fibroblast experiments,
the fraction of receptors showing anomalous diffusion de-
creased on treatment with azide and deoxyglucose (Ghosh,
1991). Nagle (1992) showed that long-time tails in the
waiting time have a major effect on fluorescence photo-
bleaching recovery. Both the diffusion coefficient and the
fractional recovery may depend on the measurement time.
To what extent can binding be responsible for anomalous

diffusion in cell membranes? We examine several models.
Pure obstruction by inert random point obstacles is consid-
ered, to make contact with previous work and to serve as a
reference system. In the obstruction/binding model, point
obstacles, representing immobile membrane proteins, bind
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tracers in nearest-neighbor sites, as in the "post model" of
Jacobson and co-workers (Zhang et al., 1993). We also
consider a site diffusion model with a singular distribution
of binding energies, two bond diffusion models with differ-
ent distributions of barrier heights, and the continuous-time
random walk model used by Nagle (1992).

METHODS
Diffusion calculations are carried out by modifications of
the method used earlier (Saxton, 1987, 1992). Immobile
point obstacles are placed on a triangular lattice at random
at a prescribed concentration. A tracer is placed at a random
unblocked point on the lattice and carries out a random walk
on unobstructed lattice sites. The tracer position is recorded
as a function of time, and the mean-square displacement (r2)
is obtained by averaging the positions over different random
walks with the same configuration of obstacles or traps, and
different configurations with the same area fraction of ob-
stacles or statistical distribution of traps. Typically, 50 dif-
ferent configurations were used, with 200 random walks per
configuration. In each run, at least 256K time steps were
used (1K = 1024). Periodic boundary conditions were im-
posed, and unless otherwise specified, a 256 X 256 lattice
was used. The approximations involved in a lattice model of
lateral diffusion are discussed elsewhere (Scalettar and Ab-
ney, 1991; Saxton, 1993a, 1994).

In the valley models, each lattice point is assigned a well
depth depending on the model used. In the mountain mod-
els, each bond connecting nearest-neighbor sites is assigned
a barrier height from a prescribed probability distribution.
The random walk is carried out using the Metropolis Monte
Carlo algorithm (Binder and Heermann, 1992). In general,
the transition probability in the Metropolis algorithm is

1I1E(E EF> E1,
W ={exp[- (EF- El)] EF>EI (1)

where EI is the energy of the initial state, EF is the energy
of the final state, (3 = l/kT, k is the Boltzmann constant, and
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T is temperature. A random number R between 0 and 1 is
generated. If R 5 W, the tracer is moved; otherwise it
remains. In either case the clock is incremented by one time
step.
We assume short-range binding forces, so that the prob-

ability of a move depends only on a single energy, the well
depth in valley models or the barrier height in mountain
models (see, for example, Mak et al., 1988). For long-range
binding forces, a tracer at a given site interacts with adjacent
sites and the transition probability depends on the difference
in energies between initial and final positions (see, for
example, Jiang and Metiu, 1988).
The choice of initial position for a tracer is important, and

three different methods were used. In the first, the initial
position is simply a random unblocked site. In the second, a
tracer is placed at a random unblocked site and allowed to
carry out a random walk for a prescribed annealing time.
The mean-square displacement is not recorded during this
time, and the position of the tracer at the end of this time is
taken to be its initial position. Then the tracer continues its
random walk and its mean-square displacement is recorded
as a function of time. In the limit of infinite annealing time,
the initial position of the tracer is its thermal equilibrium
position. In the third method, the initial position is chosen
from the thermal equilibrium distribution. If the energy of
the ith site is -JEiE, then the probability of escape is Wi =
exp(-(3jEij) and the waiting time is ti = l/Wi. The equilib-
rium probability that a tracer will be at site i is then

p
t exp(+f3IEIl)

iEjtj -Ej exp(+f3lEj)' (2)

where the sum is over all sites.
For the case of the power law distribution, each site has

a different probability, and the following algorithm was
used. For a given configuration of binding sites, go through
the lattice points in numerical order and calculate the nor-
malized cumulative distribution (4(n) = Xi-l Pi. Then, at
the start of each random walk, choose a random number R
between 0 and 1, find n such that +P(n) 5 R ' 4)(n + 1), and
choose site n as the initial site. To see that this works, note
that if all the Pi's are equal, each point has an equal
probability of being chosen as the initial site. If one point is
a very deep well, Pi is large there, 4 makes a large jump
there, and that point has a high probability of being chosen
as the initial site.
Some complications in time-dependent Monte Carlo

models with binding have been discussed in the context of
diffusion of an adsorbed atom on a surface (review: Kang
and Weinberg, 1992). The principle of detailed balance does
not specify the transition probabilities uniquely, and the
time course of the model depends on the choice of transition
probabilities. For the relation between simulated time and
real time to be well defined, the transition probabilities must
be based on activation energies, not on the energy differ-
ences between initial and final states (Kang and Weinberg,
1992). If the activation barrier between initial and final

states is negligible, the Kang-Weinberg transition probabil-
ities reduce to the Metropolis probabilities.
To convert the dimensionless units r* and t* used in the

Monte Carlo calculations to experimental units r and t, we
use the lattice constant f as the unit of length, the jump time
T as the unit of time, and Do as the diffusion coefficient of
the tracer in an unobstructed system. The obstacle concen-
tration C is the area fraction, defined as the fraction of
lattice points occupied by obstacles, and {W} is the set of
escape probabilities. Then r = (r*, t = rt*, D =
DOD*(C,{W}) with D*(O,{1}) = 1, and e2 = 4DoT. The
basic relation (r2) = 4Dt yields (r*2) = D*(C,{W}) t*, and
for anomalous diffusion (r*2) = D*(C,{W}) t*2/d-. We take
f to be (infinitesimally less than) the sum of the diameters
of an obstacle and a tracer, so that a pair of adjacent
obstacles will just block passage of a tracer between them.
Then T is the time required for a tracer to diffuse a mean-
square distance of E2 in the unobstructed system. The mod-
ification to T required for systems with binding or hydro-
dynamic interactions will be discussed later. The escape rate
from a binding site is W/I in physical units. To simplify the
notation, we drop the asterisks from r and t, except in the
discussion of experimental results.

