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Statistical Models of Synaptic Transmission Evaluated Using the
Expectation-Maximization Algorithm

Christian Stricker and Stephen Redman
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ABSTRACT Ampitude flucations of evoked synaptic responses can be used to extra information on the probabilies of
release at the active sites, and on the ampludes of the synaptic responses generated by tansmrisson at each active site. The
parameters that describe this process must be obtained from an iormplete data set represented by the probability densiy of
the evoked synaptic response. In this paper, the equabons required to calculate ftese parameters using the Expectaton-
Maximizaton algorithm and the maximum likelihood criterion have been derived for a variety of statistical models of synaptic
transmission. These models are ones where the probabilites associated with the different dcrete ampitudes in the evoked
responses are a) unconstrained, b) binomial, and c) compound binomial. The discrete amplitudes may be separated by equal
(quantal) or unequal amounts, with or witho quantal variance. Altemative models have been considered where the variance
associated with the discrete amplitudes is suffiently large such that no quantal ampltudes can be detected. These models
involve the sum of a nornal distributon (to represent failures) and a unimodal diribution (to represent the evoked responses).
The implmentation of the algorithm is described in each case, and its accuracy and convergence have been demonstrated.

GLOSSARY

13 shape parameter for gamma distnrbution
e offset (from zero) of distnrbution
gli probability density of first noise component convolved

with the jth amplitude component
92B- probability density ofsecond noise component convolved

with the jth amplitude component
y shape parameter for Weibull distnbution
S scale factor for Weibull distribution

frequency of observation x,
K + 1 number of components
L log-likelihood
A scale factor for gamma distrbution

mean of jth component
mean of the noise distribution

IL.I mean of first noise component
sL.2 mean of second noise component
M(x, 0) mixtwe distnrbution
n number of release sites in the binomial and compound

binomial model
N sample size
p binomial release probability
PI release probability at rth site
PD probability density
Pi probability associated with the jth component
iro proportion of failures caused by failure to stimulate
'W. probability of first noise component
qq density of xi at jth component
Q quantal amplitude
ai SD of jth component
a,, SD of the noise distibution

Receivedforpubliaon 29 December 1993 and infinalform 4 May 1994.
Address reprint requests to Stephen Redman, Division of Neuroscience,
John Curtin School of Medical Research, Australian National University,
GPO Box 334 Canberra ACT 0200 Australia. TeL: 61-6249-2602; Fax:
61-6249-2687; E-mail: beth@eccles-anuedu au
C 1994 by the Biophysical Society
0006-3495/94A08/656/15 $2.00

aCr2
CTQQ
0

Xi
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INTRODUCTION

Trial-to-trial variations in the amplitude of evoked synaptic
currents (or voltages) can be used to extract information
about the underlying mechanisms of synaptic transmission.
The parameters of interest are the probabilities of transmitter
release at the different release sites involved in transmission,
the number of these release sites, the amplitudes of the syn-
aptic current generated at each active site, and the variability
associated with these amplitudes. The usual approach to es-
timating these parameters is to assume that the evoked cur-
rents are distributed as a mixture of normal distributions.
Each normal distnbution is centered on a discrete amplitude,
and these amplitudes (in inreasing order) correspond to re-
sponse failures, the response caused by the release at any one
release site, the response caused by simultaneous release at
any combination of two release sites, and so on. The relative
contnrbution that each normal distnbution makes to the mix-
ture is the total probability of release for the appropriate
combination of release sites. Obviously, for this scheme to
result in a mixture distribution with clear peaks that are ap-
proximately equally spaced, the synaptic responses arsing
from transmission at different release sites must be roughly
equal when recorded at the soma, and the variability asso-
ciated with these responses must not be large compared with
their average amplitudes. The important assumptions are that
the noise and the EPSC are statistically independent random
variables, that they are stationary processes, and that the
noise and the EPSC add linearly.
The purpose of this paper is to provide procedures for

determining the parameters of a mixture model of synaptic
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responses. One method of calculating these parameters is to
adjust them until an optimal fit to the measured probability
density is achieved, using a maximum-likelihood criterion.
An algorithm was developed by Hasselblad (1966) for this
purpose. A more formal development of this method, called
the Expectation-Maximization (EM) algorithm (Dempster
et al., 1977) has been extended to apply to fmite mixures of
a wide class of density functions (reviewed in Redner, 1984;
McLachlan and Basford, 1988). The EM algorithm has also
been applied to quantal analysis by Ling and Tolhurst (1983)
and Kuflmann (1989).

However, when all parameters of the mixture are allowed
to vary without constraints, too many free parameters exist
for this fitting procedure to provide reliable estimates
(Kullmann, 1992). In most preparations where statistical
analysis of fluctuations in evoked responses is being at-
tempted, constraints can be applied to the mixture model to
reduce the number of free parameters. One constraint is to
require the mean amplitudes to be separated by equal incre-
ments (the quantal amplitude), and for the variances asso-
ciated with each quantal increment in amplitude to also in-
crement by the quantal variance in addition to the noise
variance (which is the same for each amlite). This is the
conventional model of quantal release. Further constraints
can be imposed on the probabilities associated with the dif-
ferent mean amplitudes including a binomial distrbution
(uniform release probabilities) or a compound binomial dis-
tribution (unequal release probabilities). In this paper, we use
theEM approach to derive the recursive equations for quantal
amplitude, quantal variance, the (uniform) probabilty of re-
lease for the binomial model and the nonuniform release
probabilities for the compound binomial model. These equa-
tions differ from those provided by Kullmann (1989), and
they converge rapidly, reliably, and with high accuracy.
An altemative model of the tansmission process is to as-

sume that there is so much variability associated with trans-
mission at different comb ons of release sites that the
evoked synaptic current is best descnrbed by a skewed uni-
modal distnbution (Bekkers et aL, 1990, Clements, 1991;
Jonas et al., 1994). We have referred to these models as
nonquantal models, because their amplitude distnrbution will
not be multimodal even in the absence ofrecording noise. An
additional distnbution must be added to this unidal den-
sity to account for failures in transmission. We have used the
noise distnbution for this purpose, with a variable offset for
the mean. The EM algorithm can also be used to obtain the
best fit to the measured probability density under these cir-
cumsances. We have derived recursive equations to obtain
the parameters for a mixture of a normal distnbution (rep-
resenting failures) with 1) a normal distnrbution (Clements,
1991), 2) a gamma distnrbution (McLachlan, 1978), 3) a
Weibull distrbution, and 4) a cubic transformation of a nor-
mal random variable (Bekkers et al-, 1990).

Fmally, we have used theEM algorithm, together with the
binomial or compound binomial constraint on probabilities,
to allow for two different types of failures im evoked re-
sponse: 1) a failure caused by ilTegular stimulation ofafferent

axon(s), and 2) a genuine failure to release transmitter despite
the presence of a presynaptic action potential. In this situ-
ation, the algorithm can be used to calculate the proportion
of failures caused by failure to stulate.

