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Statistical Models of Synaptic Transmission Evaluated Using the
Expectation-Maximization Algorithm

Christian Stricker and Stephen Redman
Division of Neuroscience, John Curtin School of Medical Research, Australian National University, Canberra ACT 0200 Australia

ABSTRACT Ampilitude fluctuations of evoked synaptic responses can be used to extract information on the probabilities of
release at the active sites, and on the ampilitudes of the synaptic responses generated by transmission at each active site. The
parameters that describe this process must be obtained from an incomplete data set represented by the probability density of
the evoked synaptic response. In this paper, the equations required to calculate these parameters using the Expectation-
Maximization algorithm and the maximum likelihood criterion have been derived for a variety of statistical models of synaptic
transmission. These models are ones where the probabilities associated with the different discrete amplitudes in the evoked
responses are a) unconstrained, b) binomial, and c) compound binomial. The discrete amplitudes may be separated by equal
(quantal) or unequal amounts, with or without quantal variance. Alterative models have been considered where the variance
associated with the discrete amplitudes is sufficiently large such that no quantal amplitudes can be detected. These models
involve the sum of a normal distribution (to represent failures) and a unimodal distribution (to represent the evoked responses).
The implementation of the algorithm is described in each case, and its accuracy and convergence have been demonstrated.

GLOSSARY

B shape parameter for gamma distribution

€ offset (from zero) of distribution

8y probability density of first noise component convolved
with the jth amplitude component

8 probability density of second noise component convolved

with the jth amplitude component

Y shape parameter for Weibull distribution

o scale factor for Weibull distribution

f: frequency of observation x,

K + 1 number of components

L log-likelihood

A scale factor for gamma distribution

[ mean of jth component

I, mean of the noise distribution

B mean of first noise component

[T mean of second noise component

M(x, 6) mixture distribution

n number of release sites in the binomial and compound
binomial model

N sample size

p binomial release probability

P, release probability at rth site

PD probability density

P, probability associated with the jth component

Ty proportion of failures caused by failure to stimulate

™, probability of first noise component

q; density of x; at jth component

(0] quantal amplitude

o; SD of jth component

o, SD of the noise distribution
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g, SD of first noise component
o, SD of second noise component
oy SD of the quantal amplitude

0 parameter vector

x; ith observation
INTRODUCTION

Trial-to-trial variations in the amplitude of evoked synaptic
currents (or voltages) can be used to extract information
about the underlying mechanisms of synaptic transmission.
The parameters of interest are the probabilities of transmitter
release at the different release sites involved in transmission,
the number of these release sites, the amplitudes of the syn-
aptic current generated at each active site, and the variability
associated with these amplitudes. The usual approach to es-
timating these parameters is to assume that the evoked cur-
rents are distributed as a mixture of normal distributions.
Each normal distribution is centered on a discrete amplitude,
and these amplitudes (in increasing order) correspond to re-
sponsc failures, the response caused by the release at any one
release site, the response caused by simultaneous release at
any combination of two release sites, and so on. The relative
contribution that each normal distribution makes to the mix-
ture is the total probability of release for the appropriate
combination of release sites. Obviously, for this scheme to
result in a mixture distribution with clear peaks that are ap-
proximately equally spaced, the synaptic responses arising
from transmission at different release sites must be roughly
equal when recorded at the soma, and the variability asso-
ciated with these responses must not be large compared with
their average amplitudes. The important assumptions are that
the noise and the EPSC are statistically independent random
variables, that they are stationary processes, and that the
noise and the EPSC add linearly.

The purpose of this paper is to provide procedures for
determining the parameters of a mixture model of synaptic
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responses. One method of calculating these parameters is to
adjust them until an optimal fit to the measured probability
density is achieved, using a maximum-likelihood criterion.
An algorithm was developed by Hasselblad (1966) for this
purpose. A more formal development of this method, called
the Expectation-Maximization (EM) algorithm (Dempster
et al., 1977) has been extended to apply to finite mixtures of
a wide class of density functions (reviewed in Redner, 1984;
McLachlan and Basford, 1988). The EM algorithm has also
been applied to quantal analysis by Ling and Tolhurst (1983)
and Kullmann (1989).

However, when all parameters of the mixture are allowed
to vary without constraints, too many free parameters exist
for this fitting procedure to provide reliable estimates
(Kullmann, 1992). In most preparations where statistical
analysis of fluctuations in evoked responses is being at-
tempted, constraints can be applied to the mixture model to
reduce the number of free parameters. One constraint is to
require the mean amplitudes to be separated by equal incre-
ments (the quantal amplitude), and for the variances asso-
ciated with each quantal increment in amplitude to also in-
crement by the quantal variance in addition to the noise
variance (which is the same for each amplitude). This is the
conventional model of quantal release. Further constraints
can be imposed on the probabilities associated with the dif-
ferent mean amplitudes including a binomial distribution
(uniform release probabilities) or a compound binomial dis-
tribution (unequal release probabilities). In this paper, we use
the EM approach to derive the recursive equations for quantal
amplitude, quantal variance, the (uniform) probability of re-
lease for the binomial model and the nonuniform release
probabilities for the compound binomial model. These equa-
tions differ from those provided by Kullmann (1989), and
they converge rapidly, reliably, and with high accuracy.

An alternative model of the transmission process is to as-
sume that there is so much variability associated with trans-
mission at different combinations of release sites that the
evoked synaptic current is best described by a skewed uni-
modal distribution (Bekkers et al., 1990; Clements, 1991;
Jonas et al., 1994). We have referred to these models as
nonquantal models, because their amplitude distribution will
not be multimodal even in the absence of recording noise. An
additional distribution must be added to this unimodal den-
sity to account for failures in transmission. We have used the
noise distribution for this purpose, with a variable offset for
the mean. The EM algorithm can also be used to obtain the
best fit to the measured probability density under these cir-
cumstances. We have derived recursive equations to obtain
the parameters for a mixture of a normal distribution (rep-
resenting failures) with 1) a normal distribution (Clements,
1991), 2) a gamma distribution (McLachlan, 1978), 3) a
Weibull distribution, and 4) a cubic transformation of a nor-
mal random variable (Bekkers et al., 1990).

Finally, we have used the EM algorithm, together with the
binomial or compound binomial constraint on probabilities,
to allow for two different types of failures in evoked re-
sponse: 1) a failure caused by irregular stimulation of afferent
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axon(s), and 2) a genuine failure to release transmitter despite
the presence of a presynaptic action potential. In this situ-
ation, the algorithm can be used to calculate the proportion
of failures caused by failure to stimulate.

In this paper, we show how the parameters for the different
models can be found, and demonstrate that the equations
return the correct parameters for each model. The previous
paper (Stricker et al., 1994) presents methods for calculating
confidence limits on the model parameters obtained from the
experimental sample. It also shows how the maximum
log-likelihood obtained when fitting a model using the
EM algorithm can be used in a unified approach to model
comparison.

