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Computer Simulation of a Model Network for the

Erythrocyte Cytoskeleton

David H. Boal

Department of Physics, Simon Fraser University, Bumaby, British Columbia V5A 1S6, Canada

ABSTRACT The geometry and mechanical properties of the human erythrocyte membrane cytoskeleton are investigated by
a computer simulation in which the cytoskeleton is represented by a network of polymer chains. Four elastic moduli as well as
the area and thickness are predicted for the chain network as a function of temperature and the number of segments in each
chain. Comparisons are made with mean field arguments to examine the importance of steric interactions in determining network
properties. Appiied to the red blood cell, the simulation predicts that in the bilayer piane the membrane cytoskeleton has a shear
modulus of 10 + 2 X 107° J/m? and an areal compression modulus of 17 + 2 X 1076 J/m?. The volume compression modulus
and the transverse Young’s modulus of the cytoskeleton are predicted tobe 1.2 + 0.1 X 10° Mm*and 2.0 + 0.1 X 10° ¥m?, respectively.
Elements of the cytoskeleton are predicted to have a mean displacement from the bilayer plane of 15 nm. The simulation agrees with
some, but not all, of the shear modulus measurements. The other predicted modull have not been measured.

INTRODUCTION

The human red blood cell (RBC) has extraordinary elasticity
and fatigue resistance (Steck, 1989). During its 120-day life-
time, an RBC squeezes through capillaries roughly %5 of its
equilibrium diameter on the order of 10° times. The two-
component structure of the RBC plasma membrane, a fluid
lipid bilayer coupled to a network of spectrin protein, gives
rise to its intriguing mechanical properties. It was proposed
some years ago that the lipid bilayer is primarily responsible
for the membrane’s resistance to compression, and the spec-
trin network provides the resistance to shear (Evans, 1973;
Skalak et al, 1973; Stokke et al., 1986; Elgsaeter and
Mikkelsen, 1991). Computer simulation has verified that, as
the spectrin density decreases, the compression modulus K,
of the bilayer and shear modulus p of the spectrin network
decouple and their ratio changes by several orders of mag-
nitude (Boal et al., 1992).

The RBC membrane cytoskeletal network is known to be
composed of spectrin tetramers linked together at approxi-
mately sixfold coordinate junction complexes yielding a net-
work of mainly triangular connectivity (Steck, 1989). The
contour length /_ of the spectrin tetramer is approximately
200 nm, and the average distance between the junction com-
plexes is about 75 nm (Steck, 1989; Liu et al., 1987; Vertessy
and Steck, 1989; McGough and Josephs, 1990). Thus, the zero-
pressure equilibrium area (projected on the bilayer plane) of the
network is approximately % of its fully stretched area. Several
measurements have been made of the network’s shear modulus,
with some measurements yielding values in the (6-9) X 107¢
J/m? range and others yielding less than 10~° J/m? (Waugh and
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Evans, 1979; Hochmuth, 1987; Engelhardt and Sackmann,
1988; Zilker et al., 1992; Peterson et al., 1992).

Some simple arguments from polymer physics can be used
to interpret the equilibrium size and elastic moduli of the
spectrin network. A single freely jointed polymer chain has
an end-to-end distance r_, in coordinate space, which is con-
siderably less than its contour length /.. This characteristic
arises from entropic considerations because there are far
fewer configurations in which the chain is fully stretched
(large r.) than there are for convoluted chains (small r_).
Hence, a single chain resists stretching, and a network of
chains should have non-zero elastic moduli. Mean field es-
timates based on the elastic properties of a single polymer
chain yield correct order-of-magnitude estimates for the
shear modulus of a chain network.

A network of objects, such as springs or chains, can have
very different properties than the objects do in isolation. Con-
sider, for example, a single spring with spring constant k and
zero equilibrium length. At finite temperature, the mean fluc-
tuation in the spring length is (x) = (2/@gk)'2, where g =
1/k,T with T the temperature and k; Boltzmann’s constant.
Suppose we construct a two-dimensional triangular network
of these springs, with each spring joined to a sixfold coor-
dinate junction. If each spring in the network has the same
{x) as an isolated spring, then we expect the area per junction
to be 3Y2/(wBk) = 0.55/Bk. In fact, two-dimensional net-
works in which the springs are not allowed to intersect each
other have an area per junction vertex that is about half of
this value, 0.33/Bk (Boal et al., 1993). Worse still, if the steric
interaction between the springs is ignored, the network col-
lapses and the area per vertex vanishes as the number of
Jjunctions increases. Collapse also occurs for membranes em-
bedded in three dimensions (Kantor and Nelson, 1987a;
Kantor and Nelson, 1987b).