RESULTS

We begin with a discussion of some guiding principles, lest
we get lost in a maze of trap models. Foremost is the
distinction between normal and anomalous diffusion. In
most of the cases examined, diffusion is anomalous at short
times and normal at long times. Second is the distinction
between valley and mountain models. Third, the initial
conditions for the diffusion measurement may determine
whether diffusion is normal or anomalous. Finally, we con-
sider singular versus nonsingular distributions of waiting
times.

In general, why can diffusion be anomalous? A change in
the law of Brownian motion implies a breakdown in the
central limit theorem. The central limit theorem requires
that the variables must not be distributed too broadly and the
correlations must not be too long-range. So anomalous
diffusion may result from a pathological distribution of
variables-a broad distribution of jump lengths or jump
times-or from long-range correlations in the elementary
displacements (Bouchaud and Georges, 1988, 1990).

Anomalous diffusion: nonbinding point obstacles

To demonstrate the method of data analysis and to provide
a reference system, we first consider point obstacles without
binding. In normal diffusion, the mean-square displacement
(r2) is given by

(r2) = 4Dt

and in anomalous diffusion

(3)
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where D is the diffusion coefficient, t is time, and d, is the
anomalous diffusion exponent. In the cases considered here,
diffusion is hindered and dw 2 2. In the presence of obsta-
cles, diffusion is anomalous at short times and normal at
long times. The transition between these two regions occurs
at the crossover time tCR; the corresponding distance is the
crossover length

RCR = XID*(C)tCR, (5)

where D*(C) is the diffusion coefficient for long times. So
we have

( t t >> tCR' (6)

A conventional plot of (r2) versus t does not show this
structure clearly. It is useful to remove the asymptotic linear
time dependence and plot the Monte Carlo results as
log[(r)/t] versus log t. The region of anomalous diffusion
then yields a straight line with slope 2/dw - 1, and the
region of normal diffusion yields a horizontal line. The
intersection of these two lines gives the crossover time, and
the value of (r2)/t in the region of normal diffusion is D*(C).
With this plot, it is easy to see whether a Monte Carlo run
was long enough for D* to have reached its asymptotic
value (Saxton, 1994).
Anomalous diffusion is thus characterized by three pa-

rameters, the anomalous diffusion exponent dw, the cross-
over time tCR, and the long-range diffusion coefficient
D*(C). The steeper the slope in the anomalous region, the
larger dw is.
The method of analysis is shown in Fig. 1 for diffusion in

the presence of inert point obstacles, that is, obstacles that
do not bind the diffusing species. As the concentration of

0

-2
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FIGURE 1 Anomalous diffusion of a point tracer on a triangular lattice
in the presence of inert point obstacles at the indicated obstacle concen-

trations C (Saxton, 1994). Monte Carlo results for the mean-square dis-
placement (r2) are plotted as log[(r2)/t] versus log t. The horizontal lines
are the average value of log[(r2)/t] for large t. The slanted lines are

least-squares fits of a straight line to the Monte Carlo results for small t; the
slopes yield d,. The intersection of the two lines defines the crossover time

tCR. The percolation threshold for the triangular lattice is Cp = 0.5.

obstacles increases, diffusion becomes more anomalous
over longer times-d, and tCR both increase. At the perco-
lation threshold Cp, tCR x-> 0, and diffusion is always
anomalous. At the percolation threshold, the diffusion co-
efficient goes to zero in the limit of an infinite system.

Mountain and valley models

One must distinguish between valley models and mountain
models (Fig. 2 a). In a valley model, each lattice site is
assigned a well depth from a prescribed statistical distribu-
tion, and a tracer must reach the E = 0 level to be able to
move. When a tracer tries to move, it knows how deep a
hole it is trying to escape but not how deep a hole it is
entering, and it has an equal probability of moving in any
direction to escape. The probability of escape from the ith
site is Wi = exp(-,l3EjI), and the average waiting time is Ti
= exp(+(3IEii), where (3 = l1kT. Note that throughout the
paper we vary energy at constant temperature.
The mountain model is a bond diffusion model in which

all sites are identical, with E = 0, but adjacent sites are
joined by bonds with prescribed barrier heights. The tran-
sition probability from site i to site j is Wij = exp(-f3Eij),
where Eii is the barrier height between sites i and j. The
bonds at a particular site may have different transition
probabilities, but Wii = Wii.
A high barrier in the mountain model has much less effect

than a deep well does in the valley model, because in the
mountain model a tracer is likely to take an alternative route
around a high barrier, except in the one-dimensional case
(Bunde, 1988).
One could combine these models and assume the energies

of lattice sites and barriers are both randomly distributed. A
version of this model is discussed by Limoge and Bocquet
(1991).

Fig. 2 b shows a particular valley model we shall con-
sider, the obstruction/binding model. Here obstacles bind
tracers occupying nearest-neighbor sites. In the uniform
obstruction/binding model, the well depth is - AEI for an
unblocked site adjacent to one or more obstacles, and 0 for
all other sites. In the variable obstruction/binding model,
each nearest-neighbor obstacle contributes an equal binding
energy, so that a site with n nearest-neighbor obstacles has
a well depth of -nIAEI. These are forms of the post model
(Zhang et al., 1993). All obstacles are assumed to bind
tracers, but in a cell membrane not all immobile species
necessarily bind all mobile species.