THEORY AND METHODS

The parameters of a mixture of (K + 1) normal distributions
are the means and the variances {pg, 03 By, 05 © ° * 5 fg,
0%} associated with them and the probabilities associated
with each amplitude {P,, P,, - - -, Pi}. Let the vector 0
contain all these parameters. The mixture distribution is then
defined as

é 1
M(x, 0) = 2, P,
j=0 l'\/z_'n'o;

e emina ¢))
where

K

2P =1

j=0
An evoked response is measured N times, with values {x,,
Xy, ° * + , xy}. It is assumed that this sample is drawn from the
probability density M(x, 6). The problem is to find the pa-
rameters of the mixture M(x, 0) that gives the best fit to the
observations by using the likelihood criterion. To do this we
define the log-likelihood function L for this sample as

N
L=73 fInMx,0)), e
i=1
where f; is the frequency of the observation x;. The next step
is to find the values of the parameters that maximize the
log-likelihood function L. This is done by differentiating L
with respect to each of the unknown parameters, setting the
derivatives equal to zero, and solving these equations in a
recursive manner. In the case of Eq. 1, this means solving
(3L/oF;) = 0; (3L/3p;) = 0; (3L/éa;) = O for P, p;, and o},
respectively. The equations require initial guesses for the
optimal parameters, and these values are used in the equa-
tions to modify the initial guesses. This process is then re-
peated many times. The essence of the problem is to ensure
convergence of the procedure to the parameter values that
maximize the likelihood. This is guaranteed by the EM al-
gorithm. All of the derivations of the recursive equations are
given in the Appendix. Here we discuss the implementation
of the algorithm for each model.
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Unconstrained model

In this model, therearenoconstramtsonthePs, ps,andas,
except that DX P, = 1. AnassumpnomsmadeaboutK,and
mmalmtlmatmofP M, and o; are chosen. The p;s must
aﬂbediﬂ'erent.EquaﬁonMisusedtomlcnlateancwset
of P;s. These new values of the P;s are used in Eqs. A4 and
AS to calculate new sets of p;s and o;s (Kullmann, 1989).
Eventually, after numerous iterations of this procedure, the
P;s are only altered by insignificant amounts, and the pro-
cedure is terminated.

Unless there exists very little overlap of the normal dis-
tributions in the mixture, this model will provide too many
degrees of freedom to the fitting procedure, leading to un-
reliable estimates. In some instances, it might be appropriate
to assume negligible quantal variance, in which case the vari-
ance associated with each amplitude is identical and equal to
that of the recording noise. In this case, only Egs. A3 and A4
are used.

If the correct value for K is not obvious, as will often be
the case with a small sample size or a poor signal-to-noise
ratio (quantal amplitude divided by noise SD), the procedure
should be repeated for progressively larger values of K.
Eventually, some of the P;s will be zero, or some of the p.s
will become very similar (with smaller separation than the
noise variance). The questions of how to determine the most
reliable value of K, and the confidence limits of the parameter
estimates for a given sample size and signal-to-noise ratio,
have been discussed in the preceding paper (Stricker et al.,
1994).

One important application of this model is to find the pa-
rameters of two normal distributions whose sum is used to
represent the recording noise. Often the density function for
the recording noise is skewed (Kullmann, 1989). It can be
represented as the sum of two normal distributions (Egs. A6
and A7). To find the parameters {7_; p_,, 0,;; L. O,,} Set
K = 1, use Eq. A3 to update 7, and use the updated value
of 7, in Egs. A4 and AS to update p,, ., and 0, 0,,. An
example of this procedure is given in Results.

Quantal models

Unconstrained probabilities

In this model, it is assumed that the separation between p;
and p;, , is O, the quantal amplitude. It is further assumed that
the variance associated with p, i.e., 07 = 02 + jog, where
o7 is the noise variance and 07, 1sthequantalvananoe(see
Eq. A12). Becausetheplsmnnotbeadjusted independently,
any offset in the average amplitude of the failures will be
transferred equally to all the p;s. An offset can arise from a
stimulus artefact or a field potential. An offset parameter (€)
can be incorporated into the parameter set to be estimated.
When this is done, the free parameters in this model are the
Ps(j=0,1,---,K—1),0Q, 0}, and €. The equations for
calculating these parameters are Eqs. A3, A9, A10, and Al1,
respectively, when the noise is represented by a single nor-
mal distribution, and Egs. A3, A13, A14, and A19 when the
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noise is represented by the sum of two normal distributions.
Once the appropriate parameters for the noise have been
determined, initial guesses are made for the P;s, Q, 07, and
€. In the case of a single gaussian distribution, the initial
guesses are applied to Eq. A3 to obtain a revised set of P;s.
These new P;s, and the initial guesses for the other param-
eters are applied to Eq. A9 to obtain a revised value for Q,
to Eq. A10 to obtain o, and to Eq. A11 to obtain ¢, and then
the cycle is repeated until the changes in the P;s are negli-
gible. One variant of this model is to assume no quantal
variance. In this case 07 = o7, and the equation for o}, is
omitted from the recursive procedure.

Binomial probabilits
In this model, the P;s are constrained to satisfy the equation
P,=%C;(1 - pyp’, A3)

where p is the release probability at each of the K release sites
and *C; is the binomial coefficient, sometimes written as
(%). The equation needed to calculate p is Eq. A18. Other-
wise, the equations for calculating Q, 07, and € are the same
as for the quantal model, except that the P;s must be calcu-
lated using Eq. 3 above. There are four free parameters as-
sociated with this model, once K has been fixed. The pro-
cedure is to assume initial values of p, Q, 07, and €, calculate
the P;s from Eq. 3, and then proceed as for the quantal model.

n ! binomial probabilit

This model allows the release probabilities to be different for
each release site, i.e., p;, Py, - - -, p,» * * *, Pg- The relationship
between these release probabilities and the Ps is given by Eq.
A23. The equation for p, is Eq. A22. The equations for Q,
07, and € are the same as for the quantal model. There are
K + 3 free parameters with this model. After an initial guess
at the values for p,, - - -, p,, - - -, px, Q, 05, and €, Eq. A23
is used to calculate the P;s, and Eq. A21 is needed to calculate
the function P, ; defined by Eq. A20. When these values have
been calculated, they are then used in Eq. A22 to calculate
the p,s. The P;s can then be calculated using Eq. A23. When
this is completed, the quantal parameters Q, 02, and € are
calculated as for the case of unconstrained probabilities and
the appropriate equations from the quantal model. The con-
straints of a quantal variance and a quantal separation could
be relaxed, in which case the appropriate equation for the p;s
is Eq. A4.

A special case has to be considered if there are no de-
tectable failures. As shown in the Appendix, the derivation
only holds if none of the p,s is 1. However, as shown by
Walmsley et al. (1988), this might not always be the case.
When no failures occur, the offset bears the information
about the number of additional release sites where the release
probability is 1. The offset determines the magnitude of the
smallest amplitude response. Scaling the offset by the quan-
tal size gives the number of release sites with a release prob-
ability of 1 plus a remaining offset, which is again caused by
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stimulus artefact or field potential. The number of contrib-
uting release sites K* is therefore K* = K + int(€/Q), where
int(e/Q) is the lower integer value of (€/Q).

Non-quantal models

An alternative hypothesis to the previous model is based on
the premise that the noise-free evoked responses are drawn
from a distribution that is effectively continuous. In this
scheme, the intrinsic variability in the responses originating
at the same active site and the differences in amplitudes (at
the soma) of the responses originating from different active
sites combine to create a continuous distribution of ampli-
tudes. Any apparent peaks in the observed amplitude dis-
tribution must be caused by finite sampling. The amplitude
distribution of the measured currents is the sum of two prob-
ability densities. One represents the “failures,” with a mean
of zero, and has the same distribution as the recorded noise.
The other represents the responses to released transmitter.
Various density functions can be used for this continuous
distribution. We have derived the equations when the con-
tinuous distribution is 1) a normal distribution, 2) a gamma
distribution, 3) a Weibull distribution, and 4) a cubic trans-
formation of a normal random variable. Here, Eq. 1 is modi-
fied to

M, = (1 - P, + Pg,, )
where g,, is the probability density for the failure responses,
(1 — P) s the probability of failure to release transmitter, and
g, is the probability density for the responses to released
transmitter. g;, is given by Eq. A27 when the noise is rep-
resented by the sum of two normal distributions. Otherwise,
it can be a single normal density function. The subscript i

denotes dependence on the ith sample (x)).

Normal distribution

Here

1
= o—m—p)nol

92 _\/2—“_023 o)
and g, is given by Eq. A27. The unknown parameters are P,
15 By, and 0,. (The parameters describing the double gaus-
sian noise (7,; py, 0,55 M. O.p) Will have been obtained
previously.) p, (in Eq. A27) is an offset parameter to allow
for the possibility that a stimulus artefact or a field con-
taminates the failure records. u, is different from the pre-
viously introduced offset parameter because it only affects
the failures peak, whereas € offsets the entire distribution.
Any offset required in the continuous distribution g, is em-
bedded in p,. P is obtained from Eq. A3, with K = 1. u, and
0, are obtained from Egs. A4 and AS, and p, is obtained from
Eq. A8. The disadvantage of using a normal distribution to
represent the nonfailures is that these responses are usually
skewed towards larger amplitudes.
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Gamma distribution
Here
AB
42 = mﬁx?"e'“- ©)

The parameters A and 8 are commonly referred to as scale
factor and shape parameter, respectively. This distribution is
positively skewed. The unknown parameters are P, i, A, and
B, and these are obtained using Egs. A3, A8, A30, and A31,
respectively. This function was previously used to describe
the distribution of the amplitudes of spontaneous synaptic
potentials in autonomic ganglion cells (McLachlan, 1975,
1978).

Weidull distribution

Here

gz = Yax¥le ™ (7

This distribution (Freund, 1992, p. 233) depends on two pa-
rameters (7y and 8). It is very flexible in fitting distributions
of any skewness. The unknown parameters are P, u,, vy, and
8, and these are found using Eqs. A3, A8, A33, and A34,
respectively.

Cubic transform of a normal random variable

1

27w o,

This transform was used by Bekkers et al. (1990) for the
amplitude distribution of spontaneous miniature synaptic
currents and by Jonas et al. (1994) for evoked responses. The
use of this distribution is predicted from a linear relationship
between transmitter concentration at the postsynaptic recep-
tors and the synaptic current. The reason behind the use of
this transformed normal variable is that synaptic current was
assumed to be proportional to the contents of a vesicle de-
termined by volume. Because vesicle diameters are normally
distributed (Bekkers et al., 1990), the current is distributed
as the third power of a normal variable, giving rise to Eq. 8.
The unknown parameters are P, i, i,, and 0, and these may
be obtained from Egs. A3, A8, A36, and A37, respectively.

42 = KBt (g)

Failure to stimulate the afferent axon(s) and
failure to release transmitter

Extracellular stimulus currents can be adjusted to be just
above threshold for a single afferent axon or a small group
of afferent axons. If the threshold current increases, or if the
spread of the current from the stimulating electrode into the
axon is altered by swelling or damage to the tissue surround-
ing the electrode, some of the failures to respond to a stimulus
might be failures to stimulate the axon. It is possible to in-
troduce another parameter to the analysis that will separate
the two types of failures, but only when the release process
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is constrained to an explicit probabilistic model. Here we
consider the partitioning of failures for both the binomial and
compound binomial models, and Eq. 1 becomes

K
M, = gy + (1 — m) X Pq;, )
j=0
where 7, is the proportion of failures caused by failure to
stimulate the axon. g; is defined by Eq. A12 or A16.

Binomial distribution

The P;s are defined by Eq. A17. The unknown parameters are
T, probability of release p, quantal size Q, quantal variance
o}, and offset €. To find 7, we consider the probability
density of all responses (including both types of failure) as
a mixture of two distributions, as indicated in Eq. 9. In this
case, we make use of the unconstrained model, with K = 1,
and Eq. A3 is the appropriate equation for 7,, but written as

o= > }{_} Tod0- (10)

=174

The equation for the release probability is altered from Eq.
A18 by allowing some of the failures to be stimulation fail-
ures. The correct equation for p is Eq. A39. The offset is also
altered by this modification, and € is now given by Eq. A40
or A41. The equations for quantal size and quantal variance
are independent of the way in which the failure peak is par-
titioned. These parameters are the same as for the binomial
model binomial probabilities above.

Compound binomial distribution

The Ps in Eq. 9 are defined by Eq. A19; otherwise, the
problem is identical to the one for a uniform binomial dis-
tribution. The equation for 7, is as above (Eq. 10), as are the
equations for the offset, quantal size, and quantal variance.
The only equation to change is the one for release prob-
abilities, and this is now given by Eq. A42.

Testing the convergence of the algorithms and
the accuracy of parameter recovery

The algorithms described above were implemented as double
precision IGOR Pro (WaveMetrics, Lake Oswego, OR) func-
tions on a Macintosh computer. They were tested on prob-
ability density functions appropriate for each model. These
density functions were calculated from the appropriate equa-
tions using parameter values that are representative for syn-
apses on central neurones. The density functions were evalu-
ated over a sufficient range of the random variable such that
the integral of the function over this range was between 0.999
and 1.0. Thus, we tested the algorithms against a completely
specified distribution, because this permits the accuracy with
which the parameters are evaluated to be determined. To
calculate the likelihood, the number of observations from
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which the density function was formed is required. In all
simulations, this number was assumed to be 500.

We terminated the optimizations when the sum of all of
the absolute changes in the P;s after an iteration was less than
1076, Other termination conditions dependent on minimal
changes of other parameters (u;s and 0;s) did not improve the
accuracy and, therefore, were not implemented. For the mod-
els that required the numerical solution of a recursive equa-
tion, we required an accuracy of 1077 in the estimation of the
root.

RESULTS

The aim of this section is to demonstrate the convergence of
the algorithm for each model discussed in the previous sec-
tion, and to determine the accuracy with which the param-
eters can be estimated for a completely defined density func-
tion. Except for the continuous models, we have chosen a
signal-to-noise ratio of 2.5. The number of components (K)
was set to be 5. The same skewed noise distribution was used
for all the simulations and was described by the sum of two
normal density functions. We have chosen initial estimates
of parameters to deviate from the known values by a mini-
mum of 20% and a maximum of 200%. To test for the sen-
sitivity of the starting values, 100 random estimates within
the boundaries given were used for each probability density.
All recursive schemes were insensitive to starting values, and
the error introduced by the randomized estimates was small
compared with the accuracy of the algorithm. Therefore, we
defined the relative accuracy as the ratio of the absolute dif-
ference of the result and the correct value divided by the
correct value. As predicted by theory, convergence of the
log-likelihoods was monotonic for all models tested.

Deconvolution of skewed noise

A fully unconstrained deconvolution was applied to recover
the parameters of a simulated noise distribution, which con-
sisted of the sum of two normal probability densities. Equa-
tions A3, A4, and A5 were applied to the data that provided
the distribution shown in Fig. 1 A (7, = 0.8; n,, = —0.1,
o,, = 08; n, = 0.4, o, = 0.9). To recover the parameters
when signal-to-noise is small, as it is in this example, we set
the convergence criterion to 1077 (instead of 107¢ as de-
scribed in Theory and Methods). Convergence in this case
was obtained after more than 160,000 iterations with a rela-
tive accuracy of <0.17 for the Ps, <0.14 for the s, and
<4 X 107 for the o;s. This example illustrates the known
behavior of the EM algorithm when the signal-to-noise ratio
is small. However, with even more rigorous convergence
criteria as used here, it is possible to obtain more accurate
values.

Unconstrained deconvolution

In Fig. 1 B, a deconvolution is shown where the P;s and p;s
are unconstrained and negligible quantal variance is as-
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FIGURE 1 Unconstrained probability deconvolutions. The insets to the right of the figures show the convergence characteristics for particular parameters.
L corresponds to log-likelihood, and PD comresponds to probability density. Data and reconvolutions superimpose in all figures. (A) Unconstrained de-
convolution for a mixture of two gaussian components. (B) Deconvolution based on a noise with two gaussian components (A ) allowing for unconstrained
means. Insets show four out of cight parameters. (C) Deconvolution as in B, but where the means are constrained to show equal spacing (Q) and the multimodal
distribution is shifted to the right (€). (D) Deconvolution as in C with the inclusion of quantal variance (03).

sumed. The reason for presenting this example is that we can
compare subsequent models with respect to speed of con-
vergence and accuracy. In this example, the P;s were 0.1, 0.2,
0.35, 0.2, and 0.15; the p;s 0.7, 2.3, 4.6, 6.3, and 8.5, and the
noise was as described in the previous section. Starting con-
ditions for the probabilities were chosen that differed by
>20% from the known parameter values. We used Eq. A3 to
calculate the Ps and Eq. A8 to obtain the p;s. Convergence
was reached after 314 iterations with a relative accuracy of
<1 X 107* for the P;s and <4 X 107* for the p;s.

Quantal deconvolution

In this simulation (Fig. 1 C), the probabilities were uncon-
strained, but the quantal amplitudes were constrained to
show a constant separation with zero quantal variance. An
offset of the density function (€) was included. The P;s were
0.1, 0.2, 0.35, 0.2, and 0.15; Q and € were 2.5 and 1, re-
spectively. The noise was as described in Skewed Noise. We
applied Egs. A13 for Q and Al4 for e. Convergence was

reached after 504 iterations from starting conditions
well away from the known values. Relative accuracy was
<3 X 107* for the probabilities, <4 X 107* for € and <6 X
1076 for Q.

Quantal deconvolution with quantal variance

Fig. 1 D shows a deconvolution that had the same parameters
as the quantal deconvolution in the previous section but for
which a quantal variance (07) was included and equalled 0.2.
We used Eq. A13 for Q, Eq. Al4 for €, and Eq. A15 for
o7 Convergence was reached after 318 iterations with a
relative accuracy for Q and € as for the example in the pre-
vious section. Relative accuracy for quantal variance was
8 X 107*, which was well within the accuracy for the other
quantal parameters. Note that within the first 40 iterations,
o}, increased and then decreased. We also tested the algo-
rithm for the case when no quantal variance was included but
when the starting conditions assumed a non-zero value. The
algorithm for o7, converged to zero. The rate, however, was
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usually slow, and up to 1000 iterations were required. The
algorithm also works for negative variances, as long as
o%>0.

Binomial deconvolution

In this simulation, all of the other parameters were the same
as in the previous section except that the P;s were constrained
to a binomial process with p = 0.4 (Fig. 2 A). Equation A13
was used to obtain O, A14 for €, Al5 for o, and A18 for
p- Although quantal separation and quantal variance were
incorporated, it took only 294 iterations to converge to the
final values, which is less than used in the previous section.
Faster convergence could be expected, because the binomial
assumption imposes a tight constraint on the Ps. Relative
accuracy for p was < 1 X 107*, and for the remaining pa-
rameters the accuracy was comparable to that obtained in the
previous section.

Binomial deconvolution including
stimulus failures

In this example, we illustrate Eq. A38 to obtain p when some
of the failures were not caused by release failures (Fig. 2 B).

A o i
Binomial Deconvolution
—t e
[ K] - [
1250
e [ a5
'Y} ’ — Lo
o s 10 o 200
Ampinude Number of Rerations
B .
Binomial Deconvolution
With Extra Failures
o1 —_ L 120
[
e o
]
L 02
[T ]
[ ] s 10 o 200
Ampiiude MNumber of Rerations
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We used the same parameters as in the previous section to-
gether with a parameter m, = 0.2 to account for the non-
release failures, which was calculated according to Eq. A3.
The final result was obtained after 264 iterations with a rela-
tive accuracy of <3 X 107* for 7, and p. The reason con-
vergence was faster in the present simulation than in the
previous one relates to the distinct failure peak, which
quickly forces the convergence of € and Q into the correct
range. We tested the algorithm for the case where there were
no extra failures in the data but some were assumed in the
initial estimates. The final result was obtained after about
1000 iterations with the cofrect answer of zero for the prob-
ability of additional failures.

Compound binomial deconvolution

In Fig. 2 C, we simulated a density function that had an
underlying compound binomial release process. The p,s were
0.8, 0.6, 0.4, and 0.2. For this particular case, the results were
obtained using Egs. A13 for Q, A14 for €, Al5 for 0, and
A22 for the p,s. The final result was obtained after 1860
iterations, which was significantly more than was required
for the binomial cases. Relative accuracy was <2 X 1073 for

c Compound Binomial Deconvoiution
| [
o \M[:
. ~__=als
< A
" — 7 le

[ ] S *° II'.-;'.dL

D : .

Compound Binomial Deconvolution

with Extra Failures

El& —

Ampiihade Number of Rerations

FIGURE 2 Deconvolutions with constrained probabilities. Insets to the right show convergence characteristics. All Figures are based on quantal spacing
(Q) with offset (€) and quantal variance (o). (A) Binomial probability constraint ( p). (B) Binomial constraint including extra faitures (17,). (C) Compoand
binomial constraint (p,, p,, p5. p,)- (D) Compound binomial constraint including extra failures (7).
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the quantal parameters and <8 X 1072 for the p,s. Signifi-
cantly faster convergence was observed when the signal-to-
noise ratio was >2.5.

Compound binomial deconvolution including
stimulus failures

In the example illustrated in Fig. 2 D, we used Egs. A13 for
0, A40 for ¢, Al5 for o, A42 for the p,s, and A3 for =,
The parameter values were the same as for the previous sec-
tion, and 71, = 0.1. Monotonic convergence was reached after
2985 iterations, providing a relative accuracy of <0.06 for the
p,s and <0.04 for 7, The other parameters were resolved
with the same precision as in the previous section. Conver-
gence to the final value took considerably longer than for the
preceding examples. The accuracy for the p, s was less than
in the previous section because the precision with which 7,
can be resolved determines the accuracy with which the com-
pound binomial parameters can be found. We tested this re-
cursive scheme for an example where no extra failures were
included but where the starting estimates assumed additional

A
Double Normal Distribution
_ L e
: os
E 3
a1 : [“
s
e — = [,
% r3
'Y} . [z
° H ) ° 2 ©
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B
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N u[;
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failures. Under these conditions, convergence was slower,
and the recursive scheme finally reached a value for 7, close
to zero.

Non-quantal models

Because the amplitude distribution of the failure records cor-
responds to the noise distribution, we have chosen the same
skewed noise distribution as that used in the previous ex-
amples. The amplitude distribution for the responses was
assumed to be a continuous unimodal density function, and
the four distributions considered in Theory and Methods
were used.

Normal distribution

Fig. 3 A shows the two components in this mixture. The pa-
rameters for the response distribution were P = 0.6, p, = 5,
03 =25, and p, = 2. In principle, the problem is not dif-
ferent from the noise deconvolution illustrated in Fig. 1 A.
P, p,, 03, and p, were calculated using Egs. A3, A4, AS, and
A8, respectively. The final results were obtained after

C
Weibull Distribution
L aso0
[0
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0.0 [1.6
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FIGURE 3 Nonquantal deconvolutions. Insets to the right show convergence characteristics. Failures assumed to obey noise represented by the sum of
two normal distributions (Fig. 1 A) with variable offset u,. (A) Normal distribution to represent evoked unimodal distribution (7, i, 03). (B) Gamma
distribution representing evoked responses (#,, A, B). (C) Evoked responses described by a Weibull distribution (,, 7y, 8). (D) Cubic transform of a normal

random variable representing the evoked unimodal distribution (7, p,, 03).
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47 iterations with a relative accuracy of <1.5 X 1073 for P,
<1 X 1073 for p,, and <2.5 X 1073 for o2

Gamma distribution

For this model, the constraint that the response distribution
is only defined for positive values of the density function has
to be implemented. The parameter values used were P = 0.5,
n, =12, 8=6,and A = 1.2. We used Egs. A3 to obtain
P, A8 to optimize p,, A30 for A, and A31 to obtain B. Con-
vergence was reached after 253 iterations. Relative accuracy
was <2 X 1073 for P, <9 X 1073 for 8, and <2 X 1073 for
A. Because the implementation of the iterative scheme is
based on an approximation of I'(B) as well as a numerical

solution for B, the accuracy is still acceptable but not as high
as it was for other models.

Weibull distribution

The distribution is defined for positive values of the con-
tinuous distribution only. As a rule of thumb, the parameter
7 describes the skewness of the density function and typically
takes values <0.1 for a positively skewed distribution. The
parameter & describes the width of the distribution and takes
values >1. (Note that for 8 = 1 the Weibull distribution
becomes an exponential distribution.) The parameter values
used were P = 0.5, y = 0.02, 8 = 25, and p, = 1.5. The
values of y and 8 required Egs. A33 and A34, respectively.
For the example illustrated in Fig. 3 C, the results were ob-
tained after 867 iterations. The parameters were recovered
with high precision (relative accuracy <4 X 10™* for vy and
<3 X 10™*for 8). In practice, although y and § must maintain
a certain proportionality to describe adequately a positively
skewed response distribution, the optimization based on
these recursive equations is well behaved.

Cubic transform of a normal random variable

As for the two previous density functions, the cubic trans-
form of a normal random variable is only defined for positive
responses. Typical parameter values are 1 < p < 3 and
o < 1. The values used in Fig. 3D were P = 05, p, = 1.7,
03 =03, and u, = 1. We used Egs. A36 and A37 to obtain
final values of p, and o2, respectively. The results were ob-
tained after 81 iterations, with a relative accuracy of 7 X 1074
for p, and 6 X 1072 for o2. In practice, the optimization based
on Egs. A36 and A37 is well behaved.

DISCUSSION

The results show that the parameters for each model can be
recovered with high accuracy. Convergence graphs also in-
dicated that the EM algorithm converged monotonically.
This was true for all of the models examined. The main
advantage gained by using the EM algorithm is that the log-
likelihood function is guaranteed to increase monotonically
with each iteration. Successive iterations will always con-
verge to a local maximum. Convergence may be to one of
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many local maxima, but in practice these local maxima will
form a compact connected set over which the parameter val-
ues will not differ significantly (Boyles, 1983; Wu, 1983;
Redner, 1984). It is important to establish how sensitive the
solution is to the starting estimates of the parameters for a
given model, sample size, and signal-to-noise conditions. It
was shown in Results that for the conditions simulated, the
solutions showed negligible sensitivity to the initial estimates
of the parameter values. Effects of sample size and signal-
to-noise ratio were discussed in the companion paper. Other
algorithms, such as the Newton-Raphson method, are faster
and can be applied with little modification to the different
models, but they are not as robust as the EM algorithm (see
discussion in Dempster et al., 1977; Ling and Tolhurst, 1983;
Redner, 1984; McLachlan and Basford, 1988).

A completely different approach to parameter identifica-
tion using Bayesian estimation techniques has recently been
published by Tumer and West (1993). This procedure has
advantages and disadvantages over the EM algorithm. Its
advantages are that the solution is not dependent on the initial
guesses of the parameter values. In addition, it provides con-
fidence limits as well as the means of the discrete amplitudes
and their probabilities. Its disadvantages are that a knowl-
edge of the initial priors is essential. Currently, it can only
be applied to an unconstrained model and cannot handle
skewed noise distributions.

The equations for the quantal parameters and for the bi-
nomial and compound binomial release probabilities differ
from those given by Kullmann (1989). The equations in this
paper have been derived by strictly following the procedures
outlined by Hasselblad (1966), and they ensure convergence
to the correct solution. In contrast, the equations provided by
Kullmann for the quantal parameters do not use the EM ap-
proach and, consequently, convergence cannot be guaran-
teed. This is particularly true if the noise distribution is rep-
resented by the sum of two normal probability densities.
‘When convergence does occur, the accuracy achieved can be
unacceptable. The equations for the binomial and the com-
pound binomial model given here allow the optimization in
a single step, whereas the scheme proposed by Kullmann
relies on a two-step procedure: in the first step, the uncon-
strained probabilities are estimated, and in a second step, they
are optimized for the binomial or compound binomial con-
straint. Our procedures are more efficient in reaching the
final results.

We have also provided equations for recovering the pa-
rameters of bimodal distributions. These distributions have
two applications. One is to provide an alternative hypothesis
that apparent regularly occurring peaks in the amplitude dis-
tribution of evoked responses are caused by finite sampling,
and that a large variability in the discrete amplitudes that
arise from variations in transmission at individual active
sites, or through variations in the amplitudes of responses
originating at different sites does not allow the resolution of
discrete amplitudes (Bekkers et al., 1990; Clements, 1991).
The other application is one where failure to stimulate the
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afferent axon occurs, and an unknown proportion of the fail-
ures in the response can be attributed to this problem. The
equations allow this proportion to be determined.

The application of these algorithms to finite samples has
been introduced in the preceding paper (Stricker et al., 1994).
The paper uses methods based on balanced resampling and
shows how to obtain confidence limits for parameter esti-
mates of the models of synaptic transmission for which the
equations have been derived in this paper.

We have been assisted in this work by many helpful discussions with Dr.
Daryl Daley. We are also grateful to Drs. John Bekkers and Dennis Turner
for their comments on the manuscript.

This work was supported by fellowships of the Swiss National Science
Stipendien to C. Stricker.

APPENDIX

Unconstrained model

In this model, the amplitudes {p, i,, - - -, piy} and the variances associated
with them {02, 03, - - -, 02} are unconstrained. The only constraint on the

probabilitics is that they must be positive and sum to one, ic.,

K
SP=1 and P;=0 forallj.

=0

The equations for updating P}, p;, and o7 in this model have been derived
by Hasselblad (1966) and were presented by Kullmann (1989, Egs. R1, R2,
and R3). We present them here for completencess and to provide consistency
withthemﬁonmdinallthcfolbwmgmodds.mwsavmmmbe
fitted to a particular model are (x,, x,, - * -, x). Throughout this Appendix,
the updated parameters are indicated by a * superscript.

Noise represented by a single gaussian probability density
Let

1 2
= e-(&-ny)zflt, Al
U \/2_‘!17,- (a1
and
K
M, =M, 0)=2P,qi. (A2)
=0
Probability;
13 £ .
%pgiﬂq;, j=01,---K—-1 (A3)
and
K-1
- 2P
=0

where P is the updated probability associated with p; and P, is its value
from the previous iteration, f; is the frequency of the observation x;.

j=01,---K (a9
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Variance:

13 g .
0’,?'=N—Pj§7,iqg(x.~-m)z, j=01,---K. (A5
p! and o7 are the updated mean and variance. The previous value of p, does
not appear explicitly in Eq. A4, but it is implicit in g,.. Similarly, the previous
value of o7 is implicit in g,. (Eq. Al).

In some situations, it might be appropriate to restrict o7 to be the variance
of the noise, in which case Eq. AS will not be required. If this is not done,
too many degrees of freedom will be introduced. However, when seeking
the parameters for a mixture of two normal distributions to represent the
recording noise, the variances can be different, and Eq. AS is used together
with Eqs. A3 and A4, with K = 1.

Noise represented by the sum of two gaussian
probability densities

Here

G5 = T8y(x;; Buy> 0y) + (1 — 7,)85(x;; m, 05), (A6)

! e~ — patf20,

8y = \/271 o (A7)

and similarly for g;. @, is the probability attached to the first component
with p. to be the variance of the sum of the two gaussian distributions
(Kullmann, 1989, Eq. 3). The same procedure as outlined by Hasselblad
(1966) can be used to obtain the equations for this form of g,
Probability: See Eq. A3.

Amplitude:
(1 -
SLp (82 -+ BT )
u="= 0 )
8yT. . 8y
Sur( g™

Variance: No formula is given because this would provide too many free
parameters. Instead, the variance associated with each amplitude is the noise
variance.

Quantal models

In these models, the amplitudes are separated by equal increments, with all
amplitudes shifted equally by an offset. This offset could be introduced by
stimulus artefact and/or field potentials. The variance could be constrained
to be the noise variance, or it could be the noise variance added to a quantal
U trained babiliti

Noise represented by a single gaussian probability density:

e—5-R-€na}

1
RNV



Let
K
M, =3 Pg;
=0
and the log-likelihood
N
L =31 nM)
Probability: P, is determined by Eq. A3
Quantal size:
L _LfE, M Lh4, -0~
0~ 2w g~ e g
‘When
N £ K Hx. —
) 515 pg 9
=0 gr==— - (A9
s, 1
Zy2Pa
i=1" i j=1 i
Quantal variance:
2 ZPiq, ((!. Q- —ay) (A10)
=1 ')=l

When (aL/3Q) = 0, the RHS cannot be solved explicitly for o, because o,
is embedded in ;. The roots of Eq. A10 must be obtained numerically. We
used an algorithm described by Breat (1973, Chapter 4) for this purpose.
Offset:

a MNfk x—jQ—
L_3hfp,nfe
d€ FHF. 0‘,2
When
< [ < x,—jQ
a ZyZra g
x-0 e == ) (A11)
2 ZP
=1 '[=° q’a-z

Note that if quantal variance is assumed to be zero, or very small compared
with the noise variance, then 07 = o7, and the o7 terms cancel in Egs. A9
and All.

Noise represented by the sum of two gaussian probability densities: Here

q; = T.8,(X;; oy, 0y) + (1 — 7,)g5(x;, g, 03),

2
e - payney

=0, t+jop (Al2)

1
gu_\/z_"“’li
and similarly for g, The procedures outlined above can be followed to
Probability: P; is determined from Eq. A3.

Quantal size:
s 2,,( (x_-;ﬂ,,&a_,_,i%)
Q‘ =1 ',—1 y %y

¥ £ K 7 2
ZEEP,-(&;". ;1; + 82,'(1 - ) ;@) (A13)
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Lg ( ro-w2)
nfThodl e (A14)
Quantal variance: The following equation must be solved numerically

5L5p {—*L{(x S0 e P - o)

i (A15)
+ 80 o - o) -

Note that if o, is assumed to be zer0, 05, = 02;; 03 = 02; but this does

not lead to significant simplification of Egs. A13 and Al4.

