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Computer Simulation of a Model Network for the
Erythrocyte Cytoskeleton

David H. Boal
Deparment of Physics, Sifnon Fraser Unersity, Bumabry, British Courmbia V5A 1S6, Canada

ABSTRACT The geomety and mechanical properties of the human erylhrocyte membrane cytoskeleton are invesgated by

a computer simulation in which the cytoskeeom is represented by a network of plyfer chains. Four elastic modui as well as
the area and thickess are ded for the chain network as a functo of temperatur and the nuber ofs ts in each
chain. Comparisos are made wifth mean field arguments to examine the ofsteric intactionsin network

Appied to the red blood cel, the simulatIon predcs that in Fe bilayer plan the emraneyk ton has a shear

modluis of 10 + 2 x 10-6Jm2 and an areal comressin modulus of 17 2 x 10-6 p/m2. The e sion mdls

andfthetiisveIseYotgs fnodLiusofthecytoI-eleoDnarepedcicedtlobe 12 ±0.1 x 1i3nj3and92i0 + 0.1 x 103 1hn,,espe .

Emert of the are predicledbo have ameA me from thFe blayer plame o 15 rwn The simulation agrees with

some, but not al, o the shear nmodAs measumment. The dher peied modn have not been mn_sured

The human red blood cell (RBC) has extraordinary elasticity
and fatige resistance (Steck, 1989). During its 120-day life-
time, an RBC squeezes through capillies roughly % of its
equilibrium diameter on the order of 105 times. The two-
component strucu of the RBC plasma membrane, a fluid
lipid bilayer coupled to a network of s in protein, gives
rise to its intriguing meanical properties. It was proposed
some years ago that the lipid bilayer is primarily responsible
for the membrane's resistance to compression, and the spec-
trin network provides the resistance to shear (Evans, 1973;
Skalak et al., 1973; Stokke et al., 1986; Elgsaeter and
Mikkelsen, 1991). Computer simulation has verified that, as
the sectin density deceases, the compresson modulus KA
of the bilayer and shear modulus J of the spectrin network
decouple and their ratio changes by several orders of mag-
nitude (Boal et al., 1992).
The RBC membrane cytoskeletal network is known to be

composed of spectrin tetramers linked together at approxi-
mately sixfold coordinate juncto complexes yielding a net-
work of mainly triangular connectivity (Steck, 1989). The
contour length 4c of the spectrin tetramer is approximately
200 nm, and the average distance between the junction com-
plexes is about 75 mm (Stec, 1989; Liu et aL, 1987; Vertessy
and Steck, 1989; McGough and Josephs, 1990). Thus, the zero-
p ue ium area (projected on the bilayer plane) of the
network is apprximately ½h of its fuilly eched area. Several
mea_utments have been made of the network's shear modulus,
with some ism eldng values in the (6-9) X 10-
J/m2 range and odrs yiekling less than 10' Jhn2 (Waugh and
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Eva, 1979; Hochmut, 1987;E and S nn,
1988; Z7iker et aL, 1992; Peterson et aL, 1992}
Some simple arguments from polymer physics can be used

to interpret the equilibrium size and elastic moduli of the
spetrin networi A single freely jointed polymer chain has
an end-to-end distance r, in coordinate space, which is con-
siderably less than its contour length lc This characteristic
arises from entropic considerations because there are far
fewer configurations in which the chain is fully strtched
(large r) than there are for convoluted chains (small r,).
Hence, a single chain resists strtching, and a network of

ins should have non-zero elastic moduli. Mean field es-
timates based on the elastic properties of a single polymer
chain yield correct order-of-magnitude estimates for the
shear modulus of a chain network.
A network of objects, such as springs or chains, can have

very different properties than the objects do in isolation. Con-
sider, for example, a single spring with spring constant k and
zero equilbrium length. At fiite temperature, the mean fluc-
tation in the spring length is (x) = (21v.8k)"2, where 13=
1/kBT with T the temperature and kB Boltzmann's constant.
Suppose we consruct a two-dimensional trianglar network
of these springs, with each spring joined to a sixfold coor-
dinate junction. If each spring in the network has the same
(x) as an isolated spring, then we expect the area perjunction
to be 3"2/(2r3k) = 0-55/Ik In fact, two-dimensional net-
works in which the springs are not allowed to intersect each
other have an area per junction vertex that is about half of
this value, 033/13k (Boal et al., 1993). Worse still, if the steric
interaction between the springs is ignored, the network col-
lapses and the area per vertex vanishes as the number of
junctions increases. Collapse also occurs for membranes em-
bedded in three dimensions (Kantor and Nelson, 1987a;
Kantor and Nelson, 1987b).
We conclue from this example that:

(i) Networks can have very different propies than their
individual components do in isolation.
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(ii) The steric interaction between the elements in a network
can strongly affect the network's properties.

In other words, calculations of cytoskeleton properties that
are based on single chains or springs, and ignore the corre-
lations that are present in a network, are best regarded as
order of magnitude estimates only. In some cases, such nu-
merical estimates can be accurate to within a factor of two,
whereas in other cases they might not be able to reproduce
the essential physic at alL However, to predict erythrocyte
qctoskeleton properties at the 10-20% accuracy level re-
quires a more detailed approach than mean field theory.