We conclude from this example that:

(i) Networks can have very different properties than their
individual components do in isolation.
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(ii) The steric interaction between the elements in a network
can strongly affect the network’s properties.

In other words, calculations of cytoskeleton properties that
are based on single chains or springs, and ignore the corre-
lations that are present in a network, are best regarded as
order of magnitude estimates only. In some cases, such nu-
merical estimates can be accurate to within a factor of two,
whereas in other cases they might not be able to reproduce
the essential physics at all. However, to predict erythrocyte
cytoskeleton properties at the 10-20% accuracy level re-
quires a more detailed approach than mean field theory.

Here, we report a detailed computer simulation of a pol-
ymer chain network that allows us to make accurate predic-
tions of the network’s elastic moduli and also to investigate
the network’s spatial geometry. The paper is organized as
follows. The simulation model and techniques are presented
in the next section of the paper. The geometrical predictions
of the model network are then discussed, including the pre-
dicted network thickness, and this is followed by a presen-
tation of the network’s elastic properties as a function of the
number of segments in each chain. Although the model re-
sults are completely general, the erythrocyte membrane cyto-
skeleton is the motivation for the model’s development.
Hence, a section of the paper is devoted to the specific pre-
dictions of the model for erythrocyte properties. Currently,
measurements are available for only two of the model’s pre-
dictions for the RBC membrane cytoskeleton; the remaining
predictions await further experiments. The paper concludes
with comparisons of the model against mean field and other
arguments to isolate the dependence of the network prop-
erties on steric interactions, specifically, the interactions
within and between spectrin, and between the cytoskeleton
and the lipid bilayer.

SIMULATION MODEL AND TECHNIQUES

A given spectrin tetramer is represented in the simulation by
achain of n_, segments, each segment composed of a straight
flexible tether ending at hard beads of diameter a. The in-
dividual tethers have a minimum end-to-end distance of a,
as determined by the hard-core radius of the beads. If the
tethers are forbidden from passing through each other, then
their maximum length must be less than 2'7g. In the simu-
lation, we use a maximum length of 1.9'2a, because the beads
move in finite steps and could jump across a tether of length
2'2a. The average end-to-end distance along a single chain
(defined as the contour length 1) is then

I.=12n_a. )

Simulations of other chain networks have been used previ-
ously in the study of membrane flatness (Abraham and
Goulian, 1992; Petsche and Grest, 1993).

The midpoints of each chain are constrained to move only
in the computational xy plane that represents the lipid bilayer,
similar to the way in which spectrin is attached to the bilayer
by ankyrin (see Steck, 1989). Given the bilayer’s resistance
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to bending, it is expected that the bilayer is flat on the length
scale of the simulation (0.3 pum). The ends of the chains are
linked at junction vertices to form a triangular network, in the
same way as the spectrin tetramers are joined at their ends
by actin and band 4.1 proteins. The sixfold junctions are not
attached to the xy plane. A sample configuration for n, =
20 is shown in Fig. 1, in which only the positions of the
tethers have been drawn. Fig. 1 a is a face view of the net-
work, looking from the z axis towards the computational xy
plane representing the lipid bilayer. Fig. 1 b is a side view
of the same configuration, in which the xy plane is viewed
edge-on. Positive z is towards the interior of the cell. The
shading is such that segments that are further away from the
viewer appear darker.

The simulation uses the Monte Carlo technique. Each bead
on the chain is allowed to move freely on the positive z side
of the xy plane, subject only to the constraints imposed by
the tether length and hard bead interactions. The maximum
change in a given bead’s Cartesian coordinate during a
Monte Carlo move is *0.1a. The network is subject to pe-
riodic boundary conditions (PBCs) in the x and y directions,
with repeat distances of L, and L, respectively. The black
background area in Fig. 1 a indicates the size of the PBC box.
The simulation is performed at zero pressure, in which L_and
L, are allowed to fluctuate independently (Wood, 1968; Han-
sen and McDonald, 1986). A sweep across the network in-
volves one trial move on each of the bead positions, and one
trial rescaling of the box lengths. The change in the box
rescaling is accepted according to a Boltzmann weight
exp{N,In(1 + AA_J/A,)], where N, is the total number of
segment joints (i.e., beads) in the network, A, is the PBC box
areaL,L ,and AA,_ is the difference in A,  associated with the
rescaling move. Subscripts are included on A, to distinguish
this area from A, which is used in later sections as the area
per junction vertex. That is, A = A, /N, where N; is the
numbser of junction vertices. If there are N; sixfold junction
vertices within the PBC box, then Ny, = N(3n,, — 2).

In the simulations, 16 junction vertices are used, and N,
is investigated over the range 4-30. Separate simulations are
performed at n,, = 6 with 16 and 36 junction vertices to
check for finite system size effects. The elastic constants
obtained with N; = 16 and 36 are found to be identical within
statistical errors. The Monte Carlo technique generates a se-
quence of configurations that is available for constructing
ensemble averages. In practice, only 300—500 configurations
are used in the construction of averages for 4 < n_, =< 20,
each configuration separated by 7 = 100N, sweeps, so that
the correlation between successive configurations is reduced.
Further, the system is allowed to relax for 10T before sample
collection begins. The entire simulation took 1 year to ex-
ecute on a 40 MHz MIPS R3000 processor.

The in-plane elastic moduli K, and p are determined from
the fluctuations in the values of L, and L, using a method that
has been described previously (Boal et al., 1992) and that is
briefly reviewed here. The projections of the bead positions
on the xy plane can be described in the continuum limit by
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FIGURE 1 Sample configuration
for a network at zero pressure with
n,_, = 20 clements per chain. The 16
nate. (@) View is towards the com-
putational bilayer (xy planc) as seen
from the “cytoplasmic” side. The
size of the periodic boundary con-
dition box is indicated in black. (b)
View along the xy planc. No chain
elements are allowed to pass below
z = 0. For dlarity, the beads have
been omitted from the drawing and
only the tethers are displayed.

two lateral displacement fields u, and u,, which are functions
of the reference coordinate system (x,, x,) of the xy plane. In
terms of the strain tensor
ou,/ox; + ou./ox;
_ i i
uy = 2 S, @

the elastic energy can be written in the continuum limit as
(Landau and Lifshitz, 1959)

Hd=fdzx{ KA("15+"22)2+ #[(uu_z"zz)z_’_zufz]}- 3

Using Eq. 3, the in-plane compression modulus, for example,
can be expressed as

__ 4y
MA “3’) — (Axy)z . (4)

Two independent determinations of the in-plane Young’s
moduli Y, and Y, are obtained from fluctuations of the rectangle
length in the x and y directions, respectively:

BY, = [ANLIAL.Y — DT (5a)

BY, = [, XLL,Y — DT (50)

We define the in-plane Young’s modulus Y} as the average of Y,
and Y. The shear modulus is then obtained from

1= YK, MK, — ). ©

The thickness ¢ of the membrane in the direction perpen-
dicular to the xy (bilayer) plane can be defined by

1= (), )
where (2) is the average height of the bead positions above
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the xy (bilayer) plane in a given configuration. Analogous
with Eq. 4, the volume compression modulus can be obtained
from

BKy = (V)/((V*) — (V)?), ®

where we use V = A, 1. Finally, the Young’s modulus Y, in
the direction normal to the xy (bilayer) plane can be extracted
from the fluctuations in #:

BY, = [()/(£) — (0")V(A,)- &)

Note that 8K, and Bu have units of [length] %, whereas BK,
and BY, have units of [length]>.

NETWORK GEOMETRY

We now turn to results from the simulation. As discussed in
the introduction, entropic considerations result in a single
chain having an end-to-end displacement r_ that is smaller
than its contour length /. For an ideal chain (self-
intersections allowed) with n., segments each of length b,
(r./b) grows like n 2, whereas I /b is equal to n_,. Thus,
(r )/l scales like n__? that is, the end-to-end displacement
decreases relative to the contour length as the number of
chain segments increases. As will be discussed in a later
section, even when chain self-avoidance is included, (r_ )/l
still decreases with n,, although not as rapidly as in the ideal
chain case.

We expect the same general type of behavior for a network
of chains: even though the network area increases with n,,
relatively speaking the network shrinks compared with its
fully stretched area. We define A as the in-plane area per
junction vertex (A = A_/N)). An approximate fit to the en-
semble average of the area A, which is generated by the
simulation, yields

(Ala?) = 2.1n%~. (10)

The network has a finite displacement from the computa-
tional xy plane binding the chain midpoints. One measure of
the network thickness is the mean displacement of the chain
beads from the binding plane, which we define as ¢ = (z) for
a single network configuration. The ensemble average found
from the simulation can be approximately fit by

(t/ay = 0.17n%5. 11)

This shows that both the area and thickness increase with the
number of segments in the chains. The product (A)t) scales
roughly as nZ_. This scaling behavior indicates that the net-
work is not densely packed, in that a closely packed network
of beads would show (AX1) scales like n_,.

To facilitate a comparison with the “stretched” network,
we define a reference area A_ as the area per junction vertex
that the network would have if it were composed of straight
chains of length /. Then A, = (3V*/2)I2 (where I, = 1.2n_a
in the simulation) and A_ scales like nZ,. Eq. 10 indicates that
(A/a’) scales like n%, showing that (A) does increase with
the number of segments. Hence, (A)/A_ scales like n_2>*,
showing that A decreases relative to the contour area as n_,
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increases. To make a comparison with the membrane cyto-
skeleton easier, Fig. 2 shows the ratio of A_to (A) for the
network at zero pressure. We find that A /{A) can be fitted
by 0.6n.7, which is the solid line in Fig. 2. We return to the
implications of this scaling behavior in a later section of the
paper.

Because the network’s mean in-plane area is significantly
less than its stretched area, the network is displaced from the
bilayer plane. Eq. 11 indicates that the thickness of the chain
network increases with the number of chain segments, scal-
ing as n‘fg. However, t does not increase as fast as the contour
length /_so that (#)/]_ decreases slowly with increasing n, or,
equivalently, //(t) increases with n__, as shown in Fig. 2.

Fig. 2 deals with the behavior of the mean values of the
network area and thickness. We find that the fluctuations in
these quantities around their mean values are not large. In
Fig. 3, we show a scatter plot of the values of A and 7 for the
particular choice of n,, = 20. What is shown are the values
of (A/(A)) — 1 and (#/(t)) — 1 for each configuration used in
the ensemble average. As expected, the points are clustered
pear the origin and show that few configurations in the
sample fluctuate more than 15% away from the mean. What
is more noticeable is that there is a correlation between A and
t running from the upper left to the lower right part of the
figure. This tells us that the “volume per junction vertex” of
the system Az does not fluctuate strongly over the ensemble.
That is, if the area of the network is larger than average, then
the thickness tends to be smaller than average. The relative
constancy of A and ¢ provides a link between several of the
elastic constants, as is shown in the next section.
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FIGURE 2 Ratios of stretched to equilibrium quantities as a function of
segment number 7. The stretched area per junction vertex A_is compared
with the mean area per junction vertex (A), and the contour length I
is compared with the mean displacement (r). The solid straight line
through the A /(A) data is the equation A _/(A) = 0.6n%7. Data are obtained
with N, = 16.



FIGURE 3 Scatter plot of area per junction vertex A and thickness
t for n_, = 20 configurations. Each point represents a pair of values
(AKA)) — 1 and (#4n)) — 1.

NETWORK ELASTICITY

The elastic moduli K,, p, K, and Y, and can be obtained
from fluctuations in the PBC box size and network thickness
as explained in the section on simulation techniques. The
values for all four moduli are shown in Figs. 4 and 5 as a
function of n,,. Because the moduli are determined from
fluctuations, there is a larger statistical uncertainty in their
value than there is for (A) or (r). We estimate the errors for
the moduli shown in Figs. 4 and 5 at approximately 10%.
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FIGURE 4 In-plane area compression modulus K, /? and shear modulus
Bplf;xedictedfotthechahlnetwotkasafuncﬁonofnmemohaincd
with N. = 16.
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FIGURE 5 Volume compression modulus 8K, J> and transverse Young’s
modulus BY 7 predicted for the chain network as a function of n_,. Data
are obtained with N, = 16.

Results for n,, = 30 are not shown because machine time
limitations restrict our data set to 60 configurations, and the
moduli cannot be extracted from such a small data set.

The quantities plotted in Figs. 4 and 5 are unitless: the
moduli have been multiplied by appropriate powers of the
inverse temperature 8 and contour length [_ to render them
dimensionless. The resulting quantities are dependent on
n., over the range shown: the reduced in-plane moduli
(BK % and Bul?) increase only weakly with n___, whereas the
reduced volume moduli (BKJ> and BY, I) rise roughly lin-
early with n_,. However, the moduli themselves decrease
with chain length, because I, = 1.2an_,. Fits to the raw data
that go into Fig. 4 show that the in-plane moduli are described
approximately as

BK,a’ = 43n_," 12)

Bua® = 25n_17 (13)
This gives a ratio of the in-plane compression modulus to the
shear modulus of 1.7. The other moduli that are used in the
construction of Fig. 5 can be fit by

BKya® = 193n2* (14
and

BY, a* = 87n2°. 15)
'Ihedecreaseinthemoduliwiﬂlnnisnosmprise,beause
the network is more open (as measured in bead diameter a)

and less resistant to stress as n_, increases.
The temperature dependence of the moduli is also con-

tained in Figs. 4 and 5. At fixed chain length, all of the moduli
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are found to increase linearly with temperature. This behav-
ior arises because the chains in the simulation have no ex-
plicit energy scale because they have only hard core inter-
actions. Thus, the expressions for the elastic moduli in Egs.
4,5, 8, and 9 have no temperature dependence on their right-
hand sides. This tells us that any elastic modulus divided by
kgT is constant at fixed n,, in this simulation, so that the
elastic moduli increase linearly with temperature.

The relatively small fluctuations in A and ¢ indicated by
Fig. 3 allow one to find approximate relationships between
the compression moduli. For example, if we use V ~ A, (1),
then Egs. 4, 8, and 9 yield

BK,/t ~ BKy (16)

BY, ~ BK,. a7

Let us take the results from around n_, = 20 as an example.
From Figs. 2 and 4, we have [ /) =~ 12 and
BK, I2 = 150. Eq. 16 then predicts BK,J2 ~ 1800, which can
be compared with a value of about 2400 from Fig. 5. Simi-
larly, one can see directly from Fig. 5 that Eq. 17 is ap-
proximately satisfied. Hence, the small fluctuations in the
network geometry yield relationships among the elastic con-
stants that are accurate to about 30%.

APPLICATION TO ERYTHROCYTES

To apply the general network results from the previous sec-
tions to the erythrocyte membrane cytoskeleton, we have to
set the temperature and length scale, because the simulation
predicts the values of reduced quantities such as Bul2. We
choose T = 300 K to set the temperature scale and use the
ratio A /(A) to set the length scale of the simulation. Ex-
perimentally, A /(A) is measured to be approximately 7,
which corresponds to n,, = 26 * 1 on Fig. 2 (Steck, 1989;
Liu et al., 1987; Vertessy and Steck, 1989; McGough and
Josephs, 1990). The spectrin tetramer has a measured contour
length /. of 200 nm, which means that the computational
spectrin in our simulation behaves like a chain with 26 seg-
ments between the sixfold junctions, each segment of length
8 nm (or @ = 6.4 nm). This result is in the range of values
for the spectrin persistence length of ~10 nm obtained in
recent experiments on RBC skeletons in salt solution (Svo-
boda et al., 1992; see also Stokke et al., 1985).

With T, n,, and [ fixed, the thickness and elastic moduli
mnbeextractedﬁ’omFigs.2,4,and5.Fornmsind1c25—27
range, we find /() = 13.1 * 0.1 on Fig. 2. If /_ is 200 nm,
this corresponds to a thickness of (f) = 15 nm. Currently, no
data are available against which the thickness prediction can
be compared.

The range of values for the in-plane moduli around ., =
26 is about 0.16-0.18 for BK,a* and 0.09-0.11 for Bud?,
according to Egs. 12, 13, and Fig. 4. Using a = 6.4 nm, the
simulation predicts K, =17 +* 2 X 10 °J/m’and p = 10 *
2 X 107%J/m? at T = 300 K. Currently, only the shear modu-

Volume 67 August 1994

lus has been measured. In one type of experiment, the de-
formation of an RBC subject to a known stress induced by
micromechanical manipulation is visually recorded, from
which a shear modulus of 6-9 X 107® J/m? is extracted
(Waugh and Evans, 1979; Hochmuth, 1987). A related ex-
periment using deformations in high frequency electric fields
yields 6 * 1 X 107° J/m? (Engelhardt and Sackmann, 1988).
In other experiments based on flicker spectroscopy, the sur-
face fluctuations of the cell at wavelengths on the order of
microns (Zilker et al., 1992) and longer (Peterson et al., 1992)
have been shown to be consistent with those of a pure fluid
membrane (i = 0). Thus, the predicted shear modulus is in
agreement with the measured values of the micromechanical
and the high frequency deformation experiments at the one
or two standard deviation level.

From Egs. 14, 15, and Fig. S, the simulation predicts
BKa has a value of 7.8 * 0.8 X 1072, corresponding to
Ky = 12 + 0.1 X 10° J/m’. A measurement of this com-
pression modulus is currently being performed (E. Evans,
personal communication). The transverse Young’s modulus
Y, can also be obtained from Fig. 5, and is predicted to be
BY @®=0.13 * 00l,0r Y, = 20 * 0.1 X 10° J/m>. Al-
though no data are currently available for Y , it will be meas-
ured along with K.

The elastic moduli increase linearly with temperature in
the simulation, according to Figs. 4 and 5. Over the range
5-35°C, the moduli should increase by 10% if n_, and /_are
constant. In fact, the moduli decrease by about 20% in this
temperature range (Waugh and Evans, 1979; Engelhardt and
Sackmann, 1988). Within the context of the model, this be-
havior would indicate that interactions among chain elements
are changing the value of n_, slowly with temperature. Dis-
cussions of chain interactions can be found elsewhere
(Stokke et al., 1986; McGough and Josephs, 1990).

STERIC INTERACTIONS IN THE NETWORK

The properties of the simulation have simple origins: entropy
and steric interactions. The simulation contains no explicit
energy scale in the sense of bending resistance or force con-
stants associated with chemical bonds. The entropy of the
chains manifests itself in the reduced area of the network
compared with its contour area and in the elastic moduli.

In this section, we examine the importance of the steric
interactions: for example, the interaction between chains or
between the chains and the computational bilayer. Our
method is to present simplified models that allow us to isolate
and evaluate a given component of the simulation. Each of
these simple models can be used to determine some, but not
all, of the network’s properties. These models have few pa-
rameters and make few predictions that can be tested sys-
tematically in the way that the simulation can. However, by
determining whether the physics of these models is present
in the simulation, we can evaluate the importance of the
models themselves.
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The simulation is not described by ideal

random walks

Consider the properties of a single ideal (i.e., not self-avoid-
ing) chain of n,, segments each with length b. The single
chamhasanend-to—enddnstanceof(ri/b’)‘” = nlZ. Sup-
posethatweoonsmlctamangularnetworkofsuchchams,
linked together at sixfold vertices as we have done with our
simulation. The ideal chain has a gaussian distribution of
end-to-end lengths and can be viewed as an entropic spring.
A two-dimensional network of ideal springs (ones that can
pass through each other) has been shown to collapse at zero
pressure (Boal et al., 1993). Hence, the simulation is not
described by ideal chains, and the interaction between chains
is important.

If the springs cannot pass through each other, the network
is stable (Boal et al., 1993). Hence, another test model for the
simulation might involve a network of chains that can in-
tersect themselves, but not each other (see, for example,
Kozlov and Markin, 1987). If the average properties of a
chain in this network are the same as those of the isolated
ideal chains, then the area of the network should scale like
n_, because (r_/b) scales like n 2 for an ideal chain. This is
not what we observe: the simulation shows (A) scales like
n;. We conclude that the steric interaction between ele-
ments of the same chain and between elements of different
chains are both required to reproduce the simulation.

Self-avoiding chains show the correct
scaling behavior
The end-to-end distance of an ideal chain scales like nZ. In
contrast, a self-avoiding chain scales like (r2/b%)\? =
n¥?*9, where d is the dimension of the space in which the
chains move (Flory, 1971). Hence, a network of self-
avoiding chains free to move in three dimensions should
obey A /A) ~ nl3. InFig. 2, A /A) scales like a7, which
is consistent thh the self-avoiding chain predlcuon.
Suppose we construct a model network in which the end-
to-end displacement of any chain in the network is assumed
to be the same as that of a single self-avoiding chain in iso-
lation. How well does this model network represent the full
simulation? For a single bead-and-tether chain with contour
length I, = n__b, we find by simulation that (r_/b) can be fit
by

(ree/b) = 1.04n%5. (18)

From this relationship, the network of identical self-avoiding
chains would have A /(A) = 0.92r3. This expression is close
to, but not identical to, the expression we find in the
full simulation, namely A /(A) = 0.6n§5. For the RBC,
we expect n,, = 26, for which the simplified model pre-
dicts A_/{(A) = 12.4 in contrast with the simulation result of
A_(A) = 6.9. The difference between these two numbers is
a measure of the importance of a chain’s interaction with
other chains and with the bilayer. We conclude that the self-
avoidance of the chains is important, and that a simplified

network of identical self-avoiding chains can represent the
network’s in-plane geometry at the factor-of-two level. Of
course, we need more than the single chain scaling relations
for (r..) to make predictions for the network thickness and
elastic moduli perpendicular to the bilayer plane, so the sim-
plified model is of restricted applicability.

The presence of the bilayer plane is important

The steric interactions among chain elements make a crucial
contribution to the properties of the simulated network. The
other element of the simulation that involves steric effects is
the repulsion between the chain elements and the computa-
tional xy plane, which represents the bilayer in the simula-
tion. To test the importance of the bilayer plane on the in-
plane network elasticity, further test simulations are
performed at n., = 10 that can be compared with the general
network simulation. Only one value of n, is chosen for
investigation because of machine time limitations. In the first
of these test simulations, the bilayer is neglected completely
and chain elements can move above and below the compu-
tational xy plane. In the second simulation, the midpoints of
the chains are confined to the xy plane, but all other chain
elements are allowed to move through it. In both simulations,
the network is still subject to periodic boundary conditions
in the x and y directions. A total of 300 coanfigurations are
generated in each simulation.

Complete neglect of the bilayer dramatically affects the
network properties. The increased configuration space of
the chains results in a significant shrinkage of the network
for n., = 10. It is found that A /(A) increases from 3.3 to 5.3.
Similarly, the network becomes floppier because it can re-
lieve stress by folding in the third dimension. Thus, the in-
plane compression modulus BK, /2 decreases from 131 to 55
and the in-plane shear modulus Bul? decreases from 59 to 32
when the bilayer is completely removed. These out-of-plane
fluctuations should decrease the moduli even further with
increasing system size, an effect that has not been investi-
gated here. We conclude that complete removal of the bilayer
changes the network properties dramatically.

In a further simulation for n_, = 10, any chain element is
allowed to pass through the computational xy plane, but the
midpoints of the chains are restricted to lie in the xy plane.
Only small changes are found in the in-plane quantities. The
equilibrium area is found to shrink somewhat without the
bﬂayarepulsum,sodmAc/(A)mmﬁom3.3to35'Ihe
in-plane compression modulus changes from BK,/? = 131
with bilayer repulsion to BK,/? = 101 without. Finally, the
shearmoduluschang&frome.lﬁ=59toBulf=63.

In summary, these results show that attaching the chain
midpoints to the flat bilayer stiffens the network substantially
compared with a network that is allowed to move freely in
the z direction subject only to periodic boundary conditions.
The steric interaction of the chains with the bilayer once the
network is attached to the bilayer changes the in-plane elastic
properties by only 10-20%.
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Gaussian chains do not describe the

in-plane moduli

Two decades ago, it was proposed (Evans, 1973) that a result
from rubber elasticity theory (Flory, 1971) could be used to
estimate the cytoskeleton shear modulus. For a system with
an area density of chains p, the shear modulus is given ap-
proximately by

Br=p 19)

where B is the inverse temperature (Evans, 1973; Stokke
et al., 1986; Kozlov and Markin, 1987; Flory, 1971). This
expression gives a value for the elastic modulus that is in
approximate agreement with experiment. For example, if the
average end-to-end distance of a single chain is 75 nm as in
the red blood cell, then p = 620 pm~2 and Eq. 19 predicts
p = 2.4 X 107 J/m?, at room temperature.

Although this prediction for a red blood cell looks attrac-
tive, in fact it is a factor of four lower than the simulation
predicts for the same parameters (10 = 2 X 107 J/m?). That
is, the gaussian chain model underestimates a full model,
which includes steric interaction among the chains and be-
tween the chains and the bilayer. According to the approxi-
mations in Eq. 19, the gaussian chain model predicts that
Bu/p should equal unity and have no dependence on n_,.
However, over the range of n, investigated in the simula-
tion, Egs. 10 and 13 yield

Buw/p ~1Tn 2% (20)

where p = 3/(A) because there are three chains per junction
vertex. Hence, we find that approximations based on gaus-
sian chains do not reproduce the elastic properties of the
network simulation, just as we saw previously that gaussian
chains do not reproduce the simulation’s geometry.

THE CHAIN PERSISTENCE LENGTH

Within the simulation, the erythrocyte membrane cytoskele-
ton is described as a network of single chains, each with
n,, = 26 scgments. Can 26 be regarded as an accurate value
for the effective number of segments in a spectrin tetramer,
or is n_, simply a parameter of the simulation that is specific
to the self-avoidance algorithm? The self-avoidance algo-
rithm rests upon the bead-and-tether model in which the
tether between beads is kept sufficiently short that chain el-
ements cannot pass through each other. This gives a small
effective stiffness to the chains, because the interaction be-
tween next-nearest neighbor beads prevent a chain from
completely doubling back on itself.

To put this more quantitatively, consider the angle be-
tween one tether and the next along a single chain. If the
tethers are in a straight line in the same direction, we say that
the “bond angle” between them is 180°. If the chain doubles
back on itself so that two nearest neighbors of a given vertex
are coincident, then we say that the bond angle between them
is zero. The choice of maximum tether length of (1.9)a tells
us that the minimum allowed bond angle in this simulation
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is approximately 45°. The maximum tether length would
have to be equal to 24 for the minimum bond angle to be zero.

The fact that the configuration space available in the bead-
and-tether model is restricted at small bond angles gives a
small effective resistance to bending compared with a chain
of thin hard rods. Computationally, the bead-and-tether
model is much faster to execute than hard rod models, which
is why the bead model is so popular in polymer simulations.
We do not have the machine time available to test several
different algorithms for self-avoidance on the whole net-
work, so, instead, we make comparisons among different
models for single chains.

A single chain obeying the same bead-and-tether model
that we have used for the chain network has an end-to-end
distance squared given by (r2)"” = 1.09bn};, where b is the
contour length per segment: b = I /n,. This shows that the
persistence length of the model is close to unity. For com-
parison, we perform a simulation of chains using another
potential drawn from the molecular dynamics simulations of
Grest and Kremer (1986) (see also Petsche and Grest, 1993).
The Grest/Kremer potential uses a Lennard-Jones-like in-
teraction between chain elements with smooth cut-offs at
small and large separations between chain vertices. Applying
this model to single chains, we find (r2)" = 1.22bn}.
These simulation results can be compared with a Monte
Carlo simulation of self-avoiding walks on a simple cubic
lattice (M. van Prooyen and B. G. Nickel, unpublished data;
see Nickel, 1991). The walks show to leading order in n_,
that (r2)'? = 1.108bn2. Clearly, the bead-and-tether model
is close to this asymptotic form even at the value of n
investigated here (n,, = 10-80 for our single chain studies).
This indicates that the bead-and-tether model has a persis-
tence length close to the elementary chain link length b.

We can alternatively construct a correlation function for
the bond orientations along the chain to determine the chain
persistence length. We define n to be a unit vector pointing
along a given tether. The correlation is constructed from sca-
lar products of the ns at different chain positions, and should
decay approximately exponentially as

(n(0)n(8)) ~ exp[—A/£] (21)

where A is the number of segments separating the tethers on
the chain and £ is the persistence length. We find that the
correlation function for the bond orientations as a function
of separation between tethers drops to less than 1/e at the
nearest neighbor position (i.e., A = 1), again indicating a
persistence length of b. The correlation function is suffi-
ciently featureless above b = 2 that we do not show it ex-
plicitly in a figure. Given the behavior of the correlation
function, we believe that our ratio of bead diameter to tether
length has a persistence length close to b.

From the above, we conclude that to within 10% accuracy,
n,, = 26 is the effective number of segment lengths in the
spectrin tetramer within the context of the simulation. This
conclusion would be modified if the physical assumptions of
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the simulation are incorrect: for example, if both the mid-
points and junction vertices of the spectrin are attached to the
bilayer plane or if the bilayer is flexible on short length
scales.

CONCLUSION

We have constructed a computer simulation of the spectrin
network of a human red blood cell in which the elastic prop-
erties arise from the entropy of the network. The simulation
is a general one in which observables are expressed in terms
of temperature and chain contour length. The network con-
sists of chains, each with n_, segments, linked together at
sixfold junction vertices. The network shrinks compared
with its fully stretched, or contour area, as n., increases. The
reduced elastic moduli BK, /%, Bul?, BK /2, and BY B,
increase with n_, although none increase faster than n__. The
bare elastic moduli such as BK,a” all decrease with n.,
At fixed n_,, the moduli increase linearly with absolute
temperaturc.

The mean end-to-end distance and the contour length of
the spectrin tetramer are used as inputs to extract observables
for erythrocytes: within the context of the simulation, each
spectrin tetramer of the membrane cytoskeleton behaves like
a single self-avoiding chain of 26 * 1 segments, each seg-
ment of length 8 nm. The predicted in-plane shear modulus
of the network, 10 * 2 X 107° J/m?, agrees with the mi-
cromechanical and high frequency deformation measure-
ments. We predict the in-plane compression modulus X, to
be 17 = 2 X 107 J/m>. The bulk compression modulus K,
and transverse Young’s modulus Y, are predicted to be
1.2+ 0.1 X 10*J/m>®and 2.0 + 0.1 X 10° J/m>, respectively.
Finally, the mean displacement of the network from the bi-
layer plane is predicted to be 15 nm. Most of these predic-
tions await further experiment before they can be tested.

The properties of the simulation are not consistent with
simplified models with ideal gaussian springs, either indi-
vidually or in a network. However, several simplified models
using self-avoiding chains are able to reproduce some fea-
tures of the model at the factor of two level. We conclude
from these simplified models that the steric interaction within
and between chains, and between chains and the bilayer, are
important to the network properties.
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modulus calculation.
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