In the valley model, we assume a short-range interaction,
that is, the range of the binding energy is much shorter than
the spacing between adjacent obstacles. As discussed in
Methods, the energy change in a move then depends only on
the energy at the initial site. To be able to move, a tracer
must have enough thermal energy to reach E = 0. The
physical picture is that at each move the tracer escapes from
the initial binding site, diffuses, and is then bound at the
final site. To make clear what will not be discussed here, a
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FIGURE 2 (A) Energy levels in the
valley and mountain models with
short-range interactions. Vertical ticks
indicate lattice sites. (B) The obstruc-
tion/binding model. Obstacles (-)
bind tracers occupying nearest-neigh-
bor sites. Relative binding energies for
the nearest-neighbor sites are shown.
(C) The valley model with a long-
range interaction, which will not be
considered here.

Binding
energy
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long-range interaction model is shown in Fig. 2 c for the
valley model. Here the probability of escape depends on the
energy difference between initial and final states. The de-
pendence of the diffusion coefficient on the obstacle con-

centration is complex, because diffusion is facilitated at the
percolation threshold of binding sites. In the uniform ob-
struction/binding model, for example, a tracer could diffuse
along the interface with no change in binding energy (Parris
and Bookout, 1993).

Initial conditions

At first glance, the initial condition for the Monte Carlo
calculations appears to be a purely technical matter that
belongs in Methods, but it is essential to understanding
when anomalous diffusion occurs. For some models a ran-

dom initial condition leads to anomalous diffusion (Harder
et al., 1987), but a thermal equilibrium initial condition
leads to normal diffusion (Haus and Kehr, 1987).

In a system with inert obstacles, the initial position of a

tracer is simply a random unblocked site. Similarly, in a

mountain model, all lattice sites are at an energy E = 0, and
the initial position is a random site. But in a valley model,
there are several ways of choosing the initial position. First,
the initial position may be random. This is a nonequilibrium
state because the probability of starting at any unblocked

site is uniform, independent of the well depth at that site.
Second, the initial position may be chosen from the thermal
equilibrium distribution (Eq. 2), so that a tracer is more

likely to start in the deeper wells. Third, the initial position
can be found by annealing. Here the tracer starts at a random
unblocked site and carries out a random walk for a pre-
scribed annealing time. Its position at the end of the anneal-
ing time is taken to be the initial position, and then the tracer
continues the random walk and its mean-square displace-
ment is recorded. This method interpolates between the
others.

For a valley model, if the initial position of the tracer is
given by a thermal equilibrium distribution, diffusion is
normal at all times, and the diffusion coefficient is known
exactly:

D* = (I/W)-l. (7)

Here W is the probability of escape, and the average is over
all sites (Haus and Kehr, 1987).
As shown in Fig. 3, annealing has no effect on diffusion

in the presence of inert obstacles. But for the variable
obstruction/binding model, the nature of the diffusion is
determined by the initial state. For a random initial condi-
tion, diffusion is anomalous. For an equilibrium initial con-

dition, diffusion is normal. For a random initial distribution

E =O

Mountain model
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FIGURE 3 The effect of initial conditions on lateral diffusion. (Upper
curves) Inert random point obstacles at an area fraction C = 0.3, for
random initial conditions and annealing times of 16K and 256K (1K =

1024, 1 M = 10242). Annealing has no effect on diffusion. (Lower curves)
Variable obstruction/binding model for C = 0.3 and the indicated anneal-
ing times. Here the well depth is 2.3kT, so that the escape probability from
a binding site with one adjacent obstacle is W = 0.1. For random initial
conditions, diffusion is anomalous at all times shown; for equilibrium
initial conditions, diffusion is normal at all times. For moderate annealing
times (1K, 16K), diffusion is normal initially and becomes anomalous at
large times. Long annealing times (.2 M) are required to reach equilib-
rium.

with annealing, diffusion shifts from anomalous to normal
as the annealing time increases.
The strong dependence on initial conditions may be less

surprising in view of work on reaction kinetics in low-
dimensional systems. In the rate law for the A + B -> 0

reaction, for example, the exponent of time is different for
correlated and uncorrelated initial conditions (Lindenberg et
al., 1989, 1990).
What does this dependence imply for measurements of

diffusion? In an ideal diffusion experiment, the label has no

effect on the tracer, and the tracer has time to reach its
thermal equilibrium distribution. A pulsed-gradient spin-
echo NMR measurement is practically ideal; a photobleach-
ing experiment is ideal if the interaction of the tracer with
the obstacles is the same for the bleached and unbleached
forms. But if photobleaching affects the interaction of trac-
ers and binding sites significantly, the tracer will be in a

nonequilibrium distribution. An example of an ideal non-

equilibrium initial distribution is photogeneration of elec-
tron-hole pairs in a solid (Scher et al., 1991).

Singular distributions

A final distinction involves the distribution of escape prob-
abilities (Harder et al., 1987; Haus and Kehr, 1987). In a

singular distribution, there is a nonzero probability of ob-
taining any escape probability W > 0, however small, or

equivalently any waiting time, however large. In a nonsin-
gular distribution, W cannot be arbitrarily small. For Eq. 7
to hold, the distribution of escape probabilities must be

nonsingular so that the system can be in thermal equilib-
rium. For a singular distribution, the system size is impor-
tant because the larger the system, the greater the chance of
an extremely small value of W.

Equilibrium constants

Binding is described here in terms of energies, but it can
also be expressed in terms of equilibrium constants. For a
binding site of energy AEI, the equilibrium constant is

K = KO exp[-IAEI/kT]. (8)

To evaluate Ko, it is necessary to assume more details of the
structure of the species and the potential energy of the
interaction. In order to construct vibrational and rotational
partition functions. Such a derivation is carried out in detail
in Hill (1985).