Here, we report a detailed computer simulation of a pol-
ymer chain network that allows us to make accurate predic-
tions of the network's elastic moduli and also to investigate
the network's satial geometry. The paper is orgnized as
follows. The simulation model and techniques are presented
in the next section of the paper. The geometrical predictions
of the model network are then disussed, including the pre-
dicted network thickness, and this is followed by a presen-
tation of the network's elastic properties as a function of the
number of segments in each chain. Although the model re-
sults are completely generaL the erythrocyte membrane cyto-
skeleton is the motivation for the model's development.
Hence, a section of the paper is devoted to the specific pre-
dictions of the model for erythrocyte properties. Currently,
measurements are available for only two of the model's pre-
dictions for the RBC membrane cytoskeleton; the remaining
predictions await further experiments. The paper concludes
with comparisons of the model against mean field and other
arguments to isolate the dependence of the network prop-
erties on steric interactions, specifically, the interactions
within and between s n, and between the cytoskeleton
and the lipid bilayer.

SIMULATION MODEL AND TECHNIQUES
A given spectrin tetramr is represented in the simulation by
a chain ofns segments, each segment composed ofa staight
flexible tether ending at hard beads of diameter a. The in-
dividual tethers have a minimum end-to-end distance of a,
as determined by the hard-core radius of the beads. If the
tethers are forbidden from passing through each other, then
their maximum length must be less than 2'a. In the simu-
lation, we use amaximum length of 1.9"2a, because the beads
move in finite steps and couldjump across a tether of length
2"2a. The average end-to-end distance along a single chain
(defined as the contour length lJ is then

l1= 1.2n,a. (1)

Simulations of other chain networks have been used previ-
ously in the study of membrane flatness (Abraham and
Goulian, 1992; Petsche and Grest, 1993).
The midpoints of each chain are constrined to move only

in the computationalxy plane that represents the lipid bilayer,
similar to the way in which spectrin is attached to the bilayer
by ankyrin (see Steck, 1989). Given the bilayer's resistance

to bending, it is expected that the bilayer is flat on the length
scale of the simulation (03 gam). The ends of the chains are
linked atjunction vertices to form a trangular network, in the
same way as the spectrin tetramers are joined at their ends
by actin and band 4.1 proteins. The sixfold junctions are not
attached to the xy plane. A sample configuration for nt =

20 is shown in Fig. 1, in which only the positions of the
tethers have been drawn. Fig. 1 a is a face view of the net-
work, looking from the z axis towards the computational xy
plane representing the lipid bilayer. Fig. 1 b is a side view
of the same configuration, in which the xy plane is viewed
edge-on. Positive z is towards the interior of the cell. The
shading is such that segments that are further away from the
viewer appear darker.

The simulation uses the Monte Carlo technique. Each bead
on the chain is allowed to move freely on the positive z side
of the xy plane, subject only to the constaints imposed by
the tether length and hard bead interactions. The maximum
change in a given bead's Cartesian coordinate during a
Monte Carlo move is +0.la. The network is subject to pe-
riodic boundary conditions (PBCs) in the x andy directions,
with repeat distances of L,, and Ly, respectively. The black
background area in Fig. 1 a indicates the size ofthe PBCbox.
The simulation is performed at zero pressure, in whichL1 and
Ly are allowed to fluate independendy (Wood, 1968; Han-
sen and McDonald, 1986). A sweep across the network in-
volves one trial move on each of the bead positions, and one
trial aling of the box lengths. The change in the box
rescaling is accepted according to a Boltmann weight
exp[Nln(l + AAE,/AZ,)J, where Nb is the total number of
segmentjoints (ie., beads) in the network,A1, is the PBC box
areaL1L7, and is the difference inA^,, associated with the
rescaling move. Subscripts are included onAv,, to distinguish
this area from A, which is used in later sections as the area
per junction vertex. That is, A = A,/N,, where NJ is the
number of junction vertices. If there are Nj sixfold junction
vertices within the PBC box, then Nb = N,(3n, - 2).

In the simulations, 16 junction vertices are used, and n.,
is invesfigated over the range 4-30. Separate simulations are
performed at nt = 6 with 16 and 36 junction vertices to
check for finite system size effects. The elastic constants
obtained withN, = 16 and 36 are found to be identical within
statistical errors. The Monte Carlo technique generates a se-
quence of configurations that is available for constucting
ensemble averages. In practice, only 300-500 confgurations
are used in the construction of averages for 4 ' nt ' 20,
each configuration separated by T = lObsweeps, so tha
the correlation between successive configurations is reduced.
Further, the system is allowed to relax for 1Orbefore sample
collection begins. The entire simulation took 1 year to ex-
ecute on a 40 MiHz MIPS R3000 processor.

The in-plane elastic moduli KA and g are determined from
the fluctuations in the values ofL. andL,, using a method that
has been descnrbed previously (Boal et al., 1992) and that is
briefly reviewed here. The projections of the bead positions
on the xy plane can be descnrbed in the continuum limit by
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FIGURE 1 S
for a network at zero pure with
n., = 0e ntspercin The 16
junctiom verticm are sidok cord
nate. (a) View is towards the corn-
putationa bilayer (xy pan) as seen
f the "cytopa side. The
size of die periodic boundary con-
dition box is indal in black. (b)
View aong the xy plae. No chain
elements are allowed to pas below
z = 0. For carity, the beads have
been omitted frm the drawing and
only the tethrs are displayed.

two lateral displacement fields ul and u2, which are functions
of the reference coordinate system (xl, x2) of the xy plane. In
terms of the strain tensor

=auil&j + clu/Iax,
U4 2 (2)

the elastic energy can be written in the continuum limit as
(Landau and shitz, 1959)

Hd=fd2x{ KA(ui+ 2 [(u uY2 2U2]} (3)

Using Eq. 3, the inplanecn modus for example,
can be expressed as

.8K (A2) - (4)

Two inilq of thiek)ae Yougs
mduli YXandYyaxe ined flucaions of the angle
legth in the x and y ded seely

1Y = [(A7X(LD(L1y - 1)Yr

131y = [oX 2Y(L2Y)2 - 1)1-1.

(5a)

(5b)

We defin the in-plane Young's modulsY as the average of Y,
and Y. The shear moduhls is then ined m

/YIKA/(4KA Yl). (6)
The thickness t of the membrane in the dirction perpen-

dicular to the xy (bilayer) plane can be defined by

t-- (z), (7)

where (z) is the average height of the bead positions above
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the xy (bilayer) plane in a given configuration. Analogous
with Eq. 4, the volume compression modulus can be obtained
from

.BKv = (V)/((V2) - (V)1), (8)
where we use V = Af,t. Finally, the Young's modulus Y1 in
the direction normal to thexy (bilayer) plane can be extacted
from the fluctuations in t

Y1 = [(t)/((t) - (t)2)]1(Ay). (9)

Note that 13KA and (3 have units of [kngth]2, whereas Kv
and B3Y1 have units of [length]-3.

NETWORK GEOMETRY

We now turn to results from the simulation. As discussed in
the introduction, entrpic considerations result in a single
chain having an end-to-end displacement r. that is smaller
than its contour length lc For an ideal chain (self-
intersections allowed) with n., segments each of length b,
(r,]b) grows like nw, whereas lc/b is equal to n^. Thus,
(r,)/lc scales like n , that is, the end-to-end displacement
decreases relative to the contour length as the number of
chain segments increases. As will be discussed in a later
section, even when chain self-avoidance is included, (rJ/)Ilc
still decreases with ns, although not as rapidly as in the ideal
chain case.
We expect the same general type ofbehavior for a network

of chains: even though the network area increases with n.,
relatively speaking the network shrinks compared with its
fully stretched area. We define A as the in-plane area per
junction vertex (A = A1/N). An approximate fit to the en-
semble average of the area A, which is generated by the
simulation, yields

(Ala) = 2.1n-4. (10)

The network has a finite displacement from the computa-
tional xy plane binding the chain midpoints. One measure of
the network thickness is the mean displacement of the chain
beads from the binding plane, which we define as t = (z) for
a single network configuration. The ensemble average found
from the simulation can be approximately fit by

(tia) = 0.17n4.

0
l- 10.0
cc

(11)
This shows that both the area and thickness increase with the
number of segments in the chains. The product (AXt) scales
roughly as n'. This scaling behavior indicates that the net-
work is not densely packed, in that a closely packed network
of beads would show (AXt) scales like n'.
To facilitate a comparison with the "stretched" network,

we define a reference areaAC as the area per junction vertex
that the network would have if it were composed of straight
chains of length 4c. Then Ac = (312t2)1 (where lc = l.2nscga
in the simulation) andAc scales like n2 . Eq. 10 indicates that
(Aa2) scales like n-,, showing that (A) does increase with
the number of segments. Hence, (A)/AC scales like n-3"4
showing thatA decreases relative to the contour area as nw

increases. To make a comparison with the membrane cyto-
skeleton easier, Fig. 2 shows the ratio of AC to (A) for the
network at zero pressure. We find that A,/(A) can be fitted
by 0.6n", which is the solid line in Fig. 2. We return to the
implications of this scaling behavior in a later section of the
paper.

Because the network's mean in-plane area is significantly
less than its strtched area, the network is displaced from the
bilayer plane. Eq. 11 indicates that the thickness of the chain
network increases with the number of chain segments, scal-
ing as n". However, t does not increase as fast as the contour
length Ic so that (t)ilC decreases slowly with increasing n,g or,
equivalendy, Ic1(t) increases with n,g, as shown in Fig. 2.

Fig. 2 deals with the behavior of the mean values of the
network area and thickness. We find that the fluctuations in
these quantities around their mean values are not large. In
Fig. 3, we show a scatter plot of the values ofA and t for the
particular choice of n. = 20. What is shown are the values
of (A/(A)) - 1 and (t/(t)) - 1 for each configuration used in
the ensemble average. As expected, the points are clustered
near the origin and show that few configurations in the
sample fluctuate more than 15% away from the mean. What
is more noticeable is that there is a correlation betweenA and
t running from the upper left to the lower right part of the
figure. This tells us that the "volume per junction vertex" of
the systemAt does not fluctuate strongly over the ensemble.
That is, if the area of the network is larger than average, then
the thickness tends to be smaller than average. The relative
constancy ofA and t provides a link between several of the
elastic constants, as is shown in the next section.

1 10 100

nseg
FIGURE 2 Ratios of stretched to equilibrium quantities as a function of
segment number n.'. The stretched area per junction vertex AC is ampared
with the mean area per junction vertex (A), and the contour length lc
is compared with the mean dispLcement (t). The solid staight line
through the AC/(A) data is the equationA/(A) = 0.6n,&, . Data are obtained
with Nj = 16.
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FIGURE 3 Scatter plot of area per juncton vertex A and thickss
t for n,, = 20 Each point a pair of vaues

(A/(A)) - 1 amd (t(t)) - 1.

nmg9
FIGURE 5 Vohlme compreSion modulu KV13 and trsvese Young's
moduhu 3Y1l predicted for the chain network as a functioh of n Data

are obtained with N, = 16.

NETWORK ELASTICITY

The elastic moduli KA, Kv, and Y1 and can be obtained
from fluctuations in the PBC box size and network thickness
as explained in the section on simulation techniques. The
values for all four moduli are shown in Figs. 4 and 5 as a

function of n,. Because the moduli are determined from

fluctuations, there is a larger statistical uncertainty in their
value than there is for (A) or (t). We estimate the errors for
the moduli shown in Figs. 4 and 5 at approximately 10%.
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Results for nsg = 30 are not shown because machine time
limitations restrict our data set to 60 configurations, and the
moduli cannot be extrcted from such a small data set.
The quantities plotted in Figs. 4 and 5 are unitless: the

moduli have been multiplied by appropriate powers of the
inverse temperature 13 and contour length c to render them
dimensionless. The resulting quantities are dependent on

n. over the range shown: the reduced in-plane moduli
(.6KAX2 and 1p1D increase only weakly with ns, whereas the
reduced volume moduli (.3vl' and .3Y.lI) rise roughly lin-
early with nw However, the moduli themselves decrease
with chain length, because 4c = 1.2ang. Fits to the raw data
thatgo into Fig. 4 show that the in-plane moduli are described
approximately as

I3K,a2 = 43n- 7 (12)

and

(13)

This gives a ratio of the in-plane compression modulus to the
shear modulus of 1.7. The other moduli that are used in the
constuction of Fig. 5 can be fit by

f3Kva3 = 193n--4 (14)

and

iY1a3= 87n ,°.100
(15)

nfl8g

FIGURE 4 In-plane area comprion modulus I3KAl and shear moduhls
13d, prdicted for the chain network as a functo ofn, Data are obained
with N, = 16.

The decrease in the modul with n. is no surpris, because
the network is more open (as measured in bead diameter a)
and less resistant to stress as n increases.

The temperature dependence of the moduli is also con-

tained in Figs. 4 and 5. At fixed chain length, all ofthe moduli
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are found to increase linearly with tmperature. Ihis behav-
ior arises because the chains in the sim on have no ex-

plicit energy scale because they have only hard core inter-
actions. Thus, the expressions for the elastic moduli in Eqs.
4, 5, 8, and 9 have no temperature dependence on their right-
hand sides. This tells us tht any elastic modulus divided by
kBT is constant at fixed ng in this simulation, so that the
elastic moduli increase linearly with temperature.
The relatively small flu in A and t indicated by

Fig. 3 allow one to find approximate relationships between
the moduli. For example, if we use V A17(t),

then Eqs. 4, 8, and 9 yield

SKA/t 3SKv (16)

and

IlYL %:t, ISKv- (17)

Let us take the results from around n. = 20 as an example.
From Figs. 2 and 4, we have 4/(t) 12 and

(SKAl- 150. Eq.16 thn predicts l3Kv13 180, whch can

be wih a vale of about 2400 from Fig. 5. Simi-
larly, one can see diectly from Fig. 5 that Eq. 17 is ap-
proximately satisfied. Hence, the small fluctuations in the

network geometry yield relatonshi among the elastic con-
stants that are accurate to about 30%.

APPUCATlON TO ERYTHROCYTES

To apply the general network results from the previous sec-

tions to the erythrocyte membrane cytoskeleton, we have to
set the tm e and length scale, because the simulation

prdicts the values of reduced quantities such as 13;&c. We
choose T = 300 K to set the temperature scale and use the
ratio Ac/(A) to set the length scale of the simulation. Ex-
perimentally, Ac/(A) is measured to be approximately 7,
which corresponds to n. = 26 + I on Fig. 2 (Steck, 1989;
Liu et aL, 1987; Vertessy and Steck, 1989; McGough and
Josephs, 1990). The spectrin tetramr has a measured contour
length lc of 200 nm, which means that the computaional
spectin in our ulati behaves like a chain with 26 seg-

ments between the sixfold junctions, each segment of length
8 nm (or a = 6.4 nm). This result is in the range of values
for the spectrin persistence length of %10 nm obtained in
recent experiments on RBC skeletons in salt solution (Svo-
boda et al, 1992; see also Stokke et al, 1985).

With T, n., and 4c fixed, the thickness and elastic moduli
can be extracted from Figs. 2, 4, and 5. For n. in the 25-27
range, we find 4c/(t) = 13.1 ± 0.1 on Fig. 2. If lc is 200 nm,

this corresponds to a thickness of (t) = 15 nmm Currendy, no
data are available against which the thickness prediction can

be compared.

The range of values for the in-plane moduli aroundn=
26 is about 0.16-0.18 for I3KAa2 and 0.09-0.11 for 3p.a2,
according to Eqs. 12, 13, and Fig. 4. Using a = 6.4 nm, the
simulationp tsK,= 17 2 x 10-`J/m2 and IL = 10 +

2 x 10` J/m2 at T = 300 K. CurTendy, only the shear modu-

lus has been measured. In one type of experiment, the de-
formation of an RBC subject to a known stress induced by
micromechanical manipulatio is visually recorded, from
which a shear modulus of 6-9 x 10-6 J/m2 is extracted
(Waugh and Evans, 1979; Hochmuth, 1987). A related ex-
periment using deformations in high rquency electric fields
yields 6 + 1 X 106J/m2 (Engelhardt and Sackmann, 1988).
In other experiments based on flker spectrocopy, the sur-
face fluctuations of the cell at wavelengths on the order of
microns (Zilkeret al., 1992) and longer (Peterson et aL, 1992)
have been shown to be consistent with those of a pure fluid
membrane (I = 0). Thus, the predicted shear modulus is in
agreement with the measured values of the micromechanical
and the high fequency deformation experiments at the one
or two standard deviation level.
From Eqs. 14, 15, and Fig. 5, the simulation predicts

Kva3 has a value of 7.8 + 0.8 X 10-2, conresponding to
Kv = 1.2 + 0.1 x 103 J/m3. A measurement of this com-
pression modulus is currently being performed (E. Evans,
personal communication). The transverse Young's modulus
Y can also be obtained from Fig. 5, and is predicted to be
3Y1a-3= 0.13 + 0.01, or Y1 = 2.0 4 0.1 x 10 J/m3. Al-
though no data are currently available for Y1, itwill be meas-
ued along with Kv.

The elastic moduli increase linearly with temperature in
the simulation, according to Figs. 4 and 5. Over the range
5-350C, the moduli should increaw by 10% if n.9 and 1 are
constant In fact, the moduli decrease by about 20% in this
temperature range (Waugh and Evans, 1979; Engelhardt and
Sackmann, 1988). Within the context of the model, this be-
haviorwould indicate that interactions among chain elements
are changing the value ofn, slowly with temperature. Dis-
cussions of chain interactions can be found elsewhere
(Stokke et al., 1986; McGough and Josephs, 1990).

STERIC INTERACT'IOS IN THE NETWORK

The erties ofthe simulation have simple origins: entropy
and steric interactions. The simulation contains no explicit
energy scale in the sense of bending resistance or force con-
stants associated with chemical bonds. The entropy of the
chains manifests itself in the reduced area of the network
compared with its contour area and in the elastic moduli.

In this section, we examine the importance of the steric
interactions: for example, the interaction between chains or
between the chains and the computational bilayer. Our
method is to present simpliied models that allow us to isolate
and evaluate a given component of the simulation. Each of
these simple models can be used to determine some, but not
all, of the network's proerties. These models have few pa-
rameters and make few predictions that can be tested sys-
tematically in the way that the simulation can. However, by
determining whether the physics of these models is present
in the simulation, we can evaluate the importance of the
models themselves.
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The simubaion is no deSCribed by ideal
andom walks

Consider the properties of a single ideal (i.e., not self-avoid-
ing) chain of ns, segments each with length b. The single
chain has an end-to-end distance of (rIJb2)"2 = n Sup-
pose that we construct a triangular network of such chains,
linked togther at sixfold vertices as we have done with our
simulation. The ideal chain has a gaussian distnrbtion of
end-to-end lengths and can be viewed as an entropic spring.
A two-dimensional network of ideal springs (ones that can
pass truugh each other) has been shown to collapse at zero
pressure (Boal et al., 1993). Hence, the simulation is not
described by ideal chains, and the intraction between chains
is important

If the springs cannot pass through each other, the network
is stable (Boal et aL, 1993). Hence, another test model for the
simulatin might involve a network of chains that can in-
ersect themselves, but not each other (see, for example,
KozIov and Markin, 1987). If the average properes of a
chain in this network are the same as those of the isolated
ideal chains, thn the area of the network should scale like
n because (r/Ib) scales iken for an ideal chain. This is
not what we observe: the simulation shows (A) scales like
ng4. We conclude that the steric interaction between ele-
ments of the same chain and between elements of different
cains are both required to reprduce the simulation

SeN-avokding cins show the corrct
scaling b r

The end-to-end distance of an ideal chain scales like n2. In
contrast, a self-avoiding chain scales like (rJ21W)"2
3gM2+), where d is the dimension of the space in which the

chains move (Flory, 1971). Hence, a network of self-
avoiding chains free to move in three dimensions should
obeyAc/(A) n0-8InFig.2,Ac/(A)scalesliken, which
is consistent with the self-avoiding chain predictio

Suppose we construct a model network in which the end-
to-end displacement of any chain in the network is assumed
to be the same as that of a single self-avoiding chain in iso-
lation. How well does this model network represent the full
simulation? For a single bead-and-tether chain with contour
length Ic = ngb, we find by simulation that (r.Ib) can be fit
by

(rj1b) = 1.04n" (18)

From this relationship, the network of identical self-avoiding
chains would haveAc/(A) = 0.92n" This expression is close
to, but not identical to, the expression we find in the
full simulation, namely Ac/(A) = 0.6n5. For the RBC,
we expect n,W = 26, for which the simplified model pre-
dicts AC/(A) = 12.4 in contrast with the simulation result of
Ac/(A) = 6.9. The difference between these two numbers is
a measure of the importnce of a chain's interaction with
other chains and with the bilayer. We conclude that the self-

network of identical self-avoiding chains can represent the
network's in-plane geometry at the factor-of-two leveL Of
course, we need more than the single chain scaling relations
for (re) to make pedictions for the network thickness and
elastic moduli perpendicular to the bilayer plane, so the sim-
plified model is of restricted applicability.

The presence of the bilayer plane is important

The steric interactions among chain elements make a crucial

contribution to the properties of the simulated netwo. lThe
other element of the simulation that involves steric effects is
the repulsin between the chain elments and the computa-
tional xy plane, which represent the bilayer in the simula-
tion To test the imp of the bilayer plane on the in-
plane network elasticity, further test simulations are

performed at nt = 10 that can be compared with the general
network simulatio Only one valke of n. is chosen for
investigation because ofmachine time limitations. In the first
of these test ula , the bilayer is neglected completely
and chain elements can move above and below the compu-
tational xy plane. In the second simulati, the midpoints of
the chains are confined to the xy plane, but all other chain
elements are allowed to move through it In both ulatis,

the network is still subject to periodic boundary conditions
in the x and y directions. A total of 300 confgurations are

generated in each simulation.
Complete neglect of the bilayer damatically affects the

network properties. The i ased onfiguration space of
the chains results in a shrinkage of the network

forng = 10. ItisfoundthatA/(Aincreasesfrom33to53.

Similarly, the network becomes floppier because it can re-

lieve stress by folding in the third dimension. Thus, the in-
plane compression modulus BKAl2 decreases from 131 to 55
and the in-plane shear modulus 131I decreases frm 59 to 32
when the bilayer is completely removed. Thee out-of-plane
fluctuations should decrease the moduli even further with
iceasing system size, an effect that has not been investi-
gated here. We conlude that complete removal ofthe bilayer
changes the network propeti;es dramatically.

In a furthr simulation for n = 10, any chain element is
allowed to pass through the tational xy plane, but the

midpoints of the chains are rcted to lie in the xy plane.
Only small are found in the in-plane quantities. he

equilibrium area is found to shrink somewhat without the
bilayer ruo, so that AJ(A) eases from 33 to 35.The

modulus KAlc = 131

with bilayer repulsion to 13KA12 = 101 without Fmally, the

shear modulus changes from pVcd = 59 to (3p12 = 63.
In summay, these results show that attaching the chain

midpoints to the flat bilayer stiffens the network sbsatially
compared with a network that is allowed to move freely in
the z direction subject only to periodic boundary conditions.
The steric interaction of the chains with the bilayer once the
network is attached to the bilayer changes the in-plane elastic

avoidance of the chains is impant, and that a simplified
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Gaussian chains do not describe the
in-pa moduli

Two decades ago, it was proposed (Evans, 1973) that a result
from rubber elasticity theory (Flory, 1971) could be used to
estimate the cytoskeleton shear modulus. For a system with
an area density of chains p, the shear modulus is given ap-
proximately by

131 = P (19)
where 3 is the inverse temperature (Evans, 1973; Stokke
et al., 1986; Kozlov and Makin, 1987; Flory, 1971). This
expression gives a value for the elastic modulus that is in
approximate agreement with experiment For example, if the
average end-to-end distance of a single chain is 75 nm as in
the red blood cell, then p = 620 .m-2 and Eq. 19 prediCtS
IL= 24 X 10-6 J/m2, at room temperature.

Although this prediction for a red blood cell looks attrac-
tive, in fact it is a factor of four lower than the simulation
predicts for the same parameters (10 + 2 X 10-6 J/m2). That
is, the gaussian chain model underestimates a full model,
which includes steric interaction among the chains and be-
tween the chains and the bilayer. According to the approxi-
mations in Eq. 19, the gaussian chain model prdicts that
18p4p should equal unity and have no dependence on n,;.
However, over the range of nt investigated in the simula-
tion, Eqs. 10 and 13 yield

Bpp -17n4 (20)
where p = 3/(A) because there are three chains per junction
vertex. Hence, we find that approximations based on gaus-
sian chains do not reproduce the elastic properties of the
network simulation, just as we saw previously that gaussian
chains do not reproduce the simulation's geometry.

THE CHAIN PERSISTENCE LENGTH
Within the simulatin, the erythrocyte membrane cytoskele-
ton is descnrbed as a network of single chains, each with
nt = 26 segments. Can 26 be regarded as an accurate value
for the effective number of segments in a spectrin tetramer,
or is n. simply a parameter of the simulation that is specific
to the self-avoidance algorithm? The self-avoidance algo-
rithm rests upon the bead-and-tether model in which the
tether between beads is kept sufficiently short that chain el-
ements cannot pass through each other. This gives a small
effective stiffnss to the chains, because the interaction be-
tween next-nearest neighbor beads prevent a chain from
completely doubling back on itself.
To put this more quantitatively, consider the angle be-

tween one tether and the next along a single chain. If the
tethers are in a straight line in the same direction, we say that
the "bond angle" between them is 1800. If the chain doubles
back on itself so that two nearest neighbors of a given vertex
are coincident, then we say that the bond angle between them
is zero. The choice ofmaximum tether length of(1.9)t2a tells
us that the minimum allowed bond angle in this simulation

is approximately 450. The maxmum tether length would
have to be equal to 2a for the minimum bond angle to be zero.
The fact that the configuration space available in the bead-

and-tether model is restricted at small bond angles gives a
small effective resistance to bending compared with a chain
of thin hard rods. Computationally, the bead-and-tether
model is much faster to execute than hard rod models, which
is why the bead model is so popular in polymer simulations.
We do not have the machine time available to test several
different algorithms for self-avoidance on the whole net-
work, so, instead, we make comparisons among different
models for single chains.
A single chain obeying the same bead-and-tether model

that we have used for the chain network has an end-to-end
distancesquaed given by (r) = 1.09bn`, where b is the
contour length per segment: b = lcJng. This shows that the
persistence length of the model is close to unity. For com-
parison, we perform a simulation of chains using another
potential drawn from the molecular dynamics simulations of
Grest and Kremer (1986) (see also Petsche and Grest, 1993).
The Grest/Kremer potential uses a Lennard-Jones-like in-
teraction between chain elements with smooth cut-offs at
small and large separations between chain vertices. Applying
this model to single chains, we find (rLJw = 122bn-'.
These simulation results can be compared with a Monte
Carlo simulation of self-avoiding walks on a simple cubic
lattice (M. van Prooyen and B. G. Nickel, unpublished data;
see Nickel, 1991). The walks show to leading order in nt
that (r2L)t = 1.108bn . Clearly, thebead-and-tethermodel
is close to this asymptotic form even at the value of nt
investigated here (n. = 1080 for our single chain studies).
This indicates that the bead-and-tether model has a persis-
tence length close to the elementary chain link length b.
We can alternatively consuc a correlation function for

the bond orientations along the chain to determine the chain
persistence length. We define n to be a unit vector pointing
along a given tether. The correlation is constructed from sca-
lar products of the as at different chain positions, and should
decay approximately exponentially as

(21)

where A is the number of segments separating the tethers on
the chain and t is the persistence length. We find that the
correlation fimction for the bond orientations as a fiunction
of separation between tethers drops to less than le at the
nearest neighbor position (i.e., A = 1), again indicating a
persistence length of b. The correlation function is suffi-
ciently featureless above b = 2 that we do not show it ex-
plicitly in a figure. Given the behavior of the correlation
function, we believe that our ratio of bead diameter to tether
length has a persistence length close to b.
From the above, we conclude that to within 10% accuracy,

n. = 26 is the effective number of segment lengths in the
spectrin tetramer within the context of the simulation. This
conclusion would be modified if thephysical assumptions of
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the simulation are incorrect: for example, if both the mid-
points and junction vertices of the spectrin are attached to the
bilayer plane or if the bilayer is flexible on short length
scales.

CONCLUSION

We have constructed a computer simulation of the spectrin
network of a human red blood cell in which the elastic prop-
erties arise from the entropy of the network. The simulation
is a general one in which observables are expressed in terms
of temperature and chain contour length. The network con-
sists of chains, each with ns.9 segments, linked together at
sixfold junction vertices. The network shrinks compared
with its fully stretched, or contour area, as nt increases. The
reduced elastic moduli PKA1V, 3j, Kv1l, and (Y1l, aS
increase with n,g, although none increase faster than n'. The
bare elastic moduli such as BKAa2 all decrease with n.9.
At fixed n.9, the moduli increase linearly with absolute
temperature.
The mean end-to-end distance and the contour length of

the spectrin tetramer are used as inputs to extract observables
for erythrocytes: within the context of the simulation, each
spectrin tetramer of the membrane cytoskeleton behaves like
a single self-avoiding chain of 26 + 1 segments, each seg-
ment of length 8 nm. The predicted in-plane shear modulus
of the network, 10 ± 2 X 10-6 J/m2, agrees with the mi-
cromechanical and high frequency deformation measure-
ments. We predict the in-plane compression modulus KA to
be 17 ± 2 X 10-6 J/m2. The bulk compression modulus KV
and hansverse Young's modulus Y1 are predicted to be
1.2 ± 0.1 x 103 J/m3 and 2.0 ± 0.1 X 103 J/m3, respectively.
Finally, the mean displacement of the network from the bi-
layer plane is predicted to be 15 nm. Most of these predic-
tions await further experiment before they can be tested.
The properties of the simulation are not consistent with

simplified models with ideal gaussian springs, either indi-
vidually or in a network. However, several simplified models
using self-avoiding chains are able to reproduce some fea-
tures of the model at the factor of two level. We conclude
from these simplified models that the steric interaction within
and between chains, and between chains and the bilayer, are
important to the network properties.
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Research Council of Canada

REFERENCES
Abraham, F. F., and M. Goulian. 1992. Diffraction from polymerized mem-

branes: flat vs. cnrnpled. Europhys Lem 19:293-296.
Boal, D. H, U. Seifert, and J. C. Shllcock. 1993. Negative Poisson ratio

in two dimensional networks under tension. Phys. Rev. E48:4274-4283.