In this paper, we show how the parameters for the different
models can be found, and demonsate that the equations
return the correct parameters for each model. The previous
paper (Sticker et al, 1994) presents methods for calculating
confidence limits on the model parameters obtained from the
experimental sample. It also shows how the maximum
log-likelihood obtained when fitting a model using the
EM algorithm can be used in a unified approach to model
comparison.

THEORY AND METHODS

The parameters of a mixture of(K + 1) normal distributions
are the means and the vaiances I col, L r - ; IK
o44} associated with them and the probabilties associated
with each amplitude {P0, P1. , PK}- Let the vector 0
contain all these parameters. The mixt distribution is then
defined as

K I
M(x,O)= o2= IP

j=-o 'V T
(1)

where

K

I Pji= 1.
j=O

An evoked response is measured N times, with values {xl,
x2. ,- xNj. It is assumed that this sample is drawn from the
probability density M(x, 0). The problem is to find the pa-
rameters of the mixtur M(x, 0) that gives the best fit to the
observations by using the likelhood criterion. To do this we
define the log-likelihood function L for this sample as

N

L = . fi ln(M(xi, 0)),
i=l

(2)

wheref is the frequency of the observation x,. The next step
is to find the values of the parameters that maximize the
log-likelihood function L. This is done by differentiating L
with respect to each of the unknown parameters, setting the
derivatives equal to zero, and solving these equations in a
recursive manner. In the case of Eq. 1, this means solving
(dL/dPj) = 0; (aL/IjL,) = 0; (3L/d&,) = 0 for Pj, IL,, and cr,,
respectively. The equations require initial guesses for the
optimal parameters, and these values are used in the equa-
tions to modify the initial guesses. This process is then re-
peated many times. The essence of the problem is to ensure
convergence of the procedure to the parameter values that
maximize the lih-keli Tlhis is guaranteed by the EM al-
gorithm. All of the derivations of the recursive equations are
given in the Appendix. Here we discuss the implementation
of the algorithm for each model.
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Unctned mode

In this model, there are no constraints on the PAs pLs, and crJs,
except that 2XOPj = 1. An assumption is made aboutK, and
initial estimates of Pj, pL,, and cj are chosen. The L,s must
all be different Equation A3 is used to calculate a new set
ofP Ts.These new values of the P,s are used in Eqs. A4 and
A5 to calculate new sets of pL,s and aos (Kullmann, 1989).
Eventually, after numerous iterations of this procedure, the
P,s are only altered by insignificant amounts, and the pro-
cedure is terminated.

Unless there exists very little overlap of the normal dis-
tributions in the mixture, this model will provide too many
degrees of fredom to the fitting procedure, leading to un-
reliable estimates. In some instances, it might be a riat
to assume negligible quantal variance, in which case the vari-
ance associated with each amplitude is identical and equal to
that of the recording noise. In this case, only Eqs. A3 and A4
are used.

If the correct value forK is not obvious, as will often be
the case with a small sample size or a poor signal-to-noise
ratio (quantal amplitude divided by noise SD), the procedure
should be repeated for progressively larger values of K.
Eventually, some of the P,s will be zero, or some of the pL-s
will become very similar (with smaller separation than the
noise variance). The questions ofhow to determine the most
reliable value ofK, and the confidence limits ofthe parameter
estimates for a given sample size and signal-to-noise ratio,
have been discussed in the preceding paper (Stricker et al.,
1994).
One important application of this model is to find the pa-

rameters of two normal distrbutions whose sum is used to
repreent the ding noise. Often the density function for
the recordng noise is skewed (Kullmann, 1989). It can be
represented as the sum of two normal distnbutions (Eqs. A6
and A7). To find the parameters {7rT; X1 al; A,2 aAa set
K = 1, use Eq. A3 to update wr3, and use the updated value
of w. in Eqs. A4 and A5 to update L, ;L., and a,1, ar2. An
example of this procedu is given in Results.

Un rine probabies
In this model, it is assumed that the separation between
anIdLi, 1 is Q, the quantal amplit. It is further assumed that
the variance associated with ;L,, Le., al = a + jaQ, where
e. is the noise variance and ac is the quantal varance (see
Eq. A12). Because the ;Lps cannot be adjusted independently,
any offst in the average amplitude of the failures will be
transferred equally to all the p,s. An offset can arise from a
stimulus artefact or a field potential. An offset parameter (e)
can be incorporated into the parameter set to be estimated.
When this is done, the free parameters in this model are the
P,S (j = O, 1, -,K-1), Q, cr2, andlTheequaions for
calcuating these parameters are Eqs. A3, A9, A10, and All,
rvespecively, when the noise is represented by a single nor-
mal distribution, and Eqs. A3, A13, A14, and A19 when the

noise is represented by the sum of two normal distnrbutions.
Once the a riat parameters for the noise have been
determined, initial guesses are made for the PAs, Q, qQs and
E. In the case of a single gaussian distribution, the initial
guesses are applied to Eq. A3 to obtain a revised set of P,s.
These new ,s, and the initial guesses for the other param-
eters are applied to Eq. A9 to obtain a revised value for Q,
to Eq. AIO to obtainm a, and to Eq. All to obtain , and then
the cycle is repeated until the changes i the P,s are negli-
gible. One variant of this model is to assume no quantal
variance. In this case a. = a,., and the equation for a,r is
omitted from the recursive procedure.

Binomial probabites
In this modeL the P,s are constrained to satisfy the nuatio

Pi =KCj (1 -p),ypj, (3)
wherep is the release probability at each ofthe Krelease sites
and KC, is the binomial coefficient, sometmes written as
(5. The equation needed to calulate p is Eq. A18. Other-
wise, the equations for calculating Q, a-, and e are the same
as for the quantal model except that the P,s must be calu-
lated using Eq. 3 above. Thee are four free parameters as-
sociated with this model, once K has been fixed. The pro-
cedure is to assume initial values ofp, Q, ar2 and e, calclate
the P,s from Eq. 3, and then proceed as for the quantal model.