Binding models

We examine several binding models. We have already dis-
cussed the reference system, point obstacles without bind-
ing. First, we consider the most biological model, the ob-
struction/binding model with uniform and nonuniform well
depths. Next, we examine point binding sites with a power

law distribution of well depths to see the effect of a singular
distribution. Then we look at two bond diffusion models as

examples of the mountain model. Finally, we consider a

continuous-time random walk (CTRW) model with a sin-
gular distribution of waiting times, as used by Nagle (1992).
We then summarize the results in terms of the diffusion
coefficients and discuss experimental results on the LDL
receptor.

Obstruction/binding model: uniform
binding energies

A plausible model of a cell membrane combines obstruction
and binding. Point obstacles, representing immobile pro-

teins, are placed at random sites on a lattice. Moves to sites
occupied by obstacles are forbidden, and the obstacles bind
tracers in nearest-neighbor sites.

In the uniform binding model, if a site is adjacent to one

or more obstacles, the well depth is - AEI, and if not, the
well depth is 0. The escape probability from a binding site
to any unblocked site is W = exp(-I3IAEI), independent of
the energy of the destination.

Fig. 4 shows results for the uniform obstruction/binding
model for various escape probabilities W. For C = 0.1 and
random initial conditions (Fig. 4 a), diffusion is anomalous
at short times, much more anomalous than in the case of
inert obstacles, as shown by the steep slope. At long times,
diffusion becomes normal. For thermal equilibrium initial
conditions, as the escape probability decreases, the diffusion
coefficient decreases but the pattern of anomalous diffusion
is the same as for inert obstacles. For C = 0.3 and thermal

. . . . . ~~~. I

Inert
obstacles

0

Random

Variable
1K ...... obstruction/binding

...
-

model
16K - ---....... ..

256K . 2z .- .-.....-..-................
2M56
4M :t Equilibrium

: . I . I .

......, ...,. . . ,...

1254 Biophysical Journal

*1

-

. . I 4 %-4



Anomalous Diffusion Due to Binding

A O.0

-0.2

_ -0.4

g -0.6

-0.8

-1.0

B 0

.-.

'tL -1

-2

Inert obstacles: W = 1.0

W = 0.5

_ W=0.2

W = 0.1
C 0.1

I. I . . . . .
0 1 2 3 4 5 6 7

Log t

0 1 2 3 4 5 6 7

1.0

0.5

0.2

0.1

1.0

0

-1

.-

D*

J

-2

-3

-4

1

W=0.5 10-1

0 1 2 3 4 5 6 7
Log t

1o-2 D*

1o-3

I l-4

* .v

FIGURE 5 Variable obstruction/binding model. Log[(r2)/t] as a function

0.5 of log t, for the indicated escape probabilities W. The area fraction of
obstacles is C = 0.3. - -, Inert obstacles, W = 1. -- -, Random initial
conditions. , Thermal equilibrium initial conditions. Note the scale

0.2 change from Fig. 4.
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FIGURE 4 Uniform obstruction/binding model. Log[(r2)/t] as a function
of log t, for the indicated escape probabilities W and an area fraction of
obstacles C. (A) C = 0.1. (B) C = 0.3. - * -, Inert obstacles, W = 1. ---,
Random initial conditions. , Thermal equilibrium initial conditions.
Note that W = 0.5 corresponds to a well depth of 0.7kT; W = 0.2 to 1.6kT;
and W = 0.1 to 2.3kT. At C = 0.1, a well depth of kT lowers D* by a factor
of 2.2, and at C = 0.3 by a factor of 2.5.

equilibrium initial conditions (Fig. 4 b), again the diffusion
coefficient decreases and the pattern of anomalous diffusion
is little changed. The initial conditions have little effect
because most sites are binding sites at this obstacle concen-

tration. Here 30% of the sites are obstacles, 61.8% are

binding sites, and only 8.2% are nonbinding. As C goes
from 0.1 to 0.2 to 0.3 to 0.4, the fraction of nonbinding sites
decreases from 0.48 to 0.21 to 0.082 to 0.028. As the
fraction of nonbinding sites goes to zero, diffusion becomes
equivalent to diffusion in the presence of inert obstacles but
with a jump rate reduced by a factor of W.

Obstruction/binding model: variable
binding energies

In the variable obstruction/binding model, the well depth at
a site is -nIAEI, where n is the number of obstacles adjacent
to the site. The escape probability from the site to any

unblocked site is W = exp(-,3nIAEI).
Fig. 5 shows the results for C = 0.3, the same obstacle

concentration as in Fig. 4 b. The diffusion coefficients

are much lower because there are many high-affinity
binding sites. In the uniform model all binding sites have
an escape probability W, but in the variable model at this
concentration, 21.2% of the binding sites have an escape

probability of W; 22.7%, W2; 13.0%, W3; 4.2%, W4; and
0.7%, W5. The sensitivity to initial conditions becomes
extreme as W decreases. For W = 0.1 and 0.2, diffusion
is anomalous over all times shown for random initial
conditions, and for thermal equilibrium initial conditions,
diffusion is similar to diffusion with inert obstacles, but
with a much lower diffusion coefficient. The curves are

independent of system size because the distribution of
binding energies is nonsingular.

In summary, for thermal equilibrium initial conditions,
the obstruction/binding model lowers D significantly,
more in the variable case than in the uniform case. But
binding does not affect anomalous diffusion. The only
anomalous diffusion is that which the obstacles produce.