Boal, D. H, U. Seifert, and A. Zilkrer. 1992. Dual network model for red
blood cell membranes. Phys. Rev. Left 693405-3408.

Elgsaeter, A, and A. Mikksenl 1991. Shapes and shape changes m vitro
in normal red blood cells. Biochimn Biophys. Acta 1071:273-290.

Engelhardt, J., and E Sackann 1988. On the measurement of shear elastic
moduli and viscosities of erythrocyte plasma membranes by trasient
deformation in high fequency electric fields. Biophys. J. 54:495-508.

Evans, E A. 1973. New membrane concept applied to the analysis of fluid
shear- and micropipette-deformed red blood cells. Biophys. J. 13:
941-954.

Flory, P. J. 1971. PrinciplesofPolymer Chemistry. Cornell University Press,
Ithca NY. Chaptes X and XI.

Grest, G. S, and K Kremer. 1986. Molecular dynamics simulation for
polymers in the presence of a heat bath Phys. Rev. A33.3628-3631.

Hansen, J. P, and L R. McDonal 1986. Theory of Simple Liquids. Oxford
University Press, New York.

Hochmuth, R. M. 1987. Properties of Red Blood Cells. In Handbook of
Bioengneenng. R. Skalak and S. Chien, editors. McGraw-Hill, New
York. 12.1-1217.

Kantor, Y, and D. R Nelson. 1987a. Crumpling tansition in polymerized
membranes. Phys. Rev. Lett 26.2774-2777.

Kantor, Y, and D. R. Nelson. 1987b. Phase tranitons in flexible polymeric
surfaces. Phys. Rev. A36:4020-4032.

Kozlov, M. M, and V. S. Markin. 1987. Model of red blood cell membrane
cytoskeleton: electrical and mechanical propertie J. Theor. BioL 129:
439-452.

Landaul L D, and E. M. Iifshitz. 1959. Theory of Elasticity. Pergamon,
London.

IUu, S.-C, L H Derick, and J. Palek. 1987. Visualization of the hexagonal
latice in the erythrocyte membrane cytoskeleton J. Cell Biology. 104:
527-536.

McGugh, A. M, and R. Jsephs. 1990. On the strture of erytcyte
spectrin in partially expanded membrane skeletons. Proc. Natl Acad Sci
USA 87:5208-5212.

NickeL B. G. 1991. One-parameter recursion model for fleible-chain poly-
mers. Macromolcules. 24:1358-1365.

Petrson, NK A., H. Strey, and E. Sackmann. 1992. Theoretical and phase
contrast ic eigmode analysis of erythrocyte flicker: ampli-
tudes J. Phys. H (France). 2:1273-1285.

Petsche, L B, and G. S. Grest. 1993. Molecular dynamics simulations of
the structure of closed tethered membranes. J. Phys. I (France). 1:
1741-1754.

Skalak, R, A. Tozeren, R P. Zarda, and S. Chien. 1973. Strain energy
funtion of red blood cell membranes. Biohys. J. 13:245-264.

Steck, T. L 1989. Red cell shape. In Cell Shape: Determinans, Regulation
and Regulatory Role. W. Stein and F. Bronner, editor Academic Press,
New York. 205-246.

Stokke, B. T., A. Mikkelsen, and A. Elgsaeter. 1985. Human erytocyte
spectrin dimer intrinsic viscosity: temperature dependence and implica-
tions for the molecular basis of the membrane free energy. Biohn
Biophys. Acta. 816:102-110.

Ste, T, A. Mesen, and A. Elgeter. 1986. The human erythrocyte
membrane skeleton may be an ioi gel I. Membrane mechancl prop-
erties Eur. Biohys. J. 13:20218.

Svoboda, K, C. F. Schmidt, D. Branton, and S. M. Block. 1992. Confor-
mation and elasticity of the isolated red blood cell membrane skeleton.
Biophys. J. 63:784-793.

Vertessy, B. G, and T. L Steck. 1989. Elasticity of the human red cell
membrane skeleton, effects of temperature and denaurant Biophys. J.
55:255-262.

Waugh, R-, and E. A. Evans. 1979. Thermoelasticity of red blood cell mem-
brane. Biophys. J. 26:115-132.

Wood, W. W. 1968. Monte Carlo calclations for hard disks in the
isothermal-isobaric ensemble. J. Chem. Phys. 48:415-434.

Zilker, A., MK Ziegler, and E Sackmann- 1992. Spectral analysis of eryth-
rocyte flkerig in the 0.3-4 gLm- regime by microinterferometry com-
bined with fast image processing. Phys. Rev. A46:799-l8001.


