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ABSTRACT Recently, it was observed that noncoding regions of DNA sequences possess long-range power-law correlations,
whereas coding regions typically display only short-range correlations. We develop an algorithm based on this finding that
enables investigators to perform a statistical analysis on long DNA sequences to locate possible coding regions. The algorithm
is particularly successful in predicting the location of lengthy coding regions. For example, for the complete genome of yeast
chromosome Il (315,344 nucleotides), at least 82% of the predictions correspond to putative coding regions; the algorithm
correctly identified all coding regions larger than 3000 nucleotides, 92% of coding regions between 2000 and 3000 nucleotides
long, and 79% of coding regions between 1000 and 2000 nucleotides. The predictive ability of this new algorithm supports the
claim that there is a fundamental difference in the correlation property between coding and noncoding sequences. This algorithm,
which is not species-dependent, can be implemented with other techniques for rapidly and accurately locating relatively long

coding regions in genomic sequences.

INTRODUCTION

One of the major problems facing researchers working with
long genomic DNA sequences is the need for a rapid and
accurate method of identifying coding regions. Currently, a
typical search for a coding region involves scanning the DNA
sequence for the presence of an open reading frame (longer
than a certain arbitrarily defined length) for both orientations
and for all possible frame-shift positions. The identified open
reading frames are then searched for canonical intron splice
sites and for the existence of cDNA or protein matches by
using appropriate data bases. These methods are labor-
intensive and require considerable operator participation. In
contrast, an ideal technique would be fast and accurate and
require only minimal operator input.

Recently, a multiple sensor neural network approach was
developed by Uberbacher and Mural (1991) to locate protein-
coding regions. Their approach involves calculating the val-
ues of a group of seven sensor algorithms over a window of
99 consecutive bp. A neural network training procedure is
then performed on a training set of human DNA sequences
for optimizing the weights of the different sensor algorithms.
This approach has been used to detect coding regions in hu-
man DNA with good predictive power. However, because
most of those sensor algorithms are species-sensitive, the
parameters need to be adjusted for other organisms (espe-
cially nonmammalian DNA sequences). Therefore, an algo-
rithm based on a more general principle that can be applied
across the entire phylogenetic spectrum without modification
would be desirable.
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We have developed such a tool for rapid identification of
DNA coding elements based on our observation of the ex-
istence of power-law long-range correlations in noncoding,
but not in coding, sequences (Peng et al., 1992). The key
general concept underlying this new technique, which we
call the “coding sequence finder” (CSF) algorithm, is to
“drag” an observation box along the DNA sequence and to
measure continuously the “signal” from a device that quan-
tifies the degree of power-law long-range correlation. Non-
coding regions are typically characterized by a correlation
that is long-range in that it decays not exponentially but,
rather, as a power law. On the other hand, coding regions
typically display only short-range correlations, which decay
exponentially.

We test the CSF algorithm on a variety of long DNA se-
quences, including the recently sequenced Yeast III chro-
mosome, which comprises 315,344 bp (Oliver et al., 1992).
The algorithm is found to work well when the coding regions
are moderately large (over 1000 bp in length). We also con-
firm its accuracy on long, artificially generated “control”
sequences comprised of known coding and known noncod-
ing sub-sequences.

POWER-LAW LONG-RANGE CORRELATIONS

To quantify the correlation properties of a DNA sequence,
it is convenient to introduce a graphical or “landscape” rep-
resentation, termed a DNA walk (Peng et al., 1992). For
the conventional one-dimensional random walk model
(Montroll and Shlesinger, 1984), a walker moves either “up”
[u(i) = +1] or “down” [u(i) = —1] one unit length for each
step i of the walk. For the case of an uncorrelated walk, the
direction of each step is independent of the previous steps.
For the case of a correlated random walk, the direction of
each step depends on the history (“memory™) of the walker.
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One possible choice for the DNA walk can be defined
as follows: the walker steps “up” [u(i) = +1] if a pyrimi-
dine (C or T) occurs at position a linear distance i along
the DNA chain, whereas the walker steps “down” [u(i) =
—1] if a purine (A or G) occurs at position i. Other defini-
tions are discussed in Discussion and Summary. A key
question is if such a walk displays only short-range corre-
lations (as in an n-step Markov chain) or power-law long-
range correlations (as in critical phenomena and other
scale-free “fractal” phenomena).