Bi ial babiliti
In this model, all of the release probabilities are identical.

Noise represented by a single gaussian probability density:

e R e}

(A16)

K
M, =3 P,
.

P,=%C(1 - pFip, (a17)

p is the release probability at all release sites, and P; is the binomial co-

cfficient. The log-likelibood is L = 3%, £, In(M,).
Probability: To maximize L with respect to p, we note that

52 ra(its)

Putting al/dp = 0 and because 0 # p # 1, we have

N f K
kEhSpg-5t3p,,
=17 1j=9 =1 ']=l
This equation provides a recursive procedure for updating p, which appears
explicitly in the LHS and implicitly (in P)) in the RHS (see Hasselblad, 1966,
Egs. 18-20)). Note that M, = 3%, P,g,and 37, f; = N. The equation above
becomes

P =3z 2 211’41, (A18)

l=l 'Fl
Quantal size: Bewncqiinth'smdehsﬂxmsintheqmmlmodel,
the appropriate equation for Q is given by Eq. A9, with P; now determined
by Eq. A17.
Offset: See Eq. All, with P; defined by Eq. A17.
Quantal variance: See Eq. A15.

Noise represented by the sum of two gaussian probability densities:
Equation A12 defines g;. The recursive equation for p proceeds exactly
as above for this new definition of g, and Eq. A18 is the appropriate cqua-
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offset are given by Egs. A13, A15, and A14, respectively, remembering that
P; is defined by Eq. A17.

C ! bi ial probabiiti
In this model, the release probabilities at the K release sites are

Py P» > Pr The probabilities P,, P,,- - -, P, associated with
the amplitudes py, |, - -, uy are defined by the coefficients of
the polynomial

K
G(=Il@q +p>2)
r=1

(A19)

=P, +Piz+ P22+ -+ P2 +---+ P

whereq, =1 —p,r=1,2,---, Kand z is a dummy variable.

Let
Gi(2) = G,x(2)q, + p,?)
and
G, (2)
<t (A20)
=P,+P, z+P 2+ ---+P 7+ ---+P, !
forr=1,2, - - -, K — 1. When comparing Egs. A19 and A20, it can be seen
that
P,1-p)+P,,p forr=1.2---K—-1,
Py=(1-p)P,, (A21)
and
Pr=p, Py,

Noise represented by a single gaussian probability density function:

LI

K
and M, =3 Pg,.
=0

log-likelihood function with respect to p,.

The expression for aP;/dp, can be obtained from Eq. A21.

& f; P, S F-P,; Py
+ Y qa—=).
Eu( Tiopt e, e,

=1

Setting this equation to zero, and rearranging terms gives

N f k-1
p,ZM Pogy + 2P4,+qux

=1

N f k-1
=_2‘;§ P,qz+21(P,-—P,,-(1—p,»q.~ .
i= 1 =

The term inside the brackets on the LHS is M, (sce Eq. A2) and the sum on

i of f, is N. This equation provides a recursive procedure for p, (as for the
binomial distribution above), and we obtain

=y E 2 P,; P.9 (A)

=1 'Fl
where p?is the update on p,, We have used the identitics in Eq. A21 to
simplify the RHS. The P;s can be calculated from the p,s and the recurreace
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tationshi
P(K) = P, (K — Dp + P,(K — 1X1 — py)
Po(K) = Po(K — 1X1 — py)
P(K) = Pp_,(K— 1)pg

where P(K) is the probability associated with the jth amplitude when there

are K release sites. This recurrence relationship can be derived from Eq.

A19. Using the notation from Eq. A23, Eq. A19 gives

j=12--K-1
AD)

K
G2 =1l +p2 (A24)
=1
=PK)+P(K)z+P,(K)22+ - -+ P(K)Z +-- - + P(K) 2~
and
K-1
G @) =11 (g, +p;2)
=1
=Py(K— 1) + P,(K — 1)z + P,(K — 1) (A25)

+---+P(K—-1)2 +-- -+ P (K— 1)

Becanse G(z) = Gg_(zN4x + Px2), multiply Eq. A25 by (¢ + pr z) and
cquate the result with Eq. A24. Equation A23 is obtained by cquating the
cocfficicats of z’. The procedures for calculating O, €, and 0, are unchanged
from the quantal model (Egs. A9-A11) except that the P;s must now satisfy
Eq. A19. The compound binomial coastraint could be applied without the
constraints of quantal spacing, and quantal increments in variance, in which
case the p;s and o;s can be calculated from Eqs. A4 and AS.
Noise represented by two gaussian probability density functions:

If the noise is represented by two normal distributions, the calculation
for P;s is unaltered. Previously derived equations apply for O, €, and o,

Non-quantal modeis

We have derived the equations using the EM algorithm to find the best
fit to the recorded data for a normal distribution, a gamma distribution,
a Weibull distribution, and a cubic transformation of a normal random
variable.

We let
M, =(1-P)g, + Pq,, (A26)
where
1 =, 1-m,
== (-1 —pat) 202 L s
qa 21(0 e -+ o e ¢), (A27)

and g, is the coatinnous probability density representing the distribution of
synaptic currents (excluding failures), and (1 — P) is the probability of
failures. Equation A27 is the sum of two normal distributions representing
the recording noisc. The mean ., has been introduced to allow an offset for
the failures peak, possibly caused by stimulus artefact or an extracellular
field.

Log-likelihood

N

L =3 fin(M).

=1
Normal distribution

1

= .‘“—dn"i
92 \/27” py e (A28)

The equations for P, p,, p,, and o7 are identical to those used in the en-
of two normal distributions and the (sole) response peak by a single normal
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distribution. P is obtained from Eq. A3, with K = 1. p, is obtained from
Eq. A8. p, and o2 are obtained from Eqs. A4 and AS, respectively.

Gamma distribution
Put

x" le™a= (A29)

9= r(p)

in Eq. A26. We require the iterative equations for P, u,, A, and B. The
equations for P and u, arc Eqs. A3 and A8, respectively. To obtain the
equation for A, we require 39,/0A. This derivative is

__ (B_.
a =2\\7%)
Setting L/3A = 0 and solving for A we get
” .
z%qil
At:B%. (A30)
E_iq X;
i=|~" “

To obtain the equation for 8, we need to solve (for B)

and this requires the derivative 3g,/3B. To obtain this derivative, we use
Stirling’s approximation for I' (8) (Abramowitz and Stegun, 1965,
p- 251)

1 1

—_— anz-p
re) ;;Z‘l'e’A

1+ + 1 139 57 + -t
x 128 T 2888°  518408° 24883208°
and the following derivatives:

2o = (35— 1- @) gorn

5?(‘\&’-.) = AP x*7! (In(x) + In(A)).
The large number of terms in the approximation for I'"'(B) is necessary
if B < 1, and high accuracy is required when solving Eq. A31 for 8.

ﬁ=_ lg-i%
F i R
(o m(2) e - )
’ B/ 28 1288 1208 62088°
The equation for B then becomes
i{—;ir.-'"t‘“ (A31)

( +...(5)+L+L . > o

(e +(3) + 35 e~ e~ ") =©

This equation must be solved mmnerically using an algorithm such as the
onc described by Brent (1973, Chapter 4).
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Weibull distribution

= —1,-u?
9o = yOx7 e

As under Gamma Distribution above, P and ., are obtained from Egs. A3
and A8, respectively. To obtain y and 8, we require the solution for
al/dy = 0 and aL/33 = O where L = I, fin(M).

(A32)

oL
S‘zu w

Using the identity(#@y)e—yxid) = —x% ™" and differentiation by parts

r=—, (A33)
i,
< Miqﬂ‘i

where 3%, (f/M,)q, = NP has been used to simplify Eq. A33. To obtain
3Ly, we use the identities

e = —yimteyte!

]
a(x,')=ln(x,)x,‘

as 2" ( i l l‘) o’
This equation becomes

NP+82f - ga(In(x,X(1 — 1)) =0,

u—l

(A34)

and it must be solved numerically to find the root for 8.

Cubic transform of a normal random variable

1 28,6\ par2e}

92 =mx.

Bszaq.-,

o, M

(A35)

When dL/ap, = 0,
1 X f
nr=231lgpxl” (A36)
Nr-lu" “
Similarly, 3L/303 = 0 when

—_EMQQ(I'I,_FQ)Z (A37)

P and p, are obtained from Eqs. A3 and A8, respectively.
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Failure to stimulate the afferent axon(s) and
failure to release transmitter

In these models, there are more failures than would be expected from an
uniform or compound binomial release process. Fitting the observed density
function to the noafailure peaks specifics the probability of failures expected
for the parameters obtained. The excess failures are thea attributed to failure
to excite the axon(s).

Binomial distributi

Let

K
M,=wgy+(1- %) 2 Pg; (A38)
=)
where 7, is the proportion of failures caused by failare to stimulate the axon.
g, is defined by Eq. A16 and P; by Eq. A17. Again,

L=3 finM).

We require iterative equations for the proportion of failures n,, probability
of relcase p, quantal size Q, quantal variance o}, and offsct €.
Proportion of failures: Equation A3 is the appropriate recursive expression
touse with K = 1.

Release probabilities:

LAy A
TTAS

] 4 aP.
Paq. -1
'.) ’E % ap

i—Kp)
1-p)

Set al/dp = 0, and becanse 0 # p # 1, the equation becomes

-S‘IB'-

N f K
=3,0- ) 2 Py,
=1 -

IK(I-".)Z 21’41, (1-'.)2 2}1’4.-

=1 'F‘. =1 'Fl

Substitute Eq. A38 in the LHS of this equation and obtain
LAY £
RS Ep =S I pkmggy+ -2 SiPa, ).
i=1‘l" i-xQ" =1

Because the LHS sums to pKN, this equation provides a recursive procedure
for p (sce Hasselblad, 1966, Egs. 18-20); ic.,

— g N £
pr=1 1'°2ﬁ(f'x°qm+21”,‘1«)

KNi=l

(A39)

where p* is the update on p, and p appears explicitly in the RHS, as well
as implicitly in P;.

Owantal size: The expression for the quantal size is not altered by the in-
troduction of stimulus failures (Eq. A9).

quantal variance.

Offset: We require the solution to

%’IE

N
f;
» Zikw
Noise represented by a single gaussian probability density function:
g; is given by (A1) and ag, /e = g,((x; — J — &)/o7).
aM,

;—‘l’oh'-l*(l—‘l.)zPi
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Then

aL N
;=i§l ("’o‘ln a_: +(1”o)21’, i fz )

Setting this equation to zero, rearranging terms, and solving for €, we obtain
JA X; _
EE (‘l’.q, ; +@1

x—JjQ
=1 d o._z

N
sk («.q,;+(1 «.)21’4.01)

=1

€t =

(A40)

Noise represented by two normal probability density functions:
Here, g, is given by Eq. A12 and

— €
&= . 845 Bats aﬂ,x-_m%_

+ (1 — m,)g5(x;s mos 0'.2)——"%T)Q—6

TE

')

+(l—-1r.)2

al

fo=

f = '-8&'(‘:" “.h a!i.)
v oy

fo= 1 - 7,) g%, B 02)
=T

(1 — =) g5(x;, 12> 03)
=21 "=l og%i> P2y 27
b o ’

where the terms on the RHS are defined by Eq. A12. The solution for €
obtained from al/3e = 0 is given by

A

2{—1(%(11.1‘!3)*‘ a- "o)z(f];*'fg )

e = (A41)

-

where

= 2‘% ("o(fn(xi = ) + o (- )

x
+(1- 70)21,,'«1;(15_ By — ) +fx(xi_ l‘hz—iQ)))-
=0

M, is defined by Eq. A38, but in this case the P;s are defined by Eq. A19.
g, can either be a normal distribution or the sum of two normal distributions.
Quantal scparation and quantal increments in variance can be included as
required, following the derivation in Failure to Stimulate Afferent Axons.
The introduction of stimulation failures only influeaces the equations for the
release probabilities and the offset. As for the binomial model, Eq. A3 is
the appropriate recursive expression to obtain %,
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Release probabilities: Use Eq. A38 in the formula for log-likelihood, dif-
ferentiate with respect to p,, the release probability at the rth release site,
and set the derivative to zero. The procedure closely follows that used in
Failure to Stimulate Afferent Axons. We obtain

P — m) 2-’- (Poqn + Ki Pg; + Px‘lx)
—P))M; )

K-1
a- ‘“'o)(Pan + 3 Pg,+ qux) =M, — gy

=1

Ly -1
—(I_Vo)zﬁ qux+2(l’,»—l’,,,-(1
=1 =1

Note that

This identity allows the development of the recursive equation for p, ic.,

A A LS I
P N 2“M,. 1-

=1

K
q,t+ > P, q; )’ (A42)
=1

where p? is the update on the previous p,.

Offset: The equation for offset is the same as for the binomial model (Eq.
A41), except that the P;s for the compound binomial must be used. If a
qnannlmodel'snotwanted,leth=uj.Tlnvaﬂancembcinacmemed
as in the quantal model, or left as the noisc variance, in which case
o? = ol for a single normal distribution or 03, = 07, and 0}, = o, in
dlemeofﬂxsmnoftwononnaldlstribunons.

Availability of source code

Source code can be made available upon written request to C. Stricker at
the address above. The code can be provided either as IGOR Pro functions
or as ANSI C routines. Requests should be accompanied by an E-mail
address.
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