Point binding sites: singular distribution of
waiting times

Much work has been published in the physics literature
on point binding sites with a singular distribution of
waiting times (for example, Harder et al., 1987; Haus and
Kehr, 1987). We consider a valley model (Fig. 2 a)
where the escape probability W is given by a power-law
distribution

P(W)dW = (1 - a)WadW, (9)

with 0 < a < 1. The waiting time is 1/W. The cumulative
distribution is

w

F(W)= P(w)dw = Wl'-. (10)
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To obtain the escape probability for a binding site, we

generate a random number R between 0 and 1, and find W
from

W= Rl'1-a). (1 1)

Thus, fora = 0.25, ifR = 1, W= 1; ifR = 0.1, W=
0.0464; if R = 0.01, W = 0.00215; and if R = 0.001, W =

0.0001. Each time R decreases by a factor of 10, W de-
creases by a factor of 10413 = 21.5. This is the recipe for
fractal time of Shlesinger (1988): an order of magnitude
longer waiting time, an order of magnitude less often (where
the orders of magnitude are not necessarily in base 10, or in
the same base). This distribution is singular, that is, there is
a nonzero probability of obtaining any W > 0. If the escape

probability is given by an Arrhenius factor W = exp(- PE),
this distribution of W corresponds to an exponential distri-
bution of binding energies

P(E)dE = (1 - a)exp[(l - a)E]dE. (12)

For this probability distribution, the effect of the initial
condition is large, showing the same pattern as the variable
obstruction/binding model in Fig. 3. For random initial
conditions, diffusion is anomalous for all times examined.
For equilibrium initial conditions, diffusion is normal for all
times. For short annealing times, diffusion is normal for
short times and anomalous at long times. For long annealing
times, diffusion is normal for all times. The approach to
equilibrium is very slow. (In an infinite system, there is no
thermal equilibrium, but there is an equilibrium state in the
finite system used in the Monte Carlo calculations.)

For random initial conditions, in the limit t -- oo the

anomalous diffusion exponent (Eq. 4) is dw = 1/(1 - a)
(Harder et al., 1987). The approach to this limit is slow, and
in practice one must include correction terms (de Alcantara
Bonfim and Berrondo, 1989).

Diffusion is anomalous for random initial conditions be-
cause the distribution of well depths is singular, so that no

matter how deep a well a tracer has already been in, it
always has a nonzero probability of falling into a deeper
well (Harder et al., 1987). Similarly, in the case of anoma-

lous diffusion due to inert obstacles at the percolation
threshold, the self-similarity of the percolation cluster im-
plies that there are geometric traps on all length scales. A
tracer may escape from a small dead end only to find that it
is still trapped in a larger dead end, a predicament not
limited to diffusing particles.
The distribution is singular because diffusion in this

model is sensitive to the size of the system. For equilibrium
initial conditions in a finite system, diffusion is always
normal, but as the system size was increased from 32 x 32
to 256 X 256, the diffusion coefficient decreased by a factor
of -4. At fixed lattice size, the fluctuations in diffusion
coefficient from run to run are significant. The value of
D*(C) depends strongly on the depth of the deepest wells
encountered, and as the system becomes larger, the probable
depth of the deepest well increases.

The effect of a is shown in Fig. 6. For random initial
conditions, diffusion is anomalous, and for equilibrium ini-
tial conditions in a finite system, diffusion is normal. The
diffusion coefficient decreases as a increases.

Mountain model: bond diffusion with a
distribution of barrier heights

In the mountain model (Fig. 2 a), the lattice sites are all at
E = 0, so the thermal equilibrium distribution is uniform. A
high barrier in the mountain model has much less effect than
a deep well in the valley model, because in the mountain
model a tracer is likely to go around a high barrier (Bunde,
1988). Results are shown in Fig. 7 for two distributions of
barrier heights. In Fig. 7 a the transition probabilities W are

given by the power law distribution (Eq. 9). In Fig. 7 b the
barrier height E is uniformly distributed on a prescribed
interval (0, EMAX), and W is obtained from the Arrhenius
factor. In both cases, diffusion is slowed, but not as much as

in some of the other models. Diffusion is anomalous at short
times and normal at long times, but the anomalous diffusion
does not disappear at thermal equilibration. The power law
distribution of barrier heights used here is the same singular
distribution that was used in the previous model, but the
effects on diffusion are much less, as a comparison of Figs.
6 and 7 a shows. Argyrakis et al. (1995) discuss various
aspects of diffusion, including the crossover time, for sev-

eral distributions of barrier heights.

Continuous-time random walk model

To examine the effect of long-time tails on fluorescence
photobleaching recovery, Nagle (1992) used a CTRW
model (Scher et al., 1991). Here binding is represented by a

waiting time distribution function

(t)=3/(1+ t)I+,

0

0-

I\L

0

-1

-2

-3
0 1 2 3 4 5 6 7

(13)

10-1

D*

1o-2

1o-3

Log t

FIGURE 6 Unobstructed binding sites with a singular distribution of
escape probabilities. Log[(r2)/t] as a function of log t, for the indicated
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1.0 the probability of trapping is independent of position. There
is temporal disorder but no spatial disorder.
Monte Carlo results are shown in Fig. 8. Diffusion is

0.5 always anomalous, and the anomalous diffusion exponent is
given to high accuracy by Eq. 15 for 0.3 ' (3 ' 0.7. Note

D* that d, may be very large. For Nagle's value (3 = 0.3, d, =

6.67, so diffusion is much more anomalous than for inert

point obstacles, where 2.0 ' d_ ' 2.87.

Diffusion coefficients
0.1 We summarize the results of the different models by plots of

the long-range diffusion coefficients for initial conditions of
thermal equilibrium.

1.0 Approximate values of D* for the obstruction/binding
0 5 model can be calculated by assuming that D* can be written

as the product of obstruction and binding terms,

0.2

0.02

0.01

FIGURE 7 Monte Carlo results for log[(r2)/t] as a function of log t for
two mountain models. (A) Power-law distribution of W (Eq. 9) with the
indicated values of the parameter a. (B) Uniform distribution of barrier
heights E on an interval (O,EMAX), with W = exp(-fPE). Values of EMAX
are indicated.

with (3 > 0, giving the probability that a tracer that last
jumped at t = 0 will jump at a time t. Long-time tails result
because decays algebraically with t; if decayed expo-

nentially, diffusion would be normal. For an unobstructed
system with this distribution function,

(r) to
for large t (Blumen et al., 1984) so that from Eq. 4,

d, = 21(.

D*(C, {W}) = D*OBST(C)DBIND({W}), (16)

where DOBST is obtained from Monte Carlo calculations for
inert obstacles, and D*BIND is calculated from Eq. 7, which
holds for the valley model with thermal equilibrium initial
conditions. In the uniform obstruction/binding model on the
triangular lattice, if the fraction of free sites among the
unblocked sites isfo and the fraction of binding sites among
the unblocked sites is fB, then I/D*IND = fB/W + fo. Here
fo = (1 - C)6 and fB = 1 -fo, so

=BIND[1 - (1 C)6]W+ (1 C)6. (17)

As W ->0, the second term becomes negligible and DBIND

oc W.
For the uniform obstruction/binding model, Fig. 9 a

shows the diffusion coefficient as a function of concentra-
tion for various escape probabilities. The points are Monte
Carlo results and the lines are from Eqs. 16 and 17. Agree-
ment is good except near the percolation threshold, where
the values of D* are less accurate because of the length of
the Monte Carlo runs needed to reach the limiting value (see

(14)

(15)

There is an important difference between this model and
the others. In the other models, the escape time from a given
site is fixed ("quenched disorder"); in the CTRW model, the
escape time from a given site varies with time ("annealed
disorder"), with a random value given by Eq. 13. There is no
thermal equilibration. No moves ever fail; some simply
require a long time.
The behavior of this model can be explained by the

arguments used earlier. Diffusion is anomalous because a

tracer always has a nonzero probability of being trapped for
a longer time than it had previously been. Annealing has no

effect, and diffusion is independent of system size because
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FIGURE 8 Monte Carlo results for log[(r2)/t] as a function of log t for
the CTRW model with the indicated values of f3.
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FIGURE 9 Diffusion coefficients in the different models. (A) Uniform

. . , | . | obstruction/binding model. Log D* as a function of obstacle concentration
C for escape probabilities W = 1, 0.5, 0.2, 0.1, 0.05, 0.02, and 0.01. The
case W = 1 is pure obstruction by inert point obstacles. Points, Monte
Carlo results. Lines for W < 1, Eqs. 16 and 17. (Inset) Crossover time tCR
as a function of W for C = 0.3. (B) Variable obstruction/binding model.
Log D* as a function of concentration C for escape probabilities W = 1,
0.5, 0.2, and 0.1. Points, Monte Carlo results. Lines for W < 1, Eqs. 16 and
18. (C) Point binding sites with a power-law distribution of binding
energies (Eq. 9) for a 256 X 256 system. Log D* as a function of the
parameter a. The line is a least-squares polynomial fit, log D* = - 1.1304
- 3.3069a - 1.5068a2 - 13.6102a3. (D) The mountain model. Bond
diffusion with a power-law distribution of escape probabilities. The diffu-
sion coefficient D* on a linear scale as a function of the parameter a.

The line is a least-squares polynomial fit, D* = 0.4404 - 0.3031a-
0.2238a2. (E) The mountain model. Bond diffusion with a uniform distri-
bution of barrier heights Eon the interval (0,EMAx) and escape probability

0 2 4 6 8 1 0 W = exp(-,BE). The diffusion coefficient D* on a linear scale as a function

of the maximum barrier energy EMAX. Line, diffusion coefficient from Eq.
EMIN 19.

Fig. 1). The crossover time from anomalous to normal
diffusion is larger for obstruction/binding models than for
inert obstacles, particularly for small W. The inset in Fig. 9
a gives a log-log plot of the crossover time tCR as a function
of W.

Fig. 9 b shows similar results for the variable obstruction/
binding model. The diffusion coefficient is much lower, so

much so that the calculations were carried out only for W 2
0.1. Again D may be calculated from Eqs. 7 and 16. For this
model
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Here Ji are the fractions of unblocked sites with exactly i
nearest-neighbor obstacles, and the factor 1/(1 - f6) is
included because the Monte Carlo program excludes iso-
lated sites i = 6. The]i are simply the binomial termsf0 =
(1 - C)6,fI = 6C(1 ) .... Again the Monte Carlo
results are shown as points and the equations are shown as
lines. Away from the percolation threshold, agreement is
reasonably good.

Fig. 9 c shows the diffusion coefficient as a function of a
for a 256 X 256 system of point binding sites with a power
law distribution of escape probabilities. All lattice points are
binding sites, and the distribution of escape probabilities is
singular, so the diffusion coefficients are low. From Eqs. 7
and 9, for a > 0,

D* J P W) d [ lWaMIN J,
WMIN

which diverges as WMIN ->0, giving D* = 0. That is, for a
singular power law distribution in an infinite system there is
an arbitrarily deep well, and in thermal equilibrium the
tracer will be trapped there. For a = 0.25, as the system size
L increases from 32 to 256, D* goes to zero as 1/1267.

In the Monte Carlo calculations for the power law distri-
bution, the system is finite and the well depth is bounded.
We can then calculate D* for the sites actually visited in the
random walk

1 1

V All visits

which is a good approximation to the observed diffusion
coefficient. We can also calculate D* as a sum over all the
lattice sites in the finite system,

1 1

All lattice sites

which is a lower limit for the diffusion coefficient for that
configuration of traps. The fact that DL < D* indicates that
for the conditions of the calculations, 200 tracers and 256K
time steps, the tracers do not sample the 256 x 256 grid
completely.

