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Transient State Kinetics Tutorial Using the Kinetics Simulation
Program, KINSIM

Daniel H. Wachsstock and Thomas D. Pollard
Department of Cell Biology and Anatomy, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205 USA

ABSTRACT This article provides an introduction to a computer tutorial on transient state kinetics. The tutorial uses our
Macintosh version of the computer program, KINSIM, that calculates the time course of reactions. KINSIM is also available for
other popular computers. This program allows even those investigators not mathematically inclined to evaluate the rate constants
for the transitions between the intermediates in any reaction mechanism. These rate constants are one of the insights that are
essential for understanding how biochemical processes work at the molecular level. The approach is applicable not only to
enzyme reactions but also to any other type of process of interest to biophysicists, cell biologists, and molecular biologists in
which concentrations change with time. In principle, the same methods could be used to characterize time-dependent, large-
scale processes in ecology and evolution. Completion of the tutorial takes students 6—10 h. This investment is rewarded by a
deep understanding of the principles of chemical kinetics and familiarity with the tools of kinetics simulation as an approach to

solve everyday problems in the laboratory.

INTRODUCTION

Knowledge of kinetic constants frequently provides some of
the most penetrating insights about most molecular mecha-
nisms in biology and chemistry, but many molecular biolo-
gists are reluctant to take on the task of evaluating these
constants (Maddox, 1993). Instead, most focus on the other
information required to establish mechanisms: 1) a complete
inventory of the molecular components of the system; 2) a
list of the intermediates in the reactions of these components;
and 3) the atomic structures of these components. A variety
of biochemical, molecular biological, genetic, and biophysi-
cal methods are available to complete these tasks—but ki-
netic analysis is the only way to obtain the information about
the rates of the transitions between the various possible in-
termediates. These rate constants are the key to understand-
ing how things work, because a full set of rate constants
allows one to decide which of the possible intermediates are
used in a reaction mechanism, to appreciate the rates of the
various steps, and to evaluate the free energy changes at each
step. Johnson (1992) provides a particularly clear explana-
tion of the strategy and methods used in transient kinetics
analysis of enzyme mechanisms.

Given their fundamental importance, why do we generally
know less about the kinetic constants than other features of
our systems? Although everyone learns in biochemistry
classes about the traditional tools used to evaluate the initial
rates of enzyme reactions, this steady-state approach is often
inadequate for detailed understanding of even simple enzyme
mechanisms and is not applicable to a wide variety of pro-
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cesses in which enzyme reactions play little or no part. Ex-
amples of largely nonenzymatic processes include the as-
sembly of cellular organelles, the cytoskeleton, and the
extracellular matrix; the binding of cells to each other and the
extracellular matrix; and the activities of most ion channels.
Just like enzyme reactions, none of these processes will be
understood until we work out their molecular mechanisms,
including the evaluation of the rates of the transitions be-
tween the various intermediate states.

Transient kinetics

The goal of an analysis by transient kinetics is to understand
the mechanism of a reaction. This approach can provide an
inventory of the reactants, intermediates, and products along
a reaction pathway together with the kinetic rate constants
that determine the transitions between these chemical spe-
cies. Both the identity of the intermediates and the values of
the rate constants are important and interdependent in ap-
preciating the mechanism. You can view the reactants, in-
termediates, and products as the roster of players in the game.
The rate constants reveal not only the rate of the transitions
between these intermediates, but also the pathway through
the various possible intermediates between reactants and
products. As a bonus, if one knows the forward and reverse
rate constants for any step, their ratio gives the equilibrium
constant for the reaction. This provides a powerful connec-
tion between kinetics and thermodynamics. From the equi-
librium constant, one can calculate the free energy change,
which provides valuable thermodynamic information about
processes that may be inaccessible to evaluation by equi-
librium methods.

The strategy is simple: just change the conditions of the
system and watch the time course as it approaches a new
equilibrium or steady state. This is called transient state or
pre-steady-state kinetics, because one observes the transition
from one equilibrium to another equilibrium or steady state,
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rather than the rate of a biochemical reaction running at a
steady rate. Steady-state data are also useful, but transient
data are frequently more informative. One frequently does
steady-state experiments before transient experiments. First,
the steady-state experiments generally require less material,
particularly for an enzyme reaction. Second, the steady-state
parameters will provide important clues required to design
transient experiments.

One has many options when changing conditions to ini-
tiate a transient. Changing the concentration is a method for
systems with two reactants or products, since mass action
will drive it toward a new equilibrium. For example, one can
simply dilute such an equilibrium system and watch what
happens. Or one can mix two reactants and watch for the
disappearance of reactants or the formation of products. An-
other strategy is to change the environment of the system, for
example, by changing the solution conditions (pH, ionic
strength, etc.), the temperature, or the pressure. Slow reac-
tions taking seconds can be initiated by hand. Fast reactions
on a millisecond time scale require rapid mixing equipment
to change the conditions. “Stopped-flow” devices mix two
solutions and inject them into a spectroscopic cuvette in ~2
ms for measurement of the time course of changes in ab-
sorption, light scattering, or fluorescence.

In each case, you learn about the system from watching it
approach a new equilibrium or steady state, so you need some
way to observe what is happening. Fortunately, one can usu-
ally find a good assay for the concentrations of reactants,
intermediates, and/or products—the more assays the better.

Since many reactions are fast, spectroscopic assays are
particularly useful. For example, one can follow absorbance,
light scattering, fluorescence, fluorescence polarization, and
(recently) even circular dichroism, electron spin resonance,
or x-ray diffraction. If the system does not have an intrinsic
optical signal, you can add one. For example, fluorescent
probes can be covalently attached to the reactants or products
to monitor their behavior, or an indicator dye can be added
to the solution to measure pH or ion concentrations. With
optical probes, one can usually follow concentration changes
continuously during the reaction.

If optical signals are not available, virtually any chemical
assay will work, but one is forced to stop a series of identical
reactions at various time points to measure the change in
concentrations. Reactions can be stopped chemically with
acid or a denaturant or physically by freezing. Slow reactions
can be stopped by hand, but fast reactions require rapid mix-
ing and quenching that can be achieved mechanically in a
“quenched-flow” device. Even complicated chemical assays
like electron microscopy and gel electrophoresis are useful,
providing that the reaction can be stopped and the various
chemical species are stable over the time course of the assay.
For example, the products of a single step in DNA synthesis
have been followed on a millisecond time scale by gel elec-
trophoresis (Johnson, 1992).