The DNA walk provides a graphical representation for any
DNA sequence and permits the degree of correlation in the
base pair sequence to be visualized directly. To quantify this
correlation, one calculates the “net displacement,” y(£), of
the walker after € steps, which is the sum of the unit steps
u(i) for each step i. Thus, y(€) = ¢, u(i).

One difficulty in analyzing DNA sequences by random
walk method is that DNA sequences are highly heteroge-
neous. Thus, the problem of how to distinguish “patchiness”
from truly fractal (scale-invariant) type of behavior needs to
be addressed (Karlin and Brendel, 1993). In Peng et al.
(1992), a “min-max” method was proposed to take into ac-
count the nucleotide heterogeneity and changes in strand
bias. A potential drawback of this method is that it requires
the investigator to judge how many local maxima and
minima of a landscape to utilize in the analysis. Recently, we
presented a new method: “detrended fluctuation analysis”
(DFA), that is independent of investigator input and permits
the detection of power-law long-range correlations embed-
ded in a patchy landscape, and also avoids the spurious de-
tection of apparent power-law long-range correlations that
are an artifact of nucleotide patchiness (Peng et al., 1994).

The DFA method is carried out as follows: first, we divide
the entire sequence of length N into N/€ nonoverlapping
boxes, each containing € nucleotides, and define the “local
trend” in each box to be the ordinate of a linear least-squares
fit for the DNA walk displacement in that box. Next we
define the “detrended walk,” denoted by y,(n), as the dif-
ference between the original walk y(n) and the local trend.
We calculate the variance about the local trend for each box
and calculate the average of these variances over all the boxes
of size ¢, denoted F2(€). Thus,

1 N
Fyo)y=y 2 yin). €Y
n=1

It was shown (Peng et al., 1994) that the calculation of
F (€) can clearly distinguish two different types of behavior:
(i) F(€) ~ €' for patchy but otherwise uncorrelated (or only
short-range correlated) sequences, and (ii)

Fy(€) ~ € )

with a # 14, if there is no characteristic length for the cor-
relations.

Typical data for Fy(€) are linear on double logarithmic
plots, confirming that, indeed, F,(€) ~ €°. A least-squares fit
of such data produces a straight line with slope a. It was
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observed that for coding sequences, a ~ Y2, whereas for
noncoding sequences, « is substantially larger than %2 (Peng
et al., 1992, 1994).

CODING SEQUENCE FINDER (CSF) ALGORITHM

The focus of the CSF algorithm is the calculation of the
correlation exponent a for different sub-regions of the DNA
sequence. If o, measured from a sub-region, is close to 0.5
it means that this sub-region is more likely to belong to the
coding part of the sequence, which is in accord with our
finding that the coding sequences do not have power-law
long-range correlations. If, on the other hand, the value of a
for a region is much larger than 0.5, then this region is more
likely to belong to the noncoding part of the sequence.

Note, however, that a cannot be calculated for a single
nucleotide. Instead, the exponent a, defined by the behavior
of the fluctuation F,(€), can be calculated only for a subse-
quence of nucleotides with length w > ¢.

Therefore, we have devised the following 6-step proce-
dure:
Step 1. Calculate F,(€) for the subsequence (window of size
w) from nucleotide n — w/2 to nucleotide n + w/2, for a
continuous sequence of positions » ranging from the first
nucleotide (n = w/2) to the last (n = N — w/2), where N is
the total number of bp.
Step 2. Construct a log-log plot of F4(€) vs. £. The exponent
a = a(n) is estimated from the slope of the plot. To calculate
the slope, we make a linear regression fit for the data in the
range from ¢, to €,. Thus, the local value of a(r) is a function
of window size w and fitting range [€,, €,].
Step 3. Select an appropriate window size w and fitting
range [{,, £,]. The lower cutoff value £, is chosen such that
« is not affected by the short-range (Markovian) correlations.
Although we prefer to have very large ¢,, we must take €,
much smaller than w, because the error of estimation of a
rapidly increases when €, approaches w. The ratio w/¢, rep-
resents the number of statistically independent measure-
ments by which the value F,(€) is obtained. The error of o
is, therefore, inversely proportional to the square root of this
ratio. Indeed, we have shown rigorously (Peng et al., 1993) that
the SD o of the value of « can be calculated by the formula

€2/w, (3)

where C is a coefficient that is close to 0.1. Our selection criterion
for w and €, is that the SD or “error” o must be much smaller
than the difference of a values between coding and noncoding
sequences, i.e., the signal-to-noise ratio must be as large as pos-
sible.

Our unpublished observations, based on sampling over a
wide range of phylogenetic spectrum, reveal that the average
value of « for coding regions obtained by DFA for the fitting
range €, = 10, €, = 100 is 0.51, whereas for noncoding
regions it is 0.59. Therefore, we choose w = 10€,, which
from (3) gives o = 0.03, an error considerably smaller than
the excursions in a between coding and noncoding regions,
0.59 — 0.51 = 0.08.

o=C
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Furthermore, there is a trade-off in our choice of param-
eters: by increasing the window size and the fitting range, one
increases the accuracy of the value of a but decreases the
accuracy of locating this value along the sequence.

Step 4. Smooth out the resulting function a(n). The function
a(n) is a rather irregular oscillatory function with many
minima and maxima. Two factors contribute to this irregular
spatial fluctuation: (i) alternating coding and noncoding re-
gions have different exponent « (this is the “signal” that we
want); and (ii) the error in estimating o from a finite sub-
sequence (this is the “noise™ that we do not want). Therefore,
our goal is not to smooth arbitrarily but, rather, only to
smooth in such a fashion as to minimize the effect of (ii). The
two effects are distinguishable, because the fluctuations that

Yeast Chromosome lil (315344 nt)
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are more likely caused by the noise are “high-frequency”
compared with the fluctuations caused by alternation of cod-
ing and noncoding regions. For this reason, a simple low-pass
filter (Press et al., 1991) is quite effective. Alternatively, we
may simply average together o(r) for several nearby values
of n. Our preliminary calculations show that both smoothing
procedures give similar results.

Step 5. Compare the a(n) function with locations of known
coding regions. The smoothed function a(n) usually has
minima of about 0.5, which correspond to the local absence
of power-law long-range correlations (see Fig. 1). Indeed,
comparing the function a(n) for the sequence of yeast
chromosome III (for which many of the coding regions are
known), we can see that minima of a(n) correspond remark-
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FIGURE 1 (a) Analysis of section of yeast chromosome III using the sliding box CSF algorithm. The value of the long-range correlation exponent
is shown as a function of position along the DNA chain. In this figure, the results for about 10% of the DNA are shown (from base pair 30,000 to base
pair 60,000). Shown as vertical bars are the putative genes and open reading frames; denoted by the letter “G” are those genes that have been more firmly
identified (March 1993 version of GenBank). Note that the local value of « typically displays minima where genes are suspected, whereas between the genes
« displays maxima. This behavior corresponds to the fact that the DNA sequences of coding regions lack power-law long-range correlations (a = 0.5 in
the idealized limit), whereas the DNA sequences in between coding regions possess power-law long-range correlations (a = 0.6). Parameter values: w =
800, £, = 8, £, = 64. (b) The solid curve is the same as in part a, whereas the dotted curve is the same analysis applied after 0.5% of the bp have in the
same sequence been randomly mutated. (c) The solid curve is the same as in part a, whereas the dotted curve is the same analysis applied after 0.5% of
the bp in the same sequence have been randomly shifted to a randomly-chosen position. (d) The solid curve is the same as in part a, whereas the dotted
curve is the same analysis applied after both the operations of parts b and ¢ have been carried out.
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ably well to the positions of putative coding regions (iden-
tified genes or open reading frames), whereas intergenomic
sequences usually correspond to the local maxima of a(n).
Step 6. The above procedure (steps 1-5) outlines the basic
CSF algorithm. Step 6 demonstrates how the CSF algorithm
can be combined with other local criteria for more precise
identification of coding sequences. For example, for yeast
chromosome III, where the coding regions are typically un-
interrupted by introns, one can incorporate information about
open reading frames and stop codons. A reading frame is one
of three possible ways of dividing sequences on each of two
complementary DNA strands into subsequent codons. An
open reading frame is a reading frame without the stop sig-
nals TAG, TGA, and TAA. Therefore, to predict the actual
boundaries of coding regions from our calculated function
a(n), we can carry out the following additional procedure:

(a) Find all local minima of a(n).

(b) Identify the six open reading frames (three on each of
the complementary DNA strands).

(c) Define the longest open reading frame corresponding
to a minimum value of a. Long open reading frames without
power-law long-range correlations are very likely to be ac-
tual coding regions.

EVALUATION OF THE CSF ALGORITHM
Test for yeast chromosome Il

To characterize quantitatively the goodness of our algorithm,
we consider the relative positions of local minima, maxima,
and the boundaries of coding regions.

For example, the outcome of the CSF algorithm (steps
1-5) for the test case of yeast chromosome III, using the
parameter choices w = 800, £, = 16, £, = 64 can be char-
acterized by the following table:

* Total number of putative coding regions known from work
of others (Oliver et al., 1992): 218.

* Fraction of the 315,344 bp belonging to putative coding
regions: p = 0.66.

¢ Number of minima in a(n): 176.

* Number of such minima belonging to putative coding re-
gions (true positives): 138.

* Number of false positives: 38.

Thus, of 176 minima, all but 38 correspond to putative coding
regions. A key statistical test of the CSF algorithm is to
demonstrate that the apparently striking agreement between
the putative coding regions and the dips in a(r) is not simply
a result of random coincidence. Therefore, we assume the
contrary, i.e., that the dips are occurring at random. Then,
because there are 176 minima in our a(n) plot, 176 X p =
176 X (0.66) = 116 of the minima should lie inside putative
coding regions, and 176 X (1 — p) = 176 X (0.34) = 60 of
the minima should lie outside putative coding regions. The
SD for the above estimation (assuming that these 176 minima
are occurring at random) is given by the formula o =
\/176 X p X (1 — p). Hence, in the present case, we would
expect o = \/ 176 X 0.66 X 0.34 = 6.3. The actual number
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of false positives is 38, three SD smaller than the expected
value 60. The probability of obtaining this result if the
minima did not correspond to the coding regions, therefore,
is the chance of finding a signal 3 SD from the expected
value, or 0.0014.

The combination of the CSF algorithm (based on global
criteria of power-law long-range correlations) with local cri-
teria (stop codons; see step 6 above) is very successful in
identifying the precise boundaries of long coding regions. It
enables us to identify correctly in the yeast chromosome III
100% of the putative coding regions with more than 3000
nucleotides, 92% of coding regions with between 2000 and
3000 nucleotides long and 79% of coding regions between
1000 and 2000 nucleotides long.

The “false positives” identified by the CSF algorithm
might actually indicate the presence of former coding ma-
terial, such as pseudo-genes, jumping genes, and retroviral
inserts. For example, for yeast chromosome III, we found a
clear minimum in a(n) near the position n = 149200, a re-
gion that is known to contain primarily noncoding sequences.
We submitted the sequence from nucleotide position 149120
to nucleotide position 149401 to the experimental GENINFO
BLAST (Altschul et al., 1990) network at the National Center
for Biotechnology Information, which indicated a remark-
ably high similarity score of the submitted sequence to the
jumping gene known as retroelement Ty4-476.

We measured “false negatives” by focusing on a subset of
all open reading frames, those of more than 1000 bp. We
define false negatives to be the absence of an unambiguous
pronounced minimum in orn). We find that the CSF algo-
rithm fails to locate only 12% (3/25) of the known genes, but
fails to locate 27% (16/60) of the open reading frames that
are not known to be genes. Thus, the CSF algorithm is much
more successful on the known genes than on putative genes.

Robustness of the CSF algorithm with respect to
sequencing errors

We performed three tests designed to test the robustness of
the CSF algorithm with respect to sequencing errors, by in-
tentionally “mutating” a small fraction of the bp: 0.5%. The
CSF algorithm would be most useful if it could still be able
to identify most of the coding regions. Fig. 1 b shows the
same region as shown in Fig. 1 a of the paper. The solid curve
is identical to the solid curve in Fig. 1 a, namely, the CSF
algorithm result for the long-range correlation exponent a as
a function of position in yeast chromosome III. The dotted
curve is the same analysis applied to an “artificially mutated”
yeast chromosome III in which 0.5% of the bp were ran-
domly substituted by a different bp. There is almost no dif-
ference between the two curves whatsoever.

Another test is to randomly shift the reading frame, as
shown in Fig. 1 c. The solid curve is the same as in Fig. 1.
The dotted curve is the same analysis applied to a mutated
chromosome III, in which 0.5% of the bp were randomly cut
out from one place and inserted in another randomly selected
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locus of the chromosome in such a way as to shift the reading
frame. There is almost no change whatsoever.

Finally, we show in Fig. 1 d what happens when both
operations of Fig. 1, b and c, have been carried out, so that
in fact twice as many (1%) of the bp are mutated in total.

Parameter optimization

We note that the accuracy of the algorithm depends impor-
tantly on the window size parameter. Fig. 2 shows the de-
pendence on window size of the fraction of minima that occur
in coding regions for yeast chromosome III. Reducing the
window size increases the number of true positives (the sen-
sitivity of the algorithm) but increases the number of “false
positives” and “false negatives.” This is the reason the al-
gorithm in its present form is challenged for finding genes
in mammalian sequences, which are highly fragmented by
introns. Although the average size of an exon in mammalian
DNA is only about 186 bp (Watson et al., 1992) (close to the
lower threshold of applicability of our algorithm), there are
many mammalian exons larger than the average that our
method should detect readily.

We have also studied how the fluctuations of the DNA
landscapes created by other rules of mapping can be used for
detecting coding regions as well as various two-dimensional
DNA walks (Berthelsen et al., 1992). In the generalized defi-
nition of a one-dimensional DNA walk, one can assign dif-
ferent values S,, S, Sg, or S; to an increment of the ith step
u(i) depending on which nucleotide A, C, G, or T occurs on
the ith place. For example, we studied correlations of one
nucleotide with itself; in this case, one can assign u(i) = +1
if nucleotide A occurs on the ith place and u(i) = —1 oth-
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FIGURE 2 Dependence of sensitivity of CSF algorithm on window size,
w, for yeast chromosome III. Sensitivity here is defined as the percentage
of the minima of « that lie within putative coding regions (see Fig. 1).
Window size is defined in the text (Step 1 of the algorithm). The solid circles
show the results for the yeast chromosome III. For window sizes less than
600, the fitting range was chosen to be €, = 8, €, = 32. For window sizes
larger or equal 600, we chose €, = 64. The vertical arrow indicates the
optimal nucleotide window size. The dashed line is the expected sensitivity
of the algorithm based on random coincidence (see text).

Volume 67 July 1994

erwise (in case of C, G, or T). Similarly, we studied corre-
lations of pairs of nucleotides, such as the purine-pyrimidine
rule we used above. Except for the definition of (i), the rest
of the analysis remains the same as for the original purine-
pyrimidine rule. Our calculations show that the original bi-
nary purine-pyrimidine rule (Peng et al., 1992) is the most
robust one for detecting coding regions.

Test of the CSF algorithm on other long
genomic sequences

We also applied the CSF algorithm (steps 1-5) to four ad-
ditional long genomic sequences and observed comparable
predictability as for the yeast chromosome III. The sequences
were: liverwort marchantia polymorpha chloroplast genome
(GenBank name: CHMPXX, 121024 bp; 59% coding region,
CSF sensitivity = 74% with window size w = 1000); tobacco
chloroplast genome DNA (CHNTXX, 155844 bp; 53% cod-
ing regions, CSF sensitivity = 72% with window size w =
1200); rice complete chloroplast genome (CHOSXX,
134525 bp; 50% coding regions, CSF sensitivity = 68% with
window size w = 2200); and Epstein-Barr virus (EBV ge-
nome, 172281 bp; 71% coding, CSF sensitivity = 90% with
window size w = 1400).

Test of the CSF algorithm on control sequences

Not all “coding regions” for the yeast chromosome III and
other genomic sequences we tested are confirmed (in fact,
they are termed “putative coding regions” (Oliver et al.,
1992)). To obtain additional evidence about the reliability of
the CSF algorithm, we analyzed “control sequences” that
contain only firmly identified coding and noncoding regions.
To this end, we have selected from GenBank 40 known cod-
ing sequences (including exons and cDNA sequences) and 39
known noncoding sequences (including introns and in-
tergenomic sequences). These samples (total length 80,000
bp) represent a wide phylogenetic spectrum (including se-
quences from human, chicken, tobacco, bacterial, and viral
DNA). The selection criteria for these sequences are: (i) they
are all of length greater than 500 bp, and (ii) the percentage
of coding and noncoding material approximates that of yeast
chromosome III.

Next we “assembled” an artificial nucleotide sequence
(“Type I controls”) by randomly splicing together coding and
noncoding sequences (in an alternating fashion) from the two
sample pools. We then applied the CSF algorithm to this
control sequence and computed the number of minima inside
and outside the known coding regions. We found that for
window size w = 800, almost 90% of the minima coincided
with coding regions. The percentage of correct identifica-
tions decreased to 60% with increases or decreases in w,
which is comparable with the results obtained for the actual
yeast chromosome III sequence (Fig. 3).

This test confirms that for coding and noncoding se-
quences of length larger than 500 bp, the CSF algorithm is
highly accurate. It also illustrates another generic feature of



Ossadnik et al.

1.00 T

0.90

0.80 -

0.70

fraction of minima in coding regions

0.60

0 500 1000 1500
window size

FIGURE 3 Dependence of sensitivity of CSF algorithm on window size,
w, for control sequences. Sensitivity is defined in Fig. 2 caption. The solid
circles show the results for a Type I control sequence, and the open circles
show the averaged results for three Type II control sequences (see text). The
error bars show the SD. The horizontal arrow on the left indicates the per-
centage of coding regions in the Type I control sequence (66%). We started
our analysis for window size 100 and increased the window size up to 1200.
For larger window sizes, the total number of minima decreases (down to 15),
thus the statistical error increases. For small window sizes (~100), the signal
is very noisy, so that the detection rate is about the value expected for a
random signal, i.e., 66%. With increasing window sizes, the sensitivity of
the CSF algorithm increases. The maximum sensitivity of the CSF algorithm
for detecting coding regions (90%) for both classes of control sequences is
obtained with window size 800.

the CSF algorithm, i.e., that it can, in principle, be applied
to DNA sequences of very different organisms because the
underlying mechanism for detecting coding sequences is the
same.

Finally, we tested the CSF algorithm on a second type of
control sequences (“Type II controls”) constructed as fol-
lows: for the artificial chromosome sequence described
above, we replaced each coding part by an uncorrelated
computer-generated sequence of random letters A, C, G, and
T. We also replaced each noncoding sequence by a
computer-generated sequence of letters with “built-in”
power-law long-range correlations having correlation pa-
rameter « of 0.62, using the method in Peng et al. (1993). We
then calculated the percentage of correct positives for several
independent realizations of such a sequence, and we com-
puted the SE of this value. The result shows 90% sensitivity
for w = 800.

When we compare Fig. 3 with Fig. 2, we find that our
highest sensitivity for the artificial chromosome sequence is
90%, whereas for the yeast chromosome III sequence, we
achieved a sensitivity of 82% with optimum parameter se-
lection. It is not surprising that the results for the artificial
chromosome sequence are somewhat better: (i) we elimi-
nated the problem of the putative coding regions, and (ii) we
only considered coding and noncoding regions larger than
500 nucleotides.

We note that the value of the exponent a measured over
typically <107 bp is also highly correlated with certain other
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previously described quantities such as the length distribu-
tion of tandem nucleotide repeats (Uberbacher and Mural,
1991). This is not surprising because the tandem repeats of
length more than 10 may contribute to the value of a cal-
culated for these small fitting ranges. However, tandem re-
peats by themselves do not fully account for the power-law
long-range correlation we observed. Furthermore, because
power-law long-range correlations with a > 0.5 generate a type
of persistence (one nucleotide is more likely to be followed
by another of the same class), tandem repeats are more likely
to be found in correlated rather than uncorrelated sequences.

DISCUSSION AND SUMMARY

The results of the CSF analysis presented in this study are of
interest for two primary reasons:

First, these results provide the most compelling evidence
to date confirming the claim that noncoding sequences typi-
cally possess long-range power law correlations whereas
coding sequences do not. The initial report (Peng et al., 1992)
describing long-range (scale-invariant) correlations only in
noncoding DNA sequences generated contradictory re-
sponses (Karlin and Brendel, 1993; Li and Kaneko, 1992;
Munson et al., 1992; Grosberg et al., 1993; Nee, 1992;
Chatzidimitriou-Dreismann and Larhammar, 1993; Voss,
1992; Prabhu and Claverie, 1992). Although some reports
supported this finding (Li and Kaneko, 1992; Munson et al.,
1992; Grosberg et al., 1993), it has also been challenged on
two fronts: (i) by those claiming that no DNA sequences
possess power-law long-range correlations (Karlin and
Brendel, 1993; Nee, 1992; Chatzidimitriou-Dreismann and
Larhammar, 1993; Prabhu and Claverie, 1992), and (ii) by
those claiming that introns and exons both contain power-law
long-range correlations (Voss, 1992). The data presented
above and graphically displayed in Figs. 1-3 unambiguously
confirm that there is a systematic correspondence between
lower values of the scaling exponent a and coding sequences,
and between higher values of a and noncoding sequences.
Furthermore, these results apply in a statistically significant
way both to the entire yeast chromosome III and other long
genomic sequences as well as to control sequences con-
structed by alternating known coding and noncoding
sequences of variable lengths. These findings, along with
a recent re-analysis of the patchiness of DNA sequences
(Peng et al., 1994), disprove the contention of Karlin and
Brendel (1993) that power-law long-range correlations are
simply an artifact of the heterogeneous (mosaic) structure of
DNA. Furthermore, the results of the CSF analysis contradict
Voss’ (1992) report that power-law long-range correlations
are found in both coding and noncoding sequences.

We also note the recent study by Prabhu and Claverie
(1992) claiming that their analysis of the putative coding
regions of the yeast chromosome III produced a wide range
of exponent values, some larger than 0.5. Thus, they too
failed to find statistical difference, based on the correlation
exponent, between coding and noncoding regions. In
contrast, the CSF analysis does demonstrate statistically sig-
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nificant agreement between dips in a(#n) and the presence of
putative coding regions for yeast chromosome III. This ap-
parent discrepancy results from the fact that Prabhu and and
Claverie (1992) as well as Karlin and Brendel (1993) and
Voss (1992) did not account for the presence of long regions
of strand bias coding sequences. As recently reported (Peng
et al,, 1994), the detrended fluctuation analysis (DFA)
method (used in the CSF algorithm) can successfully dis-
tinguish true power-law long-range correlations (e.g., those
in noncoding sequences) from spurious correlations due to
DNA “patchiness.”

The fact that the value of « for coding regions is close to
that of random uncorrelated sequences might be relevant to
the theory of protein folding and is consistent with the recent
claim of Shakhnovich and Gutin (1990) that the amino acid
sequences of biologically active proteins are also statistically
similar to uncorrelated random sequences. In contrast, the
correlated properties of noncoding sequences might be re-
lated to evolutionary mechanisms involving nucleotide de-
letion and insertion (Buldyrev et al., 1993a, b).

Second, we show how the new algorithm based on these
biologic differences in correlation properties can be used to
screen long DNA sequences to identify coding and noncod-
ing regions. The CSF algorithm is able to detect relatively
long coding regions with a high degree of reliability. Its ad-
vantages include speed, simplicity of use, and operator in-
dependence. Furthermore, because it is based primarily on
global statistical measurements, it is not affected by the par-
ticular species examined or by sequencing errors. Its major
limitations relate to the requirement for a relatively large
window (>800 bp) and the inability to precisely locate intron/
exon boundaries. Given these limitations, the optimal ap-
plication of the CSF algorithm might be to rapidly scan large
genomic sequences, to identify any potential coding sites,
and then to apply standard coding-sequence finding tools to
a detailed analysis of these selected areas. Indeed, identifi-
cation of even a single putative exon would imply the nearby
location of a gene that can then be searched for with con-
ventional techniques.

The CSF algorithm is particularly attractive because it can
be applied to sequences from organisms across the phylo-
genetic spectrum. Furthermore, because it is based on a glo-
bal statistical measurement, it is not affected by local mu-
tation or lab sequencing errors. On the other hand, its global
statistical nature, as emphasized above, limits its ability to
locate precisely the boundaries of coding and noncoding re-
gions. Therefore, in its present form, CSF can be used in
concert with other algorithms (see “Step 6” in our procedure)
that apply local property measurements.
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