Abstract
We have developed a straightforward method to separate linear-dichroism and birefringence contributions to electric-field induced signals in a conventional birefringence setup. The method requires the measurement of electric birefringence for three different angular positions of the analyzer. It is demonstrated that the presence of linear dichroism can significantly influence the measured signals and lead to completely erroneous calculations of the birefringence signal and field-free decay times if its contribution is not taken into account. The new method is used to determine electric birefringence and linear dichroism of trimeric Photosystem 1 complexes from the cyanobacterium Synechocystis PCC 6803 in the detergents n-dodecyl-beta-D-maltoside and n-octyl-beta-D-glucoside. It is concluded that the orientation of the particles in the field is predominantly caused by a permanent electric dipole moment that is directed parallel to the symmetry axis of the particles. Comparison of the decay times obtained with dodecylmaltoside and octylglucoside supports a model in which the thickness of the disc-like complexes remains similar (7-8 nm) upon replacing dodecylmaltoside by octylglucoside, whereas the diameter increases from 14.4 +/- 0.2 to 16.6 +/- 0.2 nm because of an increased thickness of the detergent layer. This change in diameter is in good agreement with electron-microscopy results on Photosystem 2 complexes in dodecylmaltoside and octylglucoside (Dekker, J. P., E. J. Boekema, H. T. Witt, and M. Rögner. 1988. Biochim. Biophys. Acta 936:307-318). The value of approximately 16.6 nm for the diameter of Photosystem 1 trimers in dodecylmaltoside is in good agreement with recent results obtained from electron microscopy in combination with extensive image analysis (Kruip, J., E. J. Boekema, D. Bald, A. F. Boonstra, and M. Rögner. 1993. J. Biol. Chem. 268:23353-23360).
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- Boekema E. J., Boonstra A. F., Dekker J. P., Rögner M. Electron microscopic structural analysis of Photosystem I, Photosystem II, and the cytochrome b6/f complex from green plants and cyanobacteria. J Bioenerg Biomembr. 1994 Feb;26(1):17–29. doi: 10.1007/BF00763217. [DOI] [PubMed] [Google Scholar]
- Garcia de la Torre J. G., Bloomfield V. A. Hydrodynamic properties of complex, rigid, biological macromolecules: theory and applications. Q Rev Biophys. 1981 Feb;14(1):81–139. doi: 10.1017/s0033583500002080. [DOI] [PubMed] [Google Scholar]
- Kruip J., Boekema E. J., Bald D., Boonstra A. F., Rögner M. Isolation and structural characterization of monomeric and trimeric photosystem I complexes (P700.FA/FB and P700.FX) from the cyanobacterium Synechocystis PCC 6803. J Biol Chem. 1993 Nov 5;268(31):23353–23360. [PubMed] [Google Scholar]
- Norden B., Kubista M., Kurucsev T. Linear dichroism spectroscopy of nucleic acids. Q Rev Biophys. 1992 Feb;25(1):51–170. doi: 10.1017/s0033583500004728. [DOI] [PubMed] [Google Scholar]
- Provencher S. W. A Fourier method for the analysis of exponential decay curves. Biophys J. 1976 Jan;16(1):27–41. doi: 10.1016/S0006-3495(76)85660-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rögner M., Nixon P. J., Diner B. A. Purification and characterization of photosystem I and photosystem II core complexes from wild-type and phycocyanin-deficient strains of the cyanobacterium Synechocystis PCC 6803. J Biol Chem. 1990 Apr 15;265(11):6189–6196. [PubMed] [Google Scholar]
- Yamaoka K., Charney E. Electric dichroism studies of macromolecules in solutions. II. Measurements of linear dichroism and birefringence of deoxyribonucleic acid in orienting electric fields. Macromolecules. 1973 Jan-Feb;6(1):66–76. doi: 10.1021/ma60031a011. [DOI] [PubMed] [Google Scholar]
- van Haeringen B., Jiskoot W., van Grondelle R., Bloemendal M. Acid-induced structural changes of a mouse IgG2a monoclonal antibody (MN12) studied by transient electric birefringence measurement. J Biomol Struct Dyn. 1992 Apr;9(5):991–1011. doi: 10.1080/07391102.1992.10507972. [DOI] [PubMed] [Google Scholar]