Having set up an assay system and watched what happens
when the system approaches a new equilibrium, one needs
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tools to extract the kinetic constants from the observed time
courses. The strategy at this point depends on the complexity
of the mechanism. If things are really simple, one can get the
answer with a pencil and paper. If the mechanism is com-
plicated with one or more intermediates between reactants
and products, more robust methods are required to calculate
the rate constants. The traditional approach seeks an ana-
lytical solution, an equation with all of the rate constants.
Formulation of these equations requires a good working
knowledge of calculus and algebra. This approach is elegant
but limited, because simplifying assumptions are usually re-
quired to complete the analysis. The Michaelis-Menten
analysis of enzyme mechanisms is an example of an ana-
lytical solution using simplifying assumptions (rapid equi-
librium binding of substrate to enzyme, no enzyme product
complex, and no back reactions). The required simplifying
assumptions are rarely all valid. Furthermore, the mathemati-
cal requirements of the analytical approach have limited the
number of biologists capable of using transient kinetics to
analyze the mechanisms of their favorite processes.

An alternative approach is to use numerical integration by
computer to simulate the kinetic data and calculate the rate
constants. In principle, numerical integration can solve any
mechanism without simplifying assumptions, being limited
only by computer speed. Fortunately, powerful computer
programs can now run on readily available computers to take
almost all of the work out of the analysis. One can now
decipher mechanisms on a lap top computer, a feat which a
decade ago was not possible. The purpose of this tutorial is
to show you how to do it without knowledge of calculus.

Before working on the methods of analyzing kinetic pro-
cesses, we need a word about the data required to analyze a
mechanism. If your reaction is simple, perhaps only one step,
you will be able to solve the puzzle with a minimum of
measurements. For example, knowledge of the equilibrium
constants and a single transient experiment showing the time
course of the concentration change of either the reactant or
product as the system approaches a new equilibrium may be
enough. On the other hand, if the mechanism includes two
or more intermediates or competing side reactions, you will
need to measure the time course of the concentration change
of several species (as many as possible). Even complicated
mechanisms can be solved with incomplete knowledge of the
internal steps, providing the full time course of the reaction
for those accessible species can be measured over a range of
initial concentrations. This is possible because you can use
a computer to find a unique set of rate constants that simulate
these kinetic curves.

A final point deals with the range of processes accessible
to analysis by transient kinetics. Most of our examples in-
volve relatively rapid molecular interactions, processes tak-
ing place on a millisecond to second time scale. On the other
hand, exactly the same strategy can be used to study pro-
cesses on much slower time scales. One of our examples is
from clinical medicine: a childhood cancer which develops
over a period of months.
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KINETICS TUTORIAL

You will learn how to use transient kinetics by doing some
problems. You will use a kinetics simulation program origi-
nally written by Barshop et al. (1983) for use on a VAX
computer. Their KINSIM program has been ported to desk
top computers. The PC version was written by G. Hua and
B. V. Plapp of the University of lowa. D. Wachsstock wrote
the Macintosh version called HopKINSIM. Carl Frieden
maintains a public domain archive of the latest versions of
the KINSIM family of programs, including an automatic fit-
ting program called FITSIM, at Washington University in St.
Louis. FITSIM is not yet available for Macintosh. See
Frieden (1993, 1994) for directions on how to log on to
WUARCHIVE by anonymous FTP. This tutorial is available
from his resource. This tutorial, HopKINSIM, and the Hop-
KINSIM manual are also available on diskette from T. D.
Pollard at The Johns Hopkins University School of Medi-
cine, Baltimore, MD (please include $5 for production and
handling) and on the BJ Internet server at the University of
Minnesota. See directions for access by anonymous FTP or
Gopher in the BJ.

To use the Macintosh version of KINSIM, you will need
a Macintosh computer with a math coprocessor (IICi, Pow-
erbook 170, SE30, or more powerful recent models) and a
text editor (Apple’s TeachText, or you can use any word
processor as long as you remember to save your file as a text
file). To do the problems you will need either a graphing
program like Cricket Graph or graph paper and pencil. To get
printouts, you can either open the output files in your graph-
ing program and print them there, or get a screen dump of
the HopKINSIM screen by setting the screen up the way you
like it and pressing (command)shift)(3) and then printing the
file named Picture 1 with the Finder. To get quick estimates
of half-times, a ruler to place on the screen is helpful.

To do the following problems you must know the
definitions of rate constants and the relation of rate constants
to equilibrium constants. Appendix 1 will provide you
with these relationships as well as the physical basis for rate
constants. You will also need to know how to run the
HopKINSIM program. You will acquire most of these
skills during the Tutorial. For details, consult the Manual
provided with each version of the program.

The problems start easy and become more difficult. If you
are not challenged by the first problems, skip ahead to the
later problems. Open up the KINSIM Tutorial on the disk.
You can either follow the tutorial on the screen or print out
the tutorial, leaving the screen free for displaying kinetic
data. All of the answers are given in Appendix 2.

Problem 1: KINSIM practice and properties of
first-order reactions

In this problem we will examine an artificial situation to get
a feel for both KINSIM and rate constants. The reaction is
a simple first-order change in a protein molecule, A, to a
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conformation with a higher intrinsic fluorescence, A’.
Reaction 1. A--->A'

In real life an equilibrium would exist between states A
and A’, but for our introduction we will pretend that the
transition from A to A’ is irreversible. This is a first-order
reaction, because there is only one reactant. In a first-order
transition like this, the rate of change of the concentration
of reactants and products at any point in time is simply
the product of the first-order rate constant (k) and the
concentration.

Rate = k,(A)

Tasks

1.1. Open up your text editor and write out the mechanism
of Reaction 1. Your mechanism should look like this:

A==A' (return)
*Output (return)
A (return)

A’ (return)

Note: In KINSIM a double equal (==) represents a re-
versible kinetic reaction. A single equal (=) is a rapid equi-
librium, used where the rate constants are not known. Gen-
erally KINSIM runs faster with a reversible kinetic reaction.
*Output signals that the concentrations of the following spe-
cies will be graphed vs. time. We have decided to view the
concentrations of both A and A’.