Fig. 9 d shows the diffusion coefficient for the mountain
model with a power law distribution of escape probabilities,
and Fig. 9 e shows similar results for a uniform distribution
of barrier heights.
The effect on D* is smaller than in the valley models,

small enough that D* is shown on a linear scale instead of
a logarithmic one, because a tracer is likely to avoid high
barriers. For a uniform distribution of barrier heights on the
interval (O,EMAX), D* is given to good accuracy by an
effective-medium equation (Bemasconi, 1973; Ambaye and
Kehr, 1995),

11 -exp(-213EMAX/3)
2 exp(igEmAx/3) - 1 (19

For the CTRW model, diffusion is always anomalous,
and the diffusion coefficient is always time dependent, so no
graph of D* is shown.

Experiments
We discuss results on the LDL receptor in human fibro-
blasts from fluorescence photobleaching recovery (Barak
and Webb, 1982) and single-particle tracking experiments
(Ghosh, 1991). We take the tracer size to be the size of
LDL, which is a sphere of diameter 22 nm (Ghosh and
Webb, 1994). The area of the receptor within the membrane
is much smaller than this, because the receptor has a single
transmembrane helix (Brown and Goldstein, 1986). We
assume an obstacle diameter of 4 nm. Recall that the lattice
spacing t is the sum of the diameters of an obstacle and a
tracer, so that a pair of adjacent obstacles will just block
passage of a tracer between them.
The actual fraction of immobile proteins in a cell mem-

brane is not well known, and not all immobile proteins are
necessarily traps. One measure of the obstacle concentration
is the immobile fraction in fluorescence photobleaching
experiments, summarized by Edidin (1992). Fifty measure-
ments on various proteins and cell types give widely scat-
tered immobile fractions, typically 20% to 70%. As Nagle
(1992) pointed out, the fractional recovery can depend on
the measurement time. A better approach to evaluating the
total immobile fraction was developed by Ryan et al.
(1988), who measured the equilibrium spatial distribution of
labeled proteins when a spherical cell was subjected to an
electric field. This method, which accounts for exclusion by
all species, gave an immobile fraction of 30 + 15%, al-
though this depended on the label used.

For the LDL receptor, the diffusion coefficients from
photobleaching are D(cell) = 4.5 X 10-11 cm2/s in an intact
cell and D(bleb) = 1.4 X 10-9 cm2/s in a bleb, where the
proteins are released from cytoskeletal influence (Barak and
Webb, 1982). So the diffusion coefficient is reduced by a
factor of D* = 0.032 on going from the bleb to the intact
cell. This factor is similar to the ratio of the diffusion
coefficient of band 3 in normal erythrocytes to that in
spherocytes lacking membrane skeletons, D* = 0.02
(Sheetz et al., 1980). We will assume various mechanisms
for hindering diffusion, find the obstacle concentration re-
quired to reduce the diffusion coefficient by the observed
factor, and examine the effect of that obstacle concentration
on anomalous diffusion. (To do this, we need Monte Carlo
results at that obstacle concentration. We do not rerun the
calculation at the exact obstacle concentration, but choose a
run for which D* is close to the observed value.) In this
section we distinguish between the dimensionless Monte
Carlo crossover time tCR* and the crossover time in physical
units tCR.

First, we assume pure obstruction, with inert random
point obstacles on a triangular lattice. To reproduce the
observed D*, we take the obstacle concentration to be C =
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0.482, near the percolation threshold Cp = 0.5, and find
from earlier work (Saxton, 1994) D* = 0.0323, tCR* = 1.2
X 106, and d, = 2.70. So (r2) tO74 in the region of
anomalous diffusion, close to the experimental values
(Ghosh, 1991). To convert to physical units, we use Do =
D(bleb) and ( = 26 nm to get T = 1.21 ms. Then tCR =
ItCR* = 24 min. The single-particle tracking trajectories
were 5 min long (Ghosh, 1991), and the longest photo-
bleaching measurements were 11.3 min (Barak and Webb,
1982), so both experiments would see only anomalous dif-
fusion. A modified equation for photobleaching recovery
(Feder, 1993) would then apply. Her treatment assumes that
there is no crossover and leads to an equation of the usual
form but with a nonintegral power of time replacing the
time. The difficulty with interpreting the experimental re-
sults in terms of simple obstruction is that episodes of
apparently directed motion were also observed (Ghosh,
1991; Anderson et al., 1992). It seems unlikely that directed
motion could occur in a system of randomly distributed
obstacles so close to the percolation threshold, unless the
directed and diffusive motions occurred in distinct domains
with different obstacle concentrations.

In fact, the tracers are larger than the obstacles. If we go
through the same calculations assuming inert point obsta-
cles and hexagonal tracers of unit radius (Saxton, 1993a),
we find that the obstacle concentration required to give D*
= 0.032 is C = 0.11, close to the percolation threshold Cp
= 0.1156. The crossover time and the anomalous diffusion
exponent are similar to those for point obstacles and tracers.

Next, we consider the effect of trapping. In the case of
inert obstacles, the conversion factor T = E2/4DO between
Monte Carlo and physical units is simply the time required
for a tracer to diffuse one lattice constant in the absence of
obstacles. In the case of obstruction with binding, T is the
time required for the tracer to diffuse one lattice constant in
the presence of binding but not obstacles, so we calculate T

using Do = D(cell)/DOBST(C). We thus assume that binding
slows diffusion uniformly and that the obstacles alone are
responsible for the anomalous diffusion. Another way to
think of this is that distance, not time, is fundamental. The
crossover is a geometric property of the obstacles, so a
tracer has to diffuse a certain distance to see the crossover,
and when binding occurs the tracer takes a longer time to
diffuse that distance.
Assume the uniform obstruction/binding model with C =