CoWou tkxni pobabities
This model allows the release probabilities to be different for
each release site, ie.,p,,p-, -,p , pK. The relationship
between thse release probabiities and thePs is givenby Eq.
A23. The equation for Pr is Eq. A22. The equation for Q,
at, and E are the same as for the quantal model. There are
K + 3 free parameters with this model. After an initial guess
at the values forpl, p, - - ,PK' Q, a-, and e, Eq. A23
is used to calculate the PAs, and Eq. A21 is needed to alulate
ffie functionPj defined by Eq. AM0. When these values have
been calulated, they are then used in Eq. A22 to calculate
the prs. The P,s can then be calculated usg Eq. A23. When
this is completed, the quantal parameters Q, cro, and e are
calculated as for the case of unconstained probabilities and
the a opriat equations from the quantal model. The con-
staints of a quantal variance and a quantal separation could
be relaxed, in which case the appropriate equation for the ,s
is Eq. A4.
A special case has to be considered if there are no de-

tectable failures. As shown in the Appendix, the derivation
only holds if none of the ps is 1. However, as shown by
Walmsley et aL (1988), this might not always be the case.
When no failures occur, the offset bears the information
about the number of additional release sites where the release
probability is 1. The offset detrmines the magnitue of the
sma response. Scaling the offset by the quan-
tal size gives the number of release sites with a release prob-
ability of 1 plus a remaining offset, which is again caused by
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simulus artefat or field potentiaL The number of contib-
uting release sites K* is therefore K* = K + mt(E/Q), where
int(e/Q) is the lower integer value of (e/Q).

- mods

An altenative hypothesis to the previous model is based on
the premise that the noise-free evoked responses are drawn
from a distnrbtion that is effectively continuous. In this
scheme, the intinsic variability in the responses originatineg
at the same active site and the differences in am (at
the soma) of the responses orginating from different active
sites combine to create a continuoustriion of ampli-
tudes. Any apparent peaks in the observed ampe dis-
triution must be caused by finite samping. The amplitude
distribtn of the measured current is the sum oftwo prob-
ability densities. One represents the "failues," with a mean
of zero, and has the same distnriuion as the reomrded noise.
The other esns the responses to released ansmiter.
Various density funcio can be used for this continuous
distnrbutio We have derived the equatins when the con-
tinuous distion is 1) a normal distnriution, 2) a gamma
distibun, 3) a WeibuIl istribution, and 4) a cubic tras-
formation of a normal random variable. Here, Eq. 1 is modi-
fied to

(4)

where qj1 is the probability density for the filure ronses,
(1- P) is the probability offailure to release tansmitter, and
q,2 is the probability density for the resonses to released
transmitter. qil is given by Eq. A27 when the noise is rep-
resented by the sum of two normal distnbutin. Othewise,
it can be a single normal density function. The subcript i
denotes dependene on the ith sample (x).

Here

q2= e (5)

and qil is given by Eq. A27. The uninown paameters are P,
l, 1½2, and a. (The parmeters descnrbing the double gaus-

sia-n noise (ir3; pL,1, a31; p,, or will have been obtained
prviously.) pL (in Eq. A27) is an offset parameter to allow
for the possibility that a stimulus artefau or a field con-
taminates the failure records. p.1 is differet fm the pre-
viously intoduced offset parameter because it only affects
the failures peak, whereas e offsets the entire distnbution.
Any offset required in the continuous distribution qi2 is em-
bedded in 2 P is obtained from Eq. A3, withK = 1. p2and
a2are obtained from Eqs.A4 and A5, and p.1 is obtained from
Eq. A8. The disadvantage of using a nomal distriution to
represent the i u is tht these resposes are usualy
skewed towards lager amplitudes.

Gm IfxIuon

Here

A3
qi2 = x1'-e At

L'J3) x (6)

The parameters A and (3 are commonly referred to as scale
factor and shape pamewte, respectively. This distnrilb n is
positively skewed. The unknownpa s areP, g., A, and
3, and these are obtained using Eqs. A3, A8, A30, and A31,
respectively. This function was previously used to descnibe
the distnbution of the amplitudes of spontaneous synaptic
potentials in autonoicg cells (McLachlan, 1975,
1978).

WebgI iffxstkmn

Here

qi2 = y8r,'e i (7)
This distnbution (Freund, 1992, p. 233) depends on two pa-
rameters (y and 8). It is very flexible in fitting distibutions
of any skewness. The unkmown parameters are P, p.1, -y, and
8, and these are found using Eqs. A3, A8, A33, and A34,
respectively.

Cubi tan of a rwmmial randkfn variable

q=2 3V>2 x,Z3 e-((. W92 (8)

This transform was used by Bekkers et aL (1990) for the
amplitude distibution of spontaneous miniature synaptic
curents and by Jonas et al. (1994) for evoked resoses. The
use of this distrbuion is predicted fim a linear relationship
between transittr concenbation at the postynaptic recep-
tors and the synaptic cent. The reason behind the use of
this transformed normal variable is that synaptic current was
assumed to be p l to the contents of a vesicle de-
termined by volume. Because veside diameters are normally
distributd (Beklers et al, 1990), the current is distnrbut
as the third power of a normal variable, givng rise to Eq. 8.
The unknown parame reP, p.1r and cr, and these may
be doained from Eqs. A3, A8, A36, and A37, repectively.

Failure to simulate the ifferent axon(s) and
failure to ei e trfml

ExrUcelular stulus currents can be adjusted to be just
above threshold for a single afferent axon or a smal group
of afferent axons. If the threshold current increases, or if the
spread of the current from the stimulating electrode into the
axon is altered by swelling or damage to the tissue
inthe electrode, some ofthe faiuhres to respond to a stimulus
might be filur to stimulate the axon. It is possile to in-
tou another parameter to the analysis that will separate

the two types of failures, but only when the release process
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is constrained to an explicit probabilistic model. Here we
consider the partitioning of failures for both the binomial and
compound binomial models, and Eq. 1 becomes

K

M,= iroqo + (1-sTo) E PJQ, (9)
j=0

where 'ro is the proportion of failures caused by failure to
stimulate the axon. qq is defined by Eq. A12 or A16.

Binomial dishbuton

The P1s are defined by Eq. A17. The unknown parameters are
rTO, probability of releasep, quantal size Q, quantal variance
o2Q and offset E. To find iro, we consider the probability
density of all responses (including both types of failure) as
a mixture of two distributions, as indicated in Eq. 9. In this
case, we make use of the unconstrained model, withK = 1,
and Eq. A3 is the appropriate equation for 7ro, but written as

*=N f
° NfM. °q_ (10)

i=l I

The equation for the release probability is altered from Eq.
A18 by allowing some of the failures to be stimulation fail-
ures. The correct equation forp is Eq. A39. The offset is also
altered by this modification, and E is now given by Eq. A40
or A41. The equations for quantal size and quantal variance
are independent of the way in which the failure peak is par-
titioned. These parameters are the same as for the binomial
model binomial probabilities above.

Comound binomial distbuton

The P,-s in Eq. 9 are defined by Eq. A19; otherwise, the
problem is identical to the one for a uniform binomial dis-
tribution. The equation for wro is as above (Eq. 10), as are the
equations for the ofEset, quantal size, and quantal variance.
The only equation to change is the one for release prob-
abilities, and this is now given by Eq. A42.

