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Rivers dam waves of rabies
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E stablished and emerging infectious
diseases of humans and animals are an

ever-increasing threat. A key question in
disease dynamics is how infection moves in
space and time. The most dramatic man-
ifestations of disease spread are waves of
infection, often moving across great dis-
tances. These waves arise particularly dur-
ing invasions of pathogens into susceptible
territory (1). However, the intrinsically
nonlinear ‘‘natural enemy’’ dynamics of
infectious diseases can generate waves
even when infections are more established
(2–4).

Infection waves have spawned a sophis-
ticated theoretical literature, which lays
bare the key dynamical issues underlying
epidemic waves and their control (1, 2, 5).
However, as observed by Smith et al. (6) in
this issue of PNAS, a hybrid of dynamic
modeling and statistical analysis is re-
quired to understand how infection moves
across a real, heterogeneous landscape of
patchy host populations and natural bar-
riers to their movement. A few human and
livestock diseases provide the necessary
combination of host and parasite data to
analyze the effect of these heterogeneities
on disease waves directly (3, 4, 7). How-
ever—and particularly for wildlife infec-
tions—this approach is frequently
inhibited by a lack of information at the
right spatial grain.

Smith et al. (6) analyze the spread of
rabies through Connecticut during the
early 1990s. Rabies is the paradigm for
studies of wildlife disease waves (much of
this work has focused on the dynamics of
rabies in European
fox populations and
of raccoon rabies in
the U.S.; refs. 1, 2,
and 5). Smith et al.
tackle a basic ques-
tion in the dynamics
of rabies waves: What
determines the irreg-
ularity of the rabies wave front? Previous
theoretical studies of fox rabies have dem-
onstrated the potential of stochastic
‘‘sparks’’ of infection to generate irregular
waves (5) and the potential impact of
variations in susceptibility ahead of the
front (2). However, quantifying the effect
of transmission heterogeneities in a par-
ticular situation is very difficult, because

of a lack of information on host ecology
and disease incidence at crucial spatial
scales. Smith et al. (6) elegantly address
this problem by effectively embedding a
simple transmission model within their
statistical analysis of the rabies wave. They
begin by defining a network model, cap-
turing the adjacency of Connecticut’s 169
townships. This formulation allows for
potential transmission heterogeneities in
host population size (crudely captured by
human population density) and barrier
effect from rivers between townships. A
family of models capturing the impact of
these heterogeneities is then fitted to the
observed distribution of waiting times to
first appearance of rabies in each town-
ship. This exercise demonstrates a striking
effect of river barriers—rivers reduce lo-
cal transmission by seven-fold [although
rivers can have more complex effects on
transmission in some situations (6)]. Smith
et al. use a neat trick to illustrate the
overall barrier effect: ‘‘removing’’ rivers
from the landscape speeds the simulated
spread of rabies across Connecticut by
around a year. The overall strategy paral-
lels the study of disease diffusion in spatial
geography (3), where barriers to stochas-
tic diffusion have been explored by simu-
lation (8). The synthesis of models and
data of Smith et al. also allows them to
quantify the impact of barriers on an
observed epidemic wave. As they discuss,
one applied issue here is the analogy
between natural barriers and the effects of
vaccination (2). Another component of
the fitted models of Smith et al.—

significant long sparks
of rabies beyond the
main wavefront— of-
fers a significant chal-
lenge to vaccination
campaigns. This prob-
lem echoes preliminary
conclusions from the
2001 Foot and Mouth

Disease (FMD) epidemic in the U.K. (7).
The Smith et al. (6) model indicates only

a minor influence of human population
size, suggesting that it provides a weak
measure of raccoon density at the spatial
scales considered. As the authors say, de-
tecting further significant sources of trans-
mission heterogeneity is a key area for
refinement, which will require host and

disease data at a finer spatial scale. One
direction that suggests itself here is testing
their method against artificial data gener-
ated by more mechanistic individual-
based transmission models. This exercise
might best be done initially for fox rabies,
where recent models (5) indicate that the
often considerable seasonal dispersal of
animals may be important for generating
spatiotemporal waves. If the same applies
to raccoon rabies, we might therefore
expect to see a key role in the spatiotem-
poral dynamics of the epidemic of natural
movements and translocations at a wide
range of spatial scales. Comparative stud-
ies of fox and raccoon rabies dynamics are
potentially very interesting, but also beset
with complex and often unquantified dif-
ferences in host ecology. The Smith et al.
approach, perhaps coupled with detailed
models, offers a way forward here, partic-
ularly because a key aspect of disease
dynamics in foxes—the almost complete
absence of surviving immune hosts—also
seems to be reflected in the temporal
dynamics of raccoon rabies (9).

The Smith et al. (6) article also illus-
trates a number of important general ep-
idemiological issues. First, it highlights the
importance of both local contagious dis-
ease spread and longer-range sparks of
infection. The balance between these
forces is much studied in human diseases,
where we often see a strongly hierarchical
component to long-range spread. The hi-
erarchy is best understood for measles,
where infection moves from large ‘‘core’’
centers (where the infection persists) to
smaller ‘‘satellite’’ populations (3). Such
‘‘sparking’’ of infection to restart epidem-
ics in small centers has strong analogies to
forest fire dynamics (10) and can cause
infection waves even when the disease is
endemic in the population as a whole (3,
4). For disease invasions into new terri-
tory, a significant number of long trans-
locations of infection tend to obscure the
wavefront (6). The time scale of this pro-
cess, and the subsequent spatiotemporal
dynamics of infection, also depends on the
transmission rate and other aspects of the
natural history of the disease (1, 3). Rabies
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waves move relatively slowly in compari-
son to some other acute infections. Hu-
man influenza A is probably the paradigm
here, with rapid seasonal transhemi-
spheric movement of new antigenic vari-
ants (3). Diseases of birds (11) and mobile
mammals can also spread infection very
rapidly; for example, an epidemic of Pho-
cine Distemper virus (a relative of mea-
sles) moved many hundred kilometers be-
tween North Sea harbor seal colonies in
remarkably few months during 1988 (12).

A more complex picture can emerge
when disease dispersal varies during an ep-
idemic. The effect is dramatically illustrated
by the 2001 FMD epidemic in the U.K. (7,
13), where the relative importance of wave-
like local spread and longer range sparks
varied over the course of the epidemic (Fig.
1). Before initial detection, the infection was
disseminated widely, mainly by means of
animal markets. Animal movement restric-
tions were introduced on February 23rd,
shrinking the movement kernel of the infec-
tion to intense local spread (which necessi-
tated culling in the neighborhood of in-
fected farms), with rarer long jumps (7).
During the main part of the epidemic, in-
fection moved in a complex pattern in
‘‘core’’ areas of high cattle and sheep den-
sity. This movement was partly wave-like (7)
but modified by patterns of at-risk farms and
other variables (13). Topographical barriers
and the effects of the road network have not
been examined; however, there is consider-
able scope for analyses in the spirit of Smith
et al. (6) to explore these heterogeneities, in
the extremely detailed spatial data available
for the FMD epidemic. Away from the core
areas, the early epidemic took the form of
sparks and ensuing small stochastic epidem-
ics. In the long tail of the epidemic (Fig. 1),

wave-like spread gave way to this stochastic
epidemic behavior.

The early spread of FMD brings us to
a second general epidemiological ques-
tion raised by Smith et al. (6): How do we
predict the course of infectious disease
emergence? They identify three compo-
nents to this question:

Y Where will the disease emerge?
Y Where and how will it spread?
Y Will there be recurrent epidemics and

of what nature?

These are key issues and, as the authors
say, the first is the most imponderable and
least amenable to analysis by models. The
lesson of FMD is that the extent of initial
dissemination of infection before detec-
tion is crucial to subsequent control ef-
forts—after seeing an initial outbreak,
how many more foci of infection can we
expect? To address this, and the second
and third questions for a novel infection,
we also require basic epidemiological in-
formation. The length of the latent period,
before disease appears, influences our
ability to detect infection foci. Under-
standing initial local and longer range
spread of infection depends on identifying
infection routes and susceptible species, as
well as key transmission parameters: the
basic reproduction number of infection
and infectious periods (14). Subsequent
epidemic behavior, notably the tendency
for recurrent epidemics, is strongly influ-
enced by what happens after infection—
prolonged immunity (or mortality) after
infection promotes recurrent epidemic cy-
cles (14), which can be strengthened by
seasonal or stochastic f luctuations (4, 15).
Ideally, all these parameters are required
to chart fully the behavior of a novel
infection. However, there are often crucial

gaps in our knowledge of even very famil-
iar diseases. For instance, the landscape-
scale transmission rate of FMD could be
estimated only from the early epidemic
pattern itself (7). Pathogen variations
caused by strain structure are also a po-
tential complication in this epidemiologi-
cal detective work.

Finally, the clarification of rabies spread
by Smith et al. is only possible because of the
availability of detailed spatiotemporal epi-
demiological surveillance data (16). This is
a truth not universally enough acknowl-
edged; understanding the dynamics and
control of rabies, FMD, influenza, or any
other novel or established infection requires
rapid assessment, both of infection in space
and time and (ideally) the underlying de-
mographic network of the host population.
In my view, glasnost is also extremely im-
portant here: a powerful and cost-effective
contribution to epidemic planning is to
make such data freely available to the epi-
demiological and population dynamic com-
munity. Apart from these applied benefits,
the wonderful disease notification data of-
ten collected for parasite and host popula-
tions (7) allow us to test basic ideas in
spatiotemporal population dynamics (17).
The next few years should be particularly
exciting, given the potential to collect rou-
tine data synthesizing, in exquisite spatio-
temporal detail, the epidemiology, and mo-
lecular ecology of infectious diseases (18).
Such an exercise requires staying power, but
could be one of the most important out-
comes of the genomic revolution for pure
and applied population biology.
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Fig. 1. Daily reported cases of FMDs during the 2001 U.K. epidemic. The annotation describes the qualitative patterns of epidemic dynamics during different
parts of the outbreak. See ref. 7 for more details of the spatiotemporal progression of the infection. Source of data: defra.gov.uk.
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