0.3 and W = 0.1. Then from Fig. 9 a, D* = 0.0475, in the
same range as the observed value. From Fig. 9 b, DOBST =
0.424 and from Eq. 17, DBIND = 0.112. From Fig. 4 b, tCR*
= 2500 and dw = 2.22, so that (r2) to09 in the region of
anomalous diffusion. To convert to physical units, we again
use f = 26 nm, but we use D(cell)/DOBST as Do, and obtain
T = 15.9 ms and a crossover time tCR = 40 s. Here binding
lowers the obstacle concentration required to reproduce the
observed diffusion coefficient. Diffusion is therefore less
anomalous, but the crossover time is shortened to the point
where it could be detectable in the photobleaching and

Finally, we consider hydrodynamic interactions. The hy-
drodynamic interaction between immobile obstacles and
mobile tracers can reduce the diffusion coefficient signifi-
cantly (Bussell et al., 1995; Dodd et al., 1995). But this
interaction might not be important here because the LDL
receptor has only a single transmembrane helix and is
therefore too small for a hydrodynamic treatment.
To see what might happen, we consider a fictitious sys-

tem in which the tracers and obstacles are both hexagons of
unit radius. Let the obstacle concentration be 0.15. From
figure 2 of Bussell et al. (1995), D*Ro = 0.07, and from
figure 1 b of Saxton (1993a), DOBST = 0.42, giving D* =

0.029. From a plot of Monte Carlo results, tCR* = 2500 and
dw = 2.27, so that in the region of anomalous diffusion (r2)

t088 Given the particle size, we can then findT, again
using D(cell)/DOBST as Do, and convert the crossover time
to physical units.

Just as in the case of trapping, the hydrodynamic inter-
action lowers the obstacle concentration needed to give the
experimental diffusion coefficient, so that diffusion is less
anomalous. It will be very interesting to see whether the
hydrodynamic interactions themselves lead to anomalous
diffusion, and whether there is a hydrodynamic interaction
with membrane proteins that have a single transmembrane
segment.

DISCUSSION

We have examined anomalous diffusion in a variety of
models of obstruction and binding, and reviewed some

principles needed to understand the behavior of a diffusing
particle: the distinction between mountain and valley mod-
els, the importance of the initial conditions in determining
whether diffusion is anomalous or normal, and the distinc-
tion between singular and nonsingular distributions of bind-
ing energies.

For valley models with random initial conditions-a non-

equilibrium state-diffusion is highly anomalous over a

significant time range. But for valley models in a thermal
equilibrium initial state, the behavior is much different. In
models without obstacles, no anomalous diffusion occurs at
any time. In models with obstacles, diffusion is anomalous
only to the extent required by the obstacles. So a large class
of binding models does not produce anomalous diffusion,
and binding in the obstruction/binding model does not en-

hance anomalous diffusion. The two versions of the moun-

tain model yield anomalous diffusion with a small to mod-
erate decrease in the diffusion coefficient, but the
anomalous diffusion is not destroyed by thermal equilibra-
tion. The CTRW model used by Nagle (1992) produces
highly anomalous diffusion over all times. This model is an
extreme case, so that experimental observation of the be-
havior predicted by the CTRW model would place strong
constraints on the mechanisms hindering diffusion.

Binding can give much lower diffusion coefficients than

tracking experiments.
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initial conditions does not lead to diffusion that is more
anomalous (larger d,), but it increases the observed cross-
over time from normal to anomalous diffusion by lowering
the diffusion coefficient.

In ideal fluorescence photobleaching recovery experi-
ments, the interaction of the tracer with other species in the
membrane is unchanged by the presence of the label, un-
bleached or bleached. Similarly, an ideal label in single-
particle tracking experiments has no effect on the tracer or
its interactions. The initial condition will then be thermal
equilibrium, unless the labeling and measurement are very
rapid. In nonideal labeling, interactions of the tracer with
other species are different for bleached and unbleached
label, and a short photobleaching pulse could produce a
nonequilibrium initial condition.

In the obstruction/binding model with an ideal label, then,
a photobleaching measurement with binding would look
like a photobleaching measurement without binding, except
that the diffusion coefficient would be lower. But in a
single-particle tracking experiment, binding can be detected
by measuring waiting times in very small (single-pixel)
regions. These data can be analyzed by using an expression
for the probability that a random walk will remain in a circle
of prescribed radius for a given time (Saxton, 1993b). A
useful method of carrying out this analysis is given by
Simson et al. (1995).

In the Monte Carlo calculations for binding, the results
are sensitive to the annealing time, but for pure obstruction,
the results are independent of annealing time. What this
implies is that the experimental clocks in obstruction and
binding are much different. For binding, the clock starts
when the tracer and the binding sites are first physically
mixed, but for obstruction the clock starts every time a
measurement is begun.
A key observation for distinguishing mechanisms pro-

ducing anomalous diffusion in cell membranes would be
detection of a crossover from anomalous to normal diffu-
sion. Further work is needed to determine the conditions
under which the crossover can be observed in single-particle
tracking experiments. Further work is also required to ex-
amine trapping models not considered here, such as the
long-range model of Fig. 2 c.
A singular distribution of binding energies yields a strong

dependence on the system size, and D decreases as the
system size increases. On the contrary, fluorescence photo-
bleaching recovery experiments on cell membranes
(Yechiel and Edidin, 1987; Edidin and Stroynowski, 1991;
Edidin et al., 1994) found that D increases as the bleach spot
size increases. The experimental results were explained by
Schram et al. (1994), who assumed that recovery occurs in
small domains at the edge of the photobleached region. To
examine photobleaching in the presence of traps, it would
be useful to combine and extend the models of Schram et al.
(1994) and of Nagle (1992). Note that tracers in deep wells
would act as obstacles or as slowly recovering fluorescent
components, depending on the ratio of the waiting time to
the photobleaching recovery time. This behavior is approx-

imated by the CTRW model. Note also that varying the spot
size varies not only the system size but also the photo-
bleaching recovery time (Edidin et al., 1994).
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