Testing the convergence of the algorithms and
the accuracy of r recovery
The algorithms described above were implemented as double
precision IGOR Pro (WaveMetrics, Lake Oswego, OR) func-
tions on a Macintosh computer. They were tested on prob-
ability density functions approprate for each model. These
density functions were calculated from the apprpriate equa-
tions using parameter values that are representative for syn-
apses on central neurones. The density functions were evalu-
ated over a sufficient range of the random variable such that
the integral ofthe function over this range was between 0.999
and 1.0. Thus, we tested the algorithms against a completely
specified distrbution, because this permits the accuracy with
which the parameters are evaluated to be determined. To
calculate the lilkeihood the number of observations from

which the density function was formed is required. In all
simulations, this number was assumed to be 500.
We terminated the optimizations when the sum of all of

the absolute changes in the P,s after an iteration was less than
10'6. Other termination conditions dependent on minimal
changes ofother parameters (js and oTs) did not improve the
accuracy and, therefore, were not implemented. For the mod-
els that required the numerical solution of a recursive equa-
tion, we required an accuracy of io-7 in the estimation of the
root.

RESULTS

The aim of this section is to demonstrate the convergence of
the algorithm for each model discussed in the previous sec-
tion, and to determine the accuracy with which the param-
eters can be estimated for a completely defined density func-
tion. Except for the continuous models, we have chosen a
signal-to-noise ratio of 2.5. The number of components (K)
was set to be 5. The same skewed noise distribution was used
for all the simulations and was descnrbed by the sum of two
normal density functions. We have chosen initial estimates
of parameters to deviate from the known values by a mini-
mum of 20% and a maximum of 200%. To test for the sen-
sitivity of the starting values, 100 random estimates within
the boundaries given were used for each probability density.
All recursive schemes were insensitive to starting values, and
the error introduced by the randomized estimates was small
compared with the accuracy of the algorithm. Therefore, we
defined the relative accuracy as the ratio of the absolute dif-
ference of the result and the correct vahle divided by the
correct value. As predicted by theory, convergence of the
log-likelihoods was monotonic for all models tested.

Deconvolution of skewed noise

A fully unconstrained deconvolution was applied to recover
the parameters of a simulated noise distribution, which con-
sisted of the sum of two normal probability densities. Equa-
tions A3, A4, and AS were applied to the data that provided
the distnrbution shown in Fig. 1 A (7rr, = 0.8; AL. = -0.1,
ff,l = 0.8; p,2 = 0.4, c,,2 = 0.9). To recover the parameters
when signal-to-noise is small as it is in this example, we set
the convergence criterion to io-7 (instead of 10'6 as de-
scrbed in Theory and Methods). Convergence in this case
was obtained after more than 160,000 iterations with a rela-
tive accuracy of <0.17 for the P1s, <0.14 for the ;Ljs, and
<4 X 1O' for the ors. This example illustrates the known
behavior of the EM algorithm when the signal-to-noise ratio
is small. However, with even more rigorous convergence
criteria as used here, it is possible to obtain more accurate
values.

Unconstraied deconvolution
In Fig. 1 B, a deconvolution is shown where the P,s and pLs
are unconstained and negligible quantal variance is as-
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sumed. The reason for presenting this example is that we can

compare subsequent models with respect to speed of con-

vergence and accuracy. In this example, the Ps were 0.1, 0.2,
035, 0.2, and 0.15; the p1Ls 0.7, 23, 4.6, 63, and 8.5, and the
noise was as descnrbed in the previous section. Starting con-
ditions for the probabiliies were chosen that differed by

>20% from the known parameter values. We used Eq. A3 to
calculate the P,s and Eq. A8 to obtain the p,s. Convergence
was reached after 314 iterations with a relative accuracy of
<1 X 10-4 for the Ps and <4 x 1O-4 for the Ls.

Quantal deconvolutko

In this simulation (Fig. 1 C), the probabilities were uncon-

stained, but the quantal amplitudes were consrained to
show a constant separation with zero quantal variance. An
offset of the density function (E) was included. The P,s were
0.1, 0.2, 035, 02 and 0.15; Q and E were 2.5 and 1, re-

spectively. The noise was as descnrbed in Skewed Noise. We
applied Eqs. A13 for Q and A14 for E. Convergence was

reached after 504 iterations from starting conditions
well away from the known values. Relative accuracy was

<3 X 10-4 for the probabilities, <4 x 10-4 for E and <6 X

10-6 for Q.

Quana decnvolufton wMiU variance

Fig. 1D shows a deconvolution that had the same parameters
as the quantal deconvolution in the previous section but for
which a quantal variance (or.) was included and equalled 0.2.
We used Eq. A13 for Q, Eq. A14 for E, and Eq. A15 for
oa. Convergence was reached after 318 iterations with a

relative accuracy for Q and e as for the example in the pre-

vious section. Relative accuracy for quantal variance was

8 X 10-4, which was well within the accuracy for the other
quantal parameters. Note that within the first 40 iterations,
2Q increased and then decreased. We also tested the algo-

rithm for the case when no quantal variance was included but
when the starting conditions assumed a non-zero value. The
algorithm for crQ converged to zero. The rate, however, was

A
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usually slow, and up to 1000 iterations were required. The
algorithm also works for negative variances, as long as
o2 >0°
OK

Binomial decon- uio

In this simulation, all of the other parameters were the same
as in the previous section except that thePs were constrained
to a binomial process withp = 0.4 (Fig. 2A). Equation A13
was used to obtain Q, A14 for E, A15 for a-s and A18 for
p. Althugh quantal separation and quantal variance were
incorporated, it took only 294 iterations to converge to the
final values, which is less than used in the previous section.
Faster convergence could be expected, because the binomial
a mption imposes a fight constraint on the P,s. Relative
accuracy for p was < 1 X 10-4, and for the remaining pa-
ameters the accuracy was comparable to that obtained in the
previous section.

Binomial decnvution including
stimulus failures

In this example, we illustrate Eq. A38 to obainp when some
of the failures were not caused by release failures (Fig. 2 B).

A C
Binomial Deconsvokuion

ed the same parameters as in the previous section to-
with a parameter 2r0 = 0.2 to account for the non-
failures, which was calculated according to Eq. A3.
al result was obtained after 264 iterations with a rela-
;uracy of <3 x 10-4 for irT and p. The reason con-
ice was faster in the present simulaion than in the
us one relates to the distinc failure peak, which
y forces the convergence of e and Q into the correct
We tested the algorithm for the case where there were
ra failures in the data but some were assumed in the
estimates. The final result was obtained after about
terations with the correct answer of zero for the prob-
of additional failures.

mund binomial decovution
2 C, we simulate a density fumction that had an

ying compound binomial release process. Thep,s were
6, 0.4, and 0.2. For this particula case, the results were
ed using Eqs. A13 for Q, A14 for c, A15 for at, and
Dr the P,r The final result was obtained after 1860
ns, which was significantly more than was required
binomial cases. Relative accuracy was <2 X 1O-3 for
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the quantal parameters and <8 X iO-3 for the p,s Signifi-
candy faster convergence was observed when the signal-to-
noise ratio was >2.5.

Compoud binomial deovoluti including
stimulus failures
In the example illustated in Fig. 2 D, we used Eqs. A13 for
Q, A40 for 4, A15 foror, A42 for the ps, and A3 for ro.
Tbe parameter values were the same as for the previous sec-
tion, and iro = 0.1. Monotonic convergence was reached after
2985 iterations, providing a relative accuracy of<0.06 for the
prs and <0.04 for ff.. The other parameters were resolved
with the same precson as in the previous section. Conver-
gence to the final value took considerably longer than for the
preceding examples. The accuracy for the p,s was less than
in the previous section because the precision with which wo
can be resolved determines the accuracy with which the com-
pound binomial parameters can be found. We tested this re-
cursive scheme for an example where no extra fihlures were
inluded but where the starting esimates asumed additional

A

d on EM Algorthm 663

failures. Under these conditions, convergence was slower,
and the recursive scheme finally reached a value for 7To close
to zero.

No-qusna moas
Because the amlitude distribution of the failure records cor-
responds to the noise distnrbution, we have chosen the same
skewed noise distrnbution as that used in the previos ex-
amples. The amplitude distnbution for the responses was
assumed to be a continuous unimodal density function, and
the four distnritions considered in Theory and Methods
were used.

Nkwma cirbuon

Fig. 3A shows the two components in this mixture. The pa-
rameters for the response distnbution were P = 0.6, I2 = 5,
Y = 2.5, and p., = 2. In principle, the problem is not dif-
ferent from the noise deconvolution illusated in Fig. 1 A.
P, p,2, 4 and pL, were calculated using Eqs. A3, A4, AS, and
A8, respectively. The final results were obtained after

C
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47 iterations with a relative accuracy of <1.5 x 10-3 for P,
<l x 10-3 for I2, and <25 X 10-3 for i.

G-mfna iffgjfon

For this model, the constraint that the response distribution
is only defined for posiive values of the density function has
to be implemented. Tle parameter values used wereP = 0.5,
I = 12, ,B = 6, and A = 12. We used Eqs. A3 to obain
P, A8 to optimize p4, A30 for A, and A31 to obtain 13. Con-
vergence was reached after 253 itrations. Relative accuracy
was <2 X 10-3 for P,<9 X 10-3 for 3, and <2 X 10-3 for
A. Because the implementation of the iterative scheme is
based on an approximation of F() as well as a numerical
solution for 13, the accuracy is still acceptable but not as high
as it was for other models.

Wetu dot6m n

The distnbution is defined for positive values of the con-
tinuous distrion only. As a rule of thumb, the parameter
y descnbes the skewness ofthe density functin and typically
takes values <0.1 for a positively skewed distribution. The
parameter 8 descnrbes the width of the distribution and takes
values >1. (Note that for 8 = 1 the Weibull distnrbution
becomes an exponential distnrbution.) The parameter values
used were P = 0.5, y = 0.02, 8 = 2.5, and ^ = 1.5. The
values of 'y and 8 required Eqs. A33 and A34, respectively.
For the example illustat in Fig. 3 C, the results were ob-
tained after 867 iterations. The parameters were recovered
with high precision (relative accuracy <4 X 10' for y and
<3 X 0-4 for 8). In practice, although y and 8 must maintain
a certain proportionality to descnibe uately a positively
skewed response distnbution, the optimization based on
these recursive equations is well behaved.

C,k& transform of a noxmal randxom variabe

As for the two previous density functions, the cubic trans-
form ofa normal random variable is only defined for positive
responses. Typical parameter values are 1 < L < 3 and
cr < 1. The values used in Fg3 D were P = 05, pL2 = 1.7,
c = 03, and ^ = 1. We used Eqs. A36 and A37 to obtain
final values of p2 and4 respectively. The results were ob-
tained after 81 iterations, with a relative accuracy of7 x 10'-
for L2 and 6 x i0-3 for 4-2. In praCtice, the optimization based
on Eqs. A36 and A37 is well behaved.

DSCUSSION
The results show that the parameters for each model can be
recovered with high accuracy. Convergence graphs also in-
dicated that the EM algorithm converged monotonically.
This was true for all of the models examind The main
advantage gained by using the EM algorithm is that the log-
likelihood function is guaran to increase lmotonicaly
with ech iteration. Su ive iteratins will always co-

many local maxima, but in practice these local maxima will
form a compact connected set over which the parameter val-
ues will not differ significntly (Boyles, 1983; Wu, 1983;
Redner, 1984). It is important to establish how sensitive the
solution is to the starting estimates of the parameters for a

given model, sample size, and signal-to-noise conditions. It
was shown in Results that for the conditions simulated, the
sohtions showed egligile sensiivity to the initial estimates
of the parameter values. Effects of sample size and signal-
to-noise ratio were discussed in the companion paper. Other
algorithms, such as the Newton-Raphson method, are faster
and can be applied with little modifiation to the differet

model, but they are not as robust as the EM algorithm (see
discussion in Dempster et al, 1977; Ling and Tolhurst, 1983;
Redner, 1984; McLachlan and Basford, 1988).
A completely different aproach to prameter identifica-

tion usig Bayesian estimation techniqes has recently been
published by Turner and West (1993). This procedure has
advantages and disadvantages over the EM algorithm. Its
advantages are that the solution is not dependenton the initial
guesses of the parameter values. In addition, it provides con-
fidence limits as well as the means of the discrete amplitudes
and their probabilities. Its disadvantages are that a knowl-
edge of the tial priors is essential. Currently, it can only
be applied to an unconstained model and cannot handle
skewed noise distnrbutions.
The equations for the quantal parameters and for the bi-

nomial and compound binomial release probabilities differ
from those given by Kullmann (1989). The equations in this
paper have been derived by strictly following the procedures
outlined by Hasselblad (1966), and they ensure convergence

to the correct solution. In contrast, the equations provided by
Kullmann for the quantal parameters do not use the EM ap-
proach and, consequently, convergence cannot be guaran-

teed. Tlhis is particularly true if the noise distton is rep-

resented by the sum of two normal probability densities.
When convergence does occur, the accacy chieved can be
unacceptable. The equations for the binomial and the com-
pound binomial model given here allow the optimization in
a single step, whereas the scheme proposed by Kullmann
relies on a two-step procedure: in the first step, the uncon-

strained probabilities are estimated, and in a second step, they
are for the binomial or compound binomial con-

straint. Our procedures are more efficient in reaching the

final results.
We have also provided equations for recovering the pa-

rameters of bimodal distributions. These distributions have
two applications. One is to provide an altemative hypothesis
that apparent regularly occurring peaks in the amplitude dis-
tnrbution of evoked responses are caused by finite sampling,
and that a large variability in the discrete amplitudes that
arise from variations in tansmission at individual active
sites, or through variations in the amplitudes of responses

orginating at different sites does not allow the resolution of
discrete amplitudes (Bekkers et a]L, 1990, Cements, 1991).

verge to a local maximum Convergence may be to one of

664 a%

The other application is one where faihire to the



dQuar AyisBd on EM Akjorthm

afferent axon occurs, and an unknown proportion of the fail-
ures in the response can be attributed to this problem. The
equations allow this prportion to be determined.
The application of these algorithem to finite samples has

been intoduced in the preceding paper (Stricker et aL, 1994).
Tlne paper uses methods based on balanced resampling and
shows how to obtain confidence limits for parameter esti-
mates of the models of synaptic tansmission for which the
equations have been derived in this paper.

We have been assedm this work by many helpfuld with Dr.
Daryl Daley. We ae also grAteful to Drs. John Bekkers ad Dennis Turner
for their conmets on the mas
This work was supored by flowships of the Swiss National Science
Foundatio and the Sdtweinrc Stftug fur Medizinisch-Biooche
Stipendien to C Sticker.

Variance:

1 NJf
NPjM ,j=0,1,",K.NP-

(A5)

I*and< are the updated mean and variance. The previousval of A, does
not appearexplicitly in Eq. A4, but it is implicit in q. Similarly, the previous
vaheo impit in q*. (Eq. Al).

In some t , it might be prie to restrict o to be the varance
of the noise, in which case Eq. A5 will Dot be requirecL If this is not done,
too many degrees of fieedom will be intduced. However, when seeking
the prameers a mixtue of two norml disti to represent the
recordig noise, the varances can be different, and Eq. A5 s used together
with Eqs. A3 and A4, with K = 1.

Noise represented by the sum of t aussian
-b dss

Here

q# = irgi(Xi,I,1 O1) + (1- W.)g9(Xi,I2, cT2), (A6)

APPENDDC

Unc ed model

In this model, the ampludes {p#, LI,
-

-, pL} and the variances scied
with them {are , , nare nItrainedThe only corntaint ao the

probabilitis is that they must be positve and sum to one, Le,

K

7, Pi = 1 ad Pj O for al j.
j=0

The equations for updating P., t4, mld ci.
in this model have been derived

byH lblad (1966) and werep d by Kuflmann (1989, Eqs. Rl, R2,
and R3. We prsent them here for ca md to provide consistency
with the notion usd im all the following model TheT obseva to be
fitted to a partIcLr model are (x1, x2, , x^4 Throughout this Appendix,
the updated pFarmetes are indicated by a superscript

Noise ,epese by a si,b gassi probab density

Let

1
q
? _ff2 (Al)

and

K

mi = M(r, 0) = IPA^-1
j=o

Pro

N M'"
a=1 £

and

K-1

Pr= I- IP1j,
j=0

where P, is the updaed pmbabili associated with I, and Pj is its valu

the previous iteration, f, is the frquency of the observation xi.

IL7j; Mqj-X j O, 1, - ,K (A4)
NPji

where

= e P,-- n (A7)

and similarly for g,-. v. is the probabit anxhed to the first t
of the noise. Note tha this represeation constis the vaa assocated
with IS to be the varianc of the sum the two g distibutions
(lman, 1989, Eq. 3) The same procedmur as ouined by H lblad
(1966) can be used to obtain the equ for this form of q*.
Prolwiily: See Eq A3.
A g

fi. -

1 31 4 .2-V-
(A8)

Nf (g + 4(l ))

Varice. No formula is given because this would provide too many free
parameters. Instead, the variance associated with eah amplitude is the noise
varince.

Quant models

In these modes, the amplitudes are separed by equal increments, with all
(A2) amplitudes shifted equally by an offset This offset could be intrduced by

stimulus artft and/or fied lTe varince could be onstained
to be the noise variance, or it could be the noise varianc added to a quanl
variane that i nemet with the qu amplitude.

(A3)

UrmtrwakW prcbabfie

Noise repreeted by a single gassia probabiity density:

=
2
+ j.2Q

Q = quantal sme, e = o , = noise varce, and =q
varce.
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Lid OffCet

K

M, = z P,a
j=o

and the lolkd

fi (iK X. +g-(1-z).' - iQ - PA)
LV* = i- 'P ij

N f 'K i

i= £ P \ I 1j
(A14)

Quanal wriance The following equatio m be solved mically

f g2

P i: Pj s dermin by Eq A3.

I (,--j

Q=msaQ Miii aQ
i-- Mij= Ola

When

j2

5=1 'j1
PA IT-E i -I i

Qwaalwrl'c

(A9)

+ g {(1 -Q ^. ) - }2} = °

(AJS)

NedttfrQisassumedtobezro, '= c.';acrr=',butthis does

not kad to sc ant of Eqs. A13 and A14.

In this model, an of the release pobabilhits are identicaL

Noise represeIed by a singe gauim pobabiliy daesty-:

1

%-=
o,w

(A16)

aE NJf K

=acr 7 ~Q-!,-i E) t
Q5=1 '1=1 .14

(AMO)

When aQ) =0, the RHS camot be solved cxplicy for or, cm o

is cmbedded in a.. The routs of Eq. A10 mstbe obuaid numericaly. We
used anam desabdI by Brent (1973, Chapter 4) for this p .

Offsev

df K, Xi -jQe,

Wbn
N f K x-jQ

;iM 1.M-

bdNf K

d S dffitenff=Cr2,widi the noise vadncc ; m then. =rm cpawd cftmFAp A9
ad All.

Noisc epopl by dwcs qftwogamiprtUydastm-

1

e> -Xv ff = ff + ja. )gii----9f- ( 2)

and similarly for g,. The pocedures outined above can be foliowed to

obtain the following resul:
Probabiiy: Pj is determined om Eq. A3.
Qata ses-

f KL) me:( _ f- d)
i .2 + 4( W.

1'T=2

a2 T2 +j7C2

Q = quana sie, ne varce, and

varD

K

Mi = P,4-,
i=

where

P1 = 'LC-($ ~p)KipJ, (A17)
P isthe release prbblity at al releae sites and P is the bbicia co-

efficn The log-likihd is L = jf, hnA1).
Probabiity: To maximize L with respect top, we nol thdat

t iN K

Putting&/v = 0 and becae O p # 1, we have

N K
P

Nf Kr

pK 7, 7,- = 7, M' YiP,4.i
i=1 i j= i=l ii=1

This equation provides a recursive procedrMe for updatingp, which appears

explicl in the LH and implicity -7mP)mthe RHS (see lb d, 1966,
Eqs 1820)) NotethaMi =M P, Iff= N. ne quatn above
beaomes

1 NJf K

p* = IyjPq
NK M j'i*iip1

(M8)

Quantal siz Because q-in this model is the same as in the quantal mode,
the aroria te equation for Q is given by Eq. A9, with P now deterined
by Eq. A17.
Offs0 See Eq. All, with P. defined by Eq. A17.
Quana vrace: See Eq. A15.

NfM 2 2 \2

i_M~ i aI2C,
Noise represented by dte sn x two ga pro ty

A12 defines q1. The recursive equation forp proceeds exacty

3) as above for this new definito of qj, and Eq. A18 is the oprie equa-

N

L = fii).
i=l

In. sJl.aWU6
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tion. The recursive e o vfor the - size, q-a varc, ad
offset ae given by Eqs. A13,A15, and A14, respectively, remembering that
Pj is defined by Eq. A17.

PO(K) = PO(K - lXi -pK) (A23)

In tis model, the release probabilities at the K release sites are

Pi, P .. Pr The pbabities P. P, , P ih
the amplitudes , , p.1 are defied by the coefficients of
the polynomial

K

G,(z) = n (q, + pTz)

(A19)

= PO + PlZ + P2Z2 + - --+ Prz'+ - - - + PKZ

whre q, = 1 -p,, r = 1, 2, -,K and z is adummyvariable.
Let

GK(z) = G,5j(zXq, + pz)

and

G,,,Ez) (A2)

'Ap,T+~-++ .+ + p, j + . . . +Tp -

forr=, 2,- - -,K- l.W cn Eqs.Al9 andA20, itcanbc soen
that

P, = P(1 -Pr) + Pj,, Pr fDr r = 1, 2, - , K-1,

Pe = (1 - Pr),,o, (A21)

PK) = P1I1(K -1u

where PAK) is the p l o withthejth alitudewhenther
are K relase sites. This eUruno rela ip can be derived from Eq.
A19. Using the notation hm Eq. A23, Eq. A19 gives

K
GK(z) = n (qj + p,z)

,-1

(A24)

= Po(K)+ PI(K) z+ PAK) Z2 + - --+P$(K)Zi+ . . . +Pr(K)ZK

K-1

GK,(z) = H (q, +p1z)
i=l

= PO(K - 1) + P1(K - l)z + P2(K - 1)z2

+ + Pj(K - 1)z + - + PC-AK - 1)zr-1

(A25)

Because G,fz) = GK- (zXq1 +pK) multiply Eq. A25 by (qK + p z) and
equate the resul with Eq. A24. Equatio A23 is obtined by equating the
coentsofzi. e procudues fosrcalculatingQ, ,and cr, are unchanged
fmthe quantal model (Eqs A9-A1) except that theP,s must now satisfy
Eq. A19. The comPond bimial rasta coud bc appled wi the
cnstaints of quataspacig and quaual i zem invarianC, minwich
caw the pIs and ors can be ted from Eqs A4 md A5.

NHiseqewse byntwgaog ssiaprvbabifity duiayfwtms:
If the nos is r esca-d by two normal th cal_lation

for Ps is d Previously dived equai,on apply for Q, a, and cr.

PK = P,P,,- I-

Noiserqpreseed by a sic gassia probabilit densi fw m

q = V2uj and M ,= X P,q,.
1=*

Probabiiy.: To find the release probabty p, we need to ma the
logikelihood function with respect toPr

aLN f K"p
a,= Ys, z qw ap

The for aPlIaqT can be obtained Eq. A21.

p*f K-i PI
z~~~P(-i +§ qKPK)
Mi Pr ~~PI PT

Setting this equato to zc% ad r ig terns give
N f K-i

i

Pq + XP-%- +PEK)

binadiP+oo (Pjo-mPr,i(npdo))b i= i j=1

I'he term inside dsie braceft on the IJHS is M, (see Eq. A2) and the sumo
i offi is NV. 1Ei equation provides a recursie forp, (as fo the
bhxilrit tnkb ovdndweobti

1N f K

i=il i~=i

mode s

We have derived the io us the EM algoihm to find the best
fit to the recoded data for a normal dist n a gamma dis_rbut
a Welbul dis u , and a cubic -aomatio of a normal
vaiable.
We et

Mi = (1-P) qi + Pqa,
where

1 f1(-e'dr + v p.29MT/2'2
'b= \/1,~2 \r .,e O.a /

(A26)

(A27)

and q, istherntimuns probabiltdensitprsnig theddst Of
synaptic cun , and (1 - P) is the pr of
filures. Equation AV is the sum of two norma distributions r s ng
the 8recordingnoie. The mean IL has been introdoced to allow a offset for
the failur peak, posibly caused by stimulus artefact or an

fidL
Log4ikeHood

N

L = Y fihnwi).
si=

N~a d5srun

q = eC-I-P292 (A28)
(A22)

were p,*is the update on Pr We have used the idenities in Eq. A21 to
simplify the RHS. Ihe P,s cM

Ihe for P, p, 2 and cr are identl to those used in the un-
constained decofvolution butwith the En-huespeak epreentedby the sum
of two mnomal dIstrions ad the (sole) reWsose peak by asle normal

Sbice and Rema 687

P-(K) = R l(K UPK + Pj(K 'Xl PK) j= 1,2,- - -,K- II 1-
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distribuion P is obdined from Eq. A3, with K = I. L, is obtained fi
Eq. A8. A ad o2 ae obtied Eqs. A4 ad A5, respetively.
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Wet

q2= 'yz'e

G1mn2

(A32)

As eGaria Disribution above, P ad P, am obtaned fromEqs. A3
md A8, respectively. To obtain y and 8. we reqire the sohnion for
dL4 = amdI aLaS =0 wOme L = X:!If>la(M).

qcz= AL= ,e (A29)

i Eq. A26 We ruie the i v os for P, p.,, A, and 1 TEl
equatios for P and p, we Eqs A3 and AS, rspectil. To Obtain the
equation for A, we requir aq,Iak. This dvave is

Cm Vi A )

Seting aL8A = 0 and solving for ALwe get

Nf
qa

A* = i= I (A30)
f

qa Xi

To obtain the equati for 1, we need to solv (f 1)

aL famN. .

and this requi the dervative aq0Iap. To obti this derivative, we use

Stirling's approxmaton for F (1) (Abrmowitz ad Segun, 1965,
p. 251)

- eP /12 '
F(1) VX

1 1 139 571 1
x [ 12 + 288132 -584013- 2432W J

and the following derivatives:

a1 ) = (2133)) 13-I--1/2)

al(A-')# = ALP-'x (n(x) + In(A)).

The lare number of tems in the approximation for r-F(p) is neessy
if 13< 1, and high accuracy is required when solving Eq. A31 for 13.
Using the intities above, and diff ag by prts we obtain

^= AF *,_

(x Is
+ 2-1 12-pl2 ~120g 62w

The equation for thn bwoeas

xio-,.et_ (A31)

X~~~~~I4iIhl)+ + 21 l59 )

This equation must bc solved m rcay smiga algorithm suh as the
one described by Bret (1973, (Jer4).

aL TMfi 8qj,at =Y p

)y i,Mi ay

Using the identity(a4l)yXe-yxi8) = -xge,.- and dif_fretiatio by pats

daL NJf I
- = -I - Pqa --- -xI

ay M
i- I

And aIJay = 0 whn

NP

1=1
x fi
Y, m q,,x
ij=l i

(A33)

wheIeXII, (fJ/M,)q1 = NP ih bee usd ID siphfy Eq. A33. To obtain
aiJf, we use dth ideafties

(e -= -yln(xi)xr-'

-as ) = 1iwn(x)

and

)L N f/i I
aM = z Pqa I+ . -iyx)I =0.

This eq- 1o s

f
NP + 8q, q;n(x11 - yi)) = °,

ad it must be solved unerily to find te rot for 8.

CAI* transform of a noxmal ranik*n v

1 213 -=X _32, IJS_2

(A34)

(A35)

aL =N, pq2
'aI2 -I Mi 'a112

When wap.,, = O,

IN ,JtjIf2NX M. qa xi (A36)

SimilaY. aIiaa = 0 Whe

02* Y, qiz (jrI- p)2.o=in qsA i-A,

P ,and pweodud froEq& A3 an A8, MC4v=.

(A37)
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In nodels, there are nmre hihures than wo be an

oIorcom 1oumbkm!re paoc cFt1 Ft.gtheobs crveddamisy
f*uatothe nofailrepeakssapedflethepfnatlityoffa mmesxpccwd
forthe at aia ec failu maa thm a ttri ute dtofail e

to te ( s)

Let

K

Mj = T@rq. + (i - 'Ws) 7, pl%- (A38)
1=0

where vuisthe propernuoffaiurcscasedby faelueostoimuate the axon.
q- is defiled by Eq. A16 and Pj by Eq. A17. Again,

N
Lf=Ifj,)-

a=1

We require cqMive equaow fte t of filso proabiEqli
of relue p, quaal size Q, qaal var a amdo et
PwormofwilU vsFquatoA3 is theai tercuive expressonn
lo ue with K = 1.

dp= iM 1-)I P'A d

=I, i (1-T@ P}-0 )N f K

Set alAp =0, amd becaus 0 # p # 1, the equatin becomes

N K N f K

pR(l - iw > "' 7P,= (1 - w)IM" jP's-q
i=1 i j= i1 i'o1

Sdstitute Eq. A38 in the LM of ts equati m! at

pKX iM= pf + (1- ARP

Becsa the LHS sums topKW, thin equatio provide arecursive procedue
forp (see HasseIlb!, 1966, Eqs. 18-20); ie,

66

^] 71 M."(T* 04 + (I -.) I Pi vq f

)

S&ngisapatoz1-,1 =0

Setting thin equation towe,r rearrangin terms, amd solvingfor 4, we obtain

(A40)

Noewseprqesexatd by two nomialpwbabiiy densityfiamknom-
Here, q,- is given by Eq. A12 am!

Xi -5LA jQ- E
a%i = v. gxixi,L. , G5)

+ (1-,w)g247-g- Al, 0a,) 2r,2

d
'k

= - )

j=60 e

Let

-W.g=xi AqyRi CFa)

'y1

(1-v-) 9(xI 02 a<)

where the termson the RHS re defind by Eq. A1The soluion fore
obtained froin = iisgive by

(A41)

(A39) where

whee p* is the update onp,pn p appeas explcitly in the RHS, as wel
as iplytinPR.
Qwwta sm. The for the quatal sze is not alteed by the in-
trodurion Of StinauS hilur (Eq. A9)
Quanta vrwnwe: Eiquation A15 remamns aprpite for detemiining
- varn

Offse We require the soution to

aL fi am,
ap zM

Noise rq -td by a silg8asin probabiity desity fwcou
in given by (Al) amd aq- /a& = q,((x, - jQ - eIE).

d=° + (1-e) PjN

W

pi
K

N f
WOUW(xA Xi L.) + AfiX. - PL.))

K

+ (1 - irO) Pj(f,(Xi - Ld - jQ) + f:,(Xi - A.2 - jQ))
=0/

Com idbiW dsfti,um

M,is defined by Eq. A38, but inthi cuse the P,-s are definedby Eq. A19.
q,-caneitherbe amnormaldhi_t orthesmoftwononald
Quanl sepatio and quanal irement in variamke can be inluded as
required, fobowing the derivatio im Failue to Sti a Affere Axoom
Thc iaton r tofi timuatfailuresoolyilenestheequations forthc
release np abilties amd the offset As fir the bimune moddl, Eq. A3 in
the a iae to obt ,.

Si mad RPkmi

_=I I= &We f K K

N f x
i -X- x. iQ

%.
, + (i we) 71 pjqw-ff.2 W2m j

i--Ii i-aE* = I

EW =
x f K

20) + (1 _.a71 0) Y, (fxi +Wm
&I i j=6

W.

i fi 1 K

m -wgqn + (1 vg) Y, PJRW-
i--l i ff.2 j=o I
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Relase prbabies: Use Eq. A38 m the formula for log-likeihood, dif-
feniate with respect to p,, the release probability at the rth release site,
and set the derivativc to zro. The prede cklsely follows that used in
Falue to Stimulate Afferent Axons. We obtan

x ~~~K-1
'go)

f +-1
p,(l - ME Poq+ z Pj,%j+PKixI

N f/ K-1
= (1-zr.)X'M | Prqx + (Pi-Prj(1-p,))q |-

5=1 j=l /

Note that

/K-1\

(1 - To) POqDo Pj,% + Pjrq Mi -eqq

ibis identity allows the development of the recurve equation for p,, ie,

Pr= N IWO1 v io + Y,P,.-l qii) (A42)

where p* is the update on the previous p,
Offset Tfe equatio for offset is the same as for the binomial model (Eq.
A41), except that the P1s for the compund binomial must be used- If a
quantal model is notw d,letjQ = j-. The variance can be inaemented
as m the quantal mode, or left as the noise variance, in which case
a =o for asingle norma distr onor =a r ando2 = m2m
the case of the sum of two nomal distribtions.

Avaiability of source code
Source code can be made available upon written request to C. Stricker at
the addrecss above. The code can be provided either as IGOR Pro functio
or as ANSI C routnes. Requests should be anied by an E-mail
address.
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