1.2. Name and save the mechanism as a text file and then
close the word processor.

1.3. Next, open up the HopKINSIM program. Inside Hop-
KINSIM, open up your reaction mechanism. The computer
will quickly compile the mechanism into the mathematical
equations required to calculate the time course of the reac-
tion.

1.4. Under RUN, select CHANGE followed by the vari-
ous parameters that you need to adjust. Start with RATES.
For k., (the forward rate constant) select 10. The units for
a first-order rate constant are s~'. Leave k_, (the reverse rate
constant) at 0, the default value. Under CONCENTRA-
TIONS set A to 1 (the units are uM) and leave A’ at 0. Under
TIME CONSTANTS select 1 (second) for the total time and
0.01 (second) for the interval between time points (called A
time). Optional: Under TIME CONSTANTS you can also
modify the size of the time steps and other parameters that
affect the rate of the simulation. For purposes of this tutorial,
use the default parameters. If you need to speed up a simu-
lation, read the section on TIME CONSTANTS in the
manual. Optional: Under AXES, set the y axis (concentra-
tion) to 1 M and leave the x axis (time) at 1 s. The default
settings will automatically adjust the axes for each simulation
if you do not set them ahead of time.

1.5. Under PREFERENCES under the FILE menu set
the Response time to 1000 ms. This will speed up the
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calculations at the cost of having to wait 1 s to interrupt the
program while running.

1.6. Also under PREFERENCES, uncheck the Save Out-
put Data check box. If this is checked, the output from each
simulation will be saved as a tab-delimited text file that your
graphing program can read, and you will be asked to
name the file each time. For the problems here, that may not
be necessary, but you can recheck it at any time. If your
graphing program is Cricket Graph 1.3, check that box in
PREFERENCES. If your graphing program is something
else, use your text editor to remove the first line of the sample
data files (it contains an asterisk that Cricket Graph 1.3 re-
quires). Eventually you will want read the entire Manual to
learn the details of how HopKINSIM works, but the brief
instructions in this tutorial should be sufficient for now.

1.7. Under RUN select GO to start the reaction. In a few
seconds, the computer will display the time course of the
reaction. (Note: The slope of the curve is the rate of the
reaction. The slope is maximal early in the reaction when the
concentration of A is highest and then declines steadily as A
is depleted in favor of A’. As explained in Appendix 1, the
curve is an exponential function.)

1.8. What is half-time for the reaction? It is the time when
half of A is converted to A’. It may be helpful to change the
axes (under the CHANGE menu in the RUN menu) to see
the time precisely. Divide 0.693 by this half-time to estimate
the observed rate constant (k).

1.9. What is the value of k. ? It should be the same as the
k., that you entered, 10 s™'.

1.10. Note the half-time for the reaction starting from the
first half-time, the time for the reaction to proceed from 0.5
to 0.75 uMA’. What do you find? What is the half-time for
the reaction from 0.75 pM to 0.875 pM? Why do you get
the same answer for every part of the reaction?

1.11. Return to the CHANGE dialogue box and vary the
value of k. ,. Change it to values between 5 and 25 s™*. For
each value selected, estimate the half-time and calculate the
k. to reinforce the important relationship between the half-
time and the rate constant.

1.12. Try a simulation with a lower concentration of A,
like 0.2 M. What happens to the half-time for the reaction?
Why? (Note: If the screen become cluttered, you can delete
or hide any of the data with the EDIT CURVES command
under the RUN menu. Holding down the option key lets you
delete all the data curves at once. If you need to take a break
from KINSIM, select QUIT to exit HopKINSIM.)

Problem 2: Rate constants for a reversible
first-order reaction

Now that you are familiar with the properties of a first-order
reaction, we will try a simple reversible reaction. We will
start with a simple imaginary reaction: a reversible confor-
mational change. Protein A exists in two states, A and A’,
with an equilibrium between these two species

Reaction2: A ==A'.
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The reaction is characterized by two first-order rate con-
stants k,, for the forward reaction and k_, for the reverse
reaction. The equilibrium constant is K.

Ky = ko/k. = (A (A,

where A’ and A, are the concentrations at equilibrium.
If these relationships are not clear to you, consult

Appendix 1.

Tasks

2.1. Write out and compile this reaction in KINSIM.

2.2. Observe the time course of the reaction using the
following parameters: A = 1 uM; k, = 10s™;; k_ = 5s7..
At equilibrium, what are the concentrations of A and A'?
Calculate the equilibrium constant from these concentrations
and confirm that it matches the ratio of the rate constants.

2.3. By checking the successive half-times, confirm that
the time course of this reaction follows a single exponential,
even though there are two reactions (forward and reverse).

2.4. Estimate the value of the apparent first-order rate
constant (k) from the half-time of the reaction and confirm
its value by running a simulation with a first-order reaction
and single rate constant (k, = k,  and k_ = 0). From the
value of k., can you guess how k__ is related to the two rate
constants for this reversible reaction?

2.5. To test your idea, run several more simulations of the
reversible reaction, each time varying k_, by a factor of 2.
Each time observe the shape of the curve and estimate the
values of k. from the half-times. What is the relationship of
k. to the rate constants? As a hint, when k_, is reduced to
2.5 s7', what happens to k?

2.6. Note the effect of changing k_ on the equilibrium
concentrations of A and A’. Verify that all the equilibrium
concentrations of A and A’ agree with the equation given
above.

2.7. Also vary the value of k,. What are the conse-
quences? By now you should be confident about how k_ is
related to the two rate constants. It is the sum of the two rate
constants, as expected from the analysis in Appendix 1.

Problem 3: Calculation of the rate and
equilibrium constants for a

conformational change

We have a protein that can exist in two conformations. A’
has a higher fluorescence than A, so that we can measure its
concentration spectroscopically. Our first experiment is to
measure the equilibrium constant by measuring the concen-
trations of A and A’ in samples containing a total of 100 uM
A + A’. We collect the following data:

Conditions A) (A')
pH7 10 pM 90 pM
pHS8 9 uM 1.0 uM

pH9 99.9 uM 0.1 pM
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Tasks

3.1. From the data in the table calculate the equilibrium
constants at the three pH values.

3.2. At pH 7, what happens to the concentrations of A and
A’ when the sample is diluted 100-fold, giving a total of the
these two species of 1 pM? What has dilution done to the
ratio of the two species in equilibrium?

Our experiment will be to mix an equilibrium mixture of
A and A’ at pH 9 with some acid to lower the pH to a physi-
ological value of 7. The equilibrium shifts in the direction of
A’, so that A’ is produced at the expense of A. The total
concentration of A + A’ is 100 uM.

3.3. Write out and compile the reaction described in the
experiment in KINSIM.

3.4. Display in KINSIM the data for this experiment filed
on this disk under “Datafile3.” Do this by selecting DATA
in the OPEN submenu in the FILE menu.

35. Use the half-time to estimate k,, and confirm the
value with KINSIM.

3.6. Select values for the rate constants k,, and k_, that
fit the equilibrium and kinetic data. Remember that the ratio
of the rate constants must be equal to the equilibrium con-
stant. The challenge is to select the two rate constants con-
sistent with the equilibrium constant that best fit the data.
Your estimates should be very close to the actual values if
you understand the principle. To be sure, confirm the values
by running a simulation.

Problem 4: A second-order reaction
with an excess of one reactant—
a pseudo-first-order reaction

We will now consider a bimolecular reaction where two mol-
ecules bind together to form a complex. We will use the
binding of molecule A to molecule B as our example. We will
use an excess of one of the reactants, B. This simplifies the
analysis, because the concentration of B remains more or less
constant, so that only the concentration of A changes during
the reaction. This will make a second-order reaction look like
a first-order reaction.

Reaction4: A+ B == AB

Tasks

4.1. Write out and compile the mechanism in KINSIM.
Output only the concentration of AB.

4.2. Set the parameters as follows: A = 1 uM, B = 10
AM, k, = 1 uM s k_ = 0.

4.3. Run the reaction.

4.4. What is the shape of the curve? Set the y axis to 1 to
see the curve well. Is it a single exponential? Verify this in
the usual way by checking the half-times along the curve and
by simulating the curve with a first-order reaction.

4.5. What is k. ? How is it related to the rate constants
that you used for the simulation?
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4.6. What is k,  when k, = 050r0.750r20r4or5
uM™'s7!? How does k,_ depend on k,?

4.7. Now set k, t0 0.5 uM's™! and vary B in the range
of 10-40 uM and observe what happens to k. Confirm that
k, = k,B.

4.8. Now vary k_ in the range of 1 to 10 s™* with k, set
at 1 pM7's™! and B at 10 pM. What happens to the equi-
librium concentration of AB and to k,.? How does k.
depend on k_?

4.9. What is the general expression for k. as a function
of k, and k_?

4.10. Vary B = 10, 20, 30, 40 pM with k, = 1 pM's™?
and k_ = 10 s™'. Make a plot of k,  vs. B. What is the
equation of the line? Confirm that the slope is k, and the y
intercept is k_.

4.11. Unknown: Now load Datafile4. In this experiment
A binds to B to form complex AB. A = 0.1 uM and B =
2,4,6,8, and 10 pM. What are k, and k_?

Problem 5: A second-order reaction with limiting
concentrations of both reactants

Again we will examine a bimolecular association reaction
of two molecules A and B. The mechanism is the same as

Problem 4, but this time we will use similar concentrations
of the reactants.

Tasks

5.1. Load and run the reaction with the following param-
eterss A=1pM,B=1puM k, =4 pM s k_ =02
s~'. Under TIME CONSTANTS, set the total time to 5 s and
the A time to 0.05 s.

5.2. What is the shape of the curve? Is it a single expo-
nential? Can one speak of &k ?

5.3. How can you analyze the reaction and obtain the rate
constants under these circumstances?

5.4. Unknown: Now load DatafileS. In this experiment A
binds to B to form complex AB. A =1 uM and B = 0.5,
1, and 2 pM. What are k, and k_?

Problem 6: A two-step reaction mechanism—
binding followed by a conformational change

This is an example of a very common reaction in biology.
Two molecules bind together and then undergo a confor-
mational change. This is simply a second-order bimolecular
reaction (like Problems 4 and 5) followed by a first-order
reaction (like Problems 1-3). Few new concepts are needed
to understand the mechanism, but some interesting and im-
portant new properties emerge from coupling the reactions.
One is that the two reactions can be separated by choosing
appropriate conditions. Another is how the overall equilib-
rium depends on the properties of the two reactions.

Reaction: A + B == AB == AB’
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Note that we now must deal with four rate constants: k_ ,,
a second-order rate constant with units of M~!s™!, and three
first-order rate constants k_,, k., ,, and k_, with units of s™'.

Tasks

6.1. Load and run the reaction with the following param-
eterss A=1pM,B=10puM, k,, =2pM sk =5
s, k,, =100s7%, k_, = 50 s™'. Total time should be 0.25
s; A time should be 0.001 s.

6.2. Examine the shape of the AB’ curve. Is it a first-order
reaction? Why is there a lag at the outset? Which reaction is
rate limiting during the lag phase? After the lag phase? Test
your hypothesis by varying the concentration of B.

6.3. What happens if we vary the rate of the second re-
action? Try k,, = 1 or 10 s™*. What happens to the equi-
librium concentrations of reactants and products? What hap-
pens if we change the values of the rate constants for the
second reaction while maintaining their ratio at 2:1? For ex-
ample, try k., = 10s™, k_, = 5s7L

6.4. In the example in which you varied &, ,, what hap-
pened to the equilibrium concentrations of AB and AB'?
From the equilibrium concentrations of A, B, and AB’ cal-
culate the overall equilibrium constants under the two con-
ditions (k,, = 10 or 100 s™*). Also use the rate constants to
calculate the equilibrium constants for both of the reactions
under the two conditions. What is the relationship between
the equilibrium constants for each of the pair of the reactions
and the overall reaction? Verify your hypothesis with a third
set of rate constants (k,, = 1 pM s k_, = 1sLk,, =
10s™,, k_, = 1 s7?) and the resulting equilibrium concen-
trations of reactants and products.

6.5. With the set of rate constants from 6.1, experiment
with varying B = 4 through 5000 M, doubling it each time.
You will need to change the time constants over several or-
ders of magnitude to get the data and measure accurate half-
times. Estimate the values of the rate constant for the ap-
proximately first-order reaction after the lag phase. (To
estimate the half-times for these very fast reactions, it may
be helpful to save the output data. Use the PREFERENCES
item in the FILE menu and look at the data in a graphing
program. Look at the data in your graphing program and
estimate k, from the half-time.) Plot k,  vs. B. Where on
this plot can you find &, and k_,? What is the relationship
of the rate on the plateau to the rate constants? (See Appendix
1.) Knowing the rate on the plateau, k_, and k_, (from the
slope and intercept) and the overall equilibrium constant
(from the equilibrium concentrations of reactants and prod-
ucts), how can you calculate the values of k_, and k_,?

6.6. Now load Datafile6. In this experiment A binds to B
to form complex AB that undergoes a conformational change
toAB’.A=0.1pMand B =1,2,4,8, 16, and 32 uM. What
are the four rate constants? First note equilibrium concen-
tration of AB’ and then try plotting k__ vs. B to estimate the
values. Then simulate the curves with KINSIM to determine
them more accurately.
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Problem 7: A two-hit reaction—dissociation of
the actomyosin complex

This is a more complex set of paired reactions, three in total.
Two have the same rate constants, making things relatively
simple. This is a real example from biochemistry. The motor
enzyme myosin (M) binds to an actin filament (A) by each
of its two heads. Both heads must bind ATP (T) for the
complex to dissociate. The ATP binding reactions are inde-
pendent and have the same rate constants. Exactly the same
mechanism explains the development of retinoblastoma in
children. Two tumor suppressor genes need to be inactivated
before the tumor develops. You may be able to think of other
two hit reactions like these examples.

Reaction: AM + T == AMT k. /k_,
AMT + T == AMTT &, /k_,
AMTT == A+ MTT &k, /k_,

Tasks

7.1. Load and run the reaction with the following param-
eters: AM = 1 uM, other protein species = 0 uM, T = 10
M,k =k, =03 pM7 sk = k_, = 0.001 s,
k,;=500s"",k_; = 10 uM~'s™". Follow the concentrations
of AM, AMT, AMTT, and MTT.

7.2. Why is there a lag? What happens to the lag as T is
varied?

7.3. If faced with these rate constants, how could you
design the experiment to observe directly the dissociation
reaction and evaluate its rate constants? Simulate your ex-
periment and confirm that you can evaluate the constants.

7.4. Unknown: Now load Dataset 7.1. This in Knudsen’s
(1971) classic analysis of the development of retinoblastoma.
Patients with a family history of retinoblastoma develop their
cancer earlier than those with no family history. We now
know that mutations in both of the retinoblastoma genes are
required for a tumor to develop. Postulate a mechanism that
might explain the difference in the kinetics of tumor devel-
opment in these two patient populations. Write out and com-
pile your mechanism in KINSIM. In this case, you will need
to define the time interval as a month rather than a second
as we have done with our other examples. You will also need
to define the concentration units arbitrarily, such as 100 pa-
tient units. Other than that, the same reasoning is involved.
Do you think that you are dealing with first-order or second-
order reactions? Are any of the reactions reversible? Use
KINSIM to find rate constants that can account for the time
course of the onset of the tumor.

Problem 8: A simple enzyme reaction

Here we will see how to evaluate a simple enzyme mecha-
nism in which the enzyme (E) binds the substrate (S), con-
verts substrate to product (P), and the product dissociates.
This is a minimal mechanism, since most enzymatic reac-
tions involve at least one additional conformational change
of the enzyme-substrate or enzyme-product complex.
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Nevertheless, this mechanism is more realistic than the clas-
sic Michaelis-Menten mechanism in which the EP interme-
diate is omitted to simplify the analysis. Although the mecha-
nism has three steps, you will see that it can be dissected
rather easily with a few transient experiments. Although this
is an imaginary enzyme, the biochemical literature is full of
examples of enzymes with mechanisms similar to this.

E+S==ES==EP==E+P

Note that we now must deal with six rate constants: &, , and
k_, are second-order rate constants with units of uM's™%;
the other four rate constants k_,, k,,, k_,, and k,, are first
order with units of s™'. Also note that our task may seem
complex at first, but you should be able to appreciate its
simplicity when you see the reaction broken down into in-
dividual steps that can be analyzed using the principles that
you have learned to dissect first- and second-order reactions.
This mechanism is nothing more than first- and second-order
reactions linked together. The experiments will isolate the
individual reactions for your analysis.

Reaction:

Tasks

8.1. Write out the mechanism and compile it in KINSIM.

8.2. If you were provided with assays for P, ES, and EP
as well as a supply of E, S, and P, consider what experiments
might reveal the rate constants for the various steps. Where
would you begin? Once you have designed a strategy, you
will be able to call up data for the most common experiments.

8.3. Choose from the following list the data file that you
find most useful. Use analysis of exponentials or KINSIM to
learn about the reaction. Then choose additional data files
and continue until you have solved the mechanism. You
should be able to determine all of the rate constants with only
three experiments. The additional experiments will allow
you to confirm your results.

a. Steady-state rate of conversion of S to P as a function
of S.

b. Time course of conversion of S to P upon mixing S
with E.

c. Time course of S binding to E as a function of S.

d. Time course of P binding to E as a function of P.

¢. Interrupt steady-state production of radioactive P from
radioactive S by adding excess cold S; observe the time
course of the release of radioactive P from E.

The details of each of these sorts of experiments follow;
you may wish to think about how to do them and how to get
the rate constants out of the results before looking ahead.

a. This is the classic steady-state experiment. We mix a
large amount of S with a tiny concentration of E (0.1 uM),
observe the accumulation of P over short period of time, and
repeat this experiment for many different concentrations of
S. The data from such an experiment is in Datafile8a. It may
help to look at the data in your graphing program rather than
loading it into HopKINSIM. The plot displays free product,
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P, vs. time for S = 0.3,05, 0.7, 1, 2, 3, 6, 9, 12 uM. Note
that there is a short lag before the slope reaches its steady-
state value. Where does the lag come from? For this steady-
state experiment, we ignore the lag. Calculate the rates (the
slopes) and plot the rates as a function of S. Note the hy-
perbolic shape of the curve. Then plot the 1/rate vs. 1/S. This
is the Lineweaver-Burk transformation of the data. The y
intercept is called the V_,, and the x intercept the Michaelis
constant, K_. As you will recall from biochemistry, given
certain assumptions (rapid binding, slow turnover, no reverse
reactions) the K is related to the affinity of the enzyme for
its substrate. We will see whether these values really tell us
anything useful about the actual mechanism.

b. This is a burst experiment that allows us to follow the
time course of the first two steps in the reaction. It is ac-
complished by mixing E and S and then stopping the reaction
at intervals with acid in a quench flow machine. We measure
and display the total P, that is EP + P as a function of time.
Note that P does not need to dissociate from E to be detected.
However, P must dissociate from E before another S can bind
and initiate another round of the reaction. For the experiment
in Datafile8b, we mixed 100 uM S with 1 uM E. We observe
that almost 1 mol of P is formed rapidly before the reaction
rate slows down considerably. What does the fast phase rep-
resent? (Hint: this fast phase corresponds to the lag in ex-
periment (a) above, when we only looked at free P). What
rate constants control this phase? Given the concentrations
of E and S, which reaction is rate limiting? What can you
conclude about the rate constants for the rate limiting reac-
tion? Why is there less than one mole of P released at the end
of the fast phase? What does the slow phase represent? What
rate constants control the slow phase? What can you con-
clude about the rate constants for the rate limiting reactions
for this phase?

c. This is a simple bimolecular binding reaction, just like
those we have examine above. It might be done with fluo-
rescent analogue of S which gives a signal when complexed
with the enzyme or if one is lucky, the fluorescence of the
enzyme itself may change when S binds. In our experiments
in Datafile8c, we have mixed 0.1 uM E with several con-
centrations of S (= 1, 2, 4, 8, 12 uM) and followed the
concentration of E with S bound. This is equivalent to fol-
lowing ES + EP, since the two can rapidly interconvert.
From the raw data estimate the values of k., and k_, by
analysis of exponentials. These will only be estimates in the
absence of information about the second and third reactions.

d. This is a simple bimolecular binding reaction, just like
reaction (c), except that we look at the the binding of the
product, P, to the enzyme. As before, we follow the total ES
+ EP, but this time start with free P and no free S. All
chemical reactions are reversible at some rate, and we can
take advantage of this to “run the enzyme backwards.” This
simple experiment can be very revealing as we shall see.
Again, the experiment might be done with fluorescent ana-
logue of P, which gives a signal when complexed with the
enzyme or if one is lucky, the fluorescence of the enzyme
itself may change when P binds. In our experiments in
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Datafile8d, we have mixed 0.1 uM E with several concen-
trations of P (= 1, 2, 4, 8, 12 uM) and followed the con-
centration of E with P bound. From the raw data calculate
the values of k,; and k_; by analysis of exponentials or by
KINSIM. Note that since we read the reaction from left to
right, k_, is the association reaction, and k_, is the disso-
ciation reaction.

e. This is a chase experiment that reveals directly the rate
of product dissociation. We start by mixing 1 uM E with 20
pM radioactive S and wait just long enough for the reaction
to achieve a steady-state rate. Then we add 1000 uM cold
S. Thereafter, essentially all of the S binding to E will be cold,
so all radioactive P that we observe from this time point will
have come from radioactive S or P bound to E at the time of
the addition of the cold S. In Datafile8e we see the time
course of the dissociation of radioactive P. Which reactions
are being observed in this experiment? What can this data tell
you about the rate constants of these reactions? To simulate
this sort of experiment, start with zero concentrations of ev-
erything except 1 uM EP, to simulate the fact that the enzyme
is fully saturated with substrate at the beginning of the chase
part of the experiment and all the free radioactive substrate
has been competed away. Assuming EP = 1 uM is not really
valid. Why not? Nevertheless, to get started set the reasso-
ciation rate for the product (k_,) to 0, to simulate the fact that
the radioactive product will not bind the enzyme again (why
not?). Set the association rate for the substrate (k, ) to 0, to
simulate the fact that new radioactive substrate will not bind
(why not?). Then follow the concentration of free P. You will
learn that it is necessary to modify your initial assumptions
to get a reasonable fit to the data.

8.4. Once you have estimates of all six rate constants, go
back to the key experiments and simulate the time courses
with a full set of rate constants. You should be able to fit the
data exactly after making a few modifications of your initial
assumptions. Now that you know all six rate constants, do
you understand intuitively why the various experiments pro-
duced the observed data? Think about which reactions are
rate limiting in each experiment.

8.5. Calculate the equilibrium constants for each of the
reactions and compare these values with the K. In this case,
is the K a reliable indicator of the affinity of the enzyme for
its substrate?

8.6. Compare the steady-state V_, with the rate constants
for the individual steps. What does the V_,_tell us about the
mechanism? Does it correspond to any particular step in the
reaction?

Problem 9: Multiple interacting components:
actin, ATP, and profilin

For your final exam, you can try a reaction that involves
multiple interacting components. As far as we know, mecha-
nisms of this complexity cannot be solved analytically. Ki-
netic simulation is the only available approach. Fortunately,
by building up our knowledge of the reactions one step at a
time, we will be able to understand the whole process in
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detail. We will look at the exchange of nucleotide bound to
actin and how the actin binding protein profilin promotes this
reaction (Goldschmidt-Clermont et al., 1991). The guanine
nucleotide exchange proteins that promote exchange of GTP
for GDP on small G-proteins probably work the same way,
but the decisive experiments have not yet been done.

Here is the background. Actin (A) is the major subunit of
microfilaments. The actin monomer is stabilized by ATP (T)
bound in a deep cleft in the middle of the molecule. This
bound nucleotide can exchange slowly with free ATP in the
medium. The actin monomer binding protein, profilin (P),
accelerates the exchange reaction and may be used in the
cell to recycle ADP-actin to ATP-actin. We will measure
exchange by adding the fluorescent ATP analogue, etheno-
ATP (eT), to actin. €T has the convenient property of being
much more fluorescent when it binds to actin than when it is
free, so we can easily measure the concentration of AeT and
PAeT (profilin binding does not affect the T fluorescence).

Reactions: A+T==AT (€))
A+ eT == AeT 2
P + AT == PAT 3)
P + AeT == PAeT @
PA + T ==PAT &)
PA + eT == PAeT 6)
P+ A==PA U]

Even the most enthusiastic kinetic simulator would have
trouble with all of these reactions without some simplifying
assumptions and your computer would get bogged down as
well. Therefore:

I. We will eliminate Reaction 7, since the concentration
of free A is vanishingly small. (Actually one should leave this
reaction in the mechanism to make the mechanism thermo-
dynamically legitimate, but it will have little effect on the
simulation.)

II. We will assume that the association rate constants for
nucleotide binding to actin (Reactions 1, 2, 5, and 6) are the
same with a value of 1 uM~s™!, (This approximate value is
known from the literature and its absolute value + 10X will
not affect the time course of the reaction significantly.)

III. To keep things simple, we will assume thatk_, = k_ ;
k;=k_ gand k_g = k_¢

Tasks

9.1. First we note that profilin is involved in all but the
first two reactions, so when the profilin concentration is 0,
we can look at the first two reactions alone. Write out and
compile Reactions 1 and 2. Display the data in Datafile 9.1.
We mix 2 uM AT with three different concentrations of eT
(2, 20, or 200 uM). We follow the time course of the change
in the fluorescence as €T replaces T bound to the actin by a
fluorescence change.

9.2. Search for values of k_, and k_, that fit the data.
Assume that the initial concentration of A is 0. Think about
which experiment is most sensitive to the relative values of
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these rate constants. Remember that the rate constants de-
termine both the rate of the reaction and the equilibrium
concentrations of the products. First look for a ratio of rate
constants that gives the observed equilibrium concentrations.
Start with the curve most sensitive to the values of k_, and
k_,. Then confirm the value of the equilibrium constant with
other curves. Finally, maintaining the ratio of the rate con-
stants, vary there absolute values to achieve a fit of the
curves. Now you can proceed to the experiments with pro-
filin, using the four rate constants from P = 0 as givens.

9.3. In the next series of experiments, we mix 200 uM eT
with 2 uM AT in the presence of various concentrations of
profilin (P = 0, 0.02, 0.2, or 2.0 uM). Display Datafile 9.2
showing the concentration of AeT + PAeT (determined by
fluorescence) as a function of time.

9.4. Search for valuesof k,; =k, k_;=k_,andk_; =
k_g that simulate the experimental data. Hint: Start with dif-
fusion limited association rate constants and vary the dis-
sociation rate constants to bring the curves into approximate
agreement with the data. You may be suspicious that the data
will not sufficiently constrain the simulations for you to solve
for so many unknowns. Never fear, only one set of these
numbers will actually work. Let us know if you find a so-
lution significantly different from ours. How tightly con-
strained are the values of the unknown rate constants?

9.5. Examine the rate constants. Why does profilin in-
crease the rate of nucleotide exchange? Note that low con-
centrations of profilin can effect the nucleotide exchange of
all of the actin even if the actin is present at a much higher
concentration. What features of the rates of these reactions
accounts for this “catalytic” effect of profilin?

This work was supported by NIH Research Grants GM-26132 and GM-
26338 to T.D.P. and by Medical Scientist Training Program Grant GM-
07309 that supported D.H.W. We are grateful to Enrique De La Cruz and
the participants in the 1993 Physiology Course at the Marine Biological
Laboratory, Woods Hole, MA, for ficld testing this tutorial.

APPENDIX 1: RATE CONSTANTS AND
EQUILIBRIUM CONSTANTS

The concepts in this section form the basis for understanding all of the
molecular interactions in chemistry and biology. Most molecular interac-
tions are driven by the diffusion of the reactants that simply collide with each
other on a random basis. Similarly, the dissociation of molecular complexes
is a random process with a probability determined by the affinity of the
molecules for each other. Many other reactions occur within molecules or
molecular complexes. Together these classes of molecular interactions are
responsible for all life processes.

We will review the physical basis for reaction rate constants and their
relation to the thermodynamic parameter, the equilibrium constant. These
simple but powerful principles are essential to appreciate the molecular
interactions in cells. In many cases in biology, rate constants are even more
important the equilibrium constants, since the rates of reactions govern the
dynamics of the cell.

Definitions

Rate constants, designated by lower case k’s, are constants that relate the
concentrations of reactants to the rate of a reaction.
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Equilibrium constants are given as upper case K’s. A very important and
useful concept is that the equilibrium constant for a reaction is related di-
rectly to the rate constants for the forward and reverse reactions as well as
the equilibrium concentrations of reactants and products.

The rate of a reaction is the rate of change of concentration of a reactant
(R) or product (P) with time. As reactants disappear, products are formed
so that the rate of reactant loss is directly related to the rate of product
formation in a manner determined by the stoichiometry of the mechanism.
The arrows in all of the reaction mechanisms in this tutorial indicate the
direction of the reaction.

As a preview, here are the the relationships in the general case:

Reaction mechanism R <==> P

Reaction rates
Forward rate = k_[R]
Reverse rate =  k_[P]
Net rate = k,[R] — k_[P]
At equilibrium the net rate is 0, so k. [R] = k_[P]
The equilibrium constant K is defined as K =E=&l

°q k_ [Rq]

In specific cases, these relationships depend on the reaction mechanism,
particularly on whether one or more than one chemical species constitutes
the reactants and products. We will derive the equilibrium constant from a
consideration of the reaction rates. We will begin with the simplest case
where there is one reactant.

First-order reactions
First-order reactions have one reactant. The general case is simply
R-->P

A common example of a first-order reaction is a conformational change
in a protein, where A and A’ are the two conformations

A->A*
Another example is the dissociation of a molecular complex such as
AB-->A+B

where A and B could be two proteins or an enzyme and a product.

The rate of a first-order reaction is directly proportional to the concen-
tration of the reactant (R, A, or AB in our examples). The numerical values
of the rate of a first-order reaction expressed as a differential equation (rate
of change of reactant or product as a function of time, ¢) is simply the
concentration of the reactant times a constant, the rate constant k, with units
of s\

Rate = & —dt_kR

The rate of the reaction has units of M s™! where M is moles per liter
and s is seconds. This is verbalized as “molar per second.” As the reactant
is depleted, the rate slows.

A first-order rate constant can be viewed as a probability. For the con-
formational change, it is the probability per unit time than any A will change
to A* in a unit of time. For the dissociation of complex AB, the first-order
rate constant is determined by the strength of the bonds holding the complex
together. This “dissociation rate constant” can be viewed as the probability
that the complex will fall apart in a unit of time. Note also that the probability
of the conformational change of each A to A* or of the dissociation of each
AB is independent of its concentration. Each A or AB does its own thing.
The concentrations of A and AB are only important in determining the rate
of the reaction observed in a bulk sample.

When thinking about a first-order reaction, it is sometimes useful to refer
to the “half-time” of the reaction. The half-time, ¢, ,, is the time for one-half
of the existing reactant to be converted to product. This time depends only
on the rate constant and therefore is the same regardless of the starting



InR,— R, = —k,
where R is the initial concentration and R, is the concentration at time £
Rearranging,

InR,=lR,-k or R =Re™
When the initial concentration R, is redoced by half
0S5=e™ or 2=  thus Wm2=hy,
so, rearranging,
0.693

0.693
=" =—

LT

Therefore you can estimate a first-order rate constant simply by dividing
0.7 by the half-time. Obviously, a similar calculation yiclds the half-time
from a first order rate constant. This relationship is very handy, since one
frequently can estimate the extent of a reaction without even knowing the
absolute concentrations and since this relationship is independent of the
cxtent of the reaction at the outset of the observations.

To review, the rate of a first-order reaction is simply the product of a
constant (k) that is characteristic of the reaction and the concentration of the
single reactant. The constant can be obtained from the half-time of a
reaction.

Second-order reactions
Second-order reactions have two reactants. The general case is
R, + R, --> Product.
A very common cxample is a bimolecular association reaction, such as
A+ B-->AB,

where A and B are two molecules that bind together. Such association
reactions are very common in biology. Some cxamples are the binding of
substrates to enzymes, the binding of ligands to receptors, and the binding
of proteins to other proteins or nucleic acids.

The rate of a second-order reaction is the product of the conceatrations
of the two reactants, R, and R, and the second-order rate constant, k-

. dpr
Rmratc=;=kklkz.

The units for reaction rate are M s™', just like a first-order reaction. The
units for R, and R, are M, so the sccond-order rate constant, k, has units of
M7’s7™ It cannot, therefore, be directly compared with a first-order rate
constant.

Solving the differential equation for a second-order reaction is generally
not so simple as that for a first-order reaction. It is not just a simple ex-
poncntial function except under special conditions called “pscudo-first-
order reactions.” When onc reactant, R, is greatly in excess, the total amount
of product that can be formed is Limited by the amount of the other reactant.
Therefore, little R, will be consumed during the reaction and its concen-
tration changes negligibly with time. If R, is constant, then the differential
cquation becomes
dar
a=kR,R2=
where k__ is the effective, or observed, rate constant. This is just the first-
order cquation, so the result is an exponcntial with a half-time of 0.693/k .

The value of the association rate constant, k,, is detcrmined mainly by
the rate that the molecules collide (Berg and von Hippel, 1985). This col-

(kR)R; = kR,
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lision rate depends on the rate of diffusion of the molecules, which is de-
termined by the size and shape of the molecule, the viscosity of the medium,
and the temperature. These factors are summarized in a parameter called the
diffusion cocfficient, D, with units of cm? ™. The rate constant for collisions
is described by the Debeye-Smoluchowski equation, simple relationship that
depends only on the diffusion cocfficicnts and the arca of interaction be-
tween the molecules:

k= 4b(D, + DyN,10
where b is the interaction radius of the two particles (in ceatimeters), the
D’s are the diffusion coefficients of the reactants, and N, is Avogadro’s
number. The factor of 1073 converts the value into units of M~'s™".

For particles the size of proteins, D is ~10" cm’ " and b ~2 X 107’
cm, so the rate constants for collisions of two proteins are in the range of
3 X 10°* M~'s™. For small molecules like sugars, D is ~10~° cm’s ™! and
bis ~1077 cm, so the rate constants for collisions of a protein and small
molecules are ~20 times larger, in the range of 7 X 10° M~'s ™. On the other
of 10° to 10" M~'s™". The difference of 20 to 1000 is attributed to a steric
factor that accounts for the fact that macromolecules must be comrectly
oricated relative to cach other to actually bind together. Thus the comple-
mentary binding sites are aligned correctly only 0.1-5% of the times that
the molecules collide.

Many binding reactions between two proteins, between enzymes and
substrates, and between proteins and larger molecules like DNA are “dif-
fusion limited” in the sense that the rate of correctly oriented, diffusion-
constants are in the range of 10° to 10’ M~'s™. (Imtcrested readers can
consult the articie by Northrup and Erickson (1992) that explains how the
precise oricntation for macromolecular binding is achieved more readily
than expected from random collisions.)

To review, the rate of a second-order reaction is simply the product of
a constant that is characteristic of the reaction and the concentrations of the
two reactants. In biology, the rate of many bimolecular association reactions
depends simply on the rate of diffusion-limited collisions between the
reactants.

Reversible reactions

Most reactions are reversible, so the net rate of a reaction will be equal to
the differeace of the forward and reverse reactions. The forward and reverse
reactions can be any combination of first or sccond-order reactions. We will
start with a pair of simple first-order reactions, such as the conformational
change:
A= A"

The forward reaction rate is k, A with units of M s™! and the reverse

reaction rate is k_ A* with the same umits. At equilibrium

k, _A*
and K,= L A

k,A=k_A*
Note that this equilibrium constant is unitless, since the units of con-
centration and the rate constants cancel out.
The same reasoning with respect to the equilibrium constant applies to
a simple bimolecular binding reaction:

A+B=2AB,

where A and B are any molecule including an enzyme, receptor, substrate,
cofactor, drug, etc. The forward (binding reaction) is a second-order reac-
tion, while the reverse (dissociation) reaction is first order. The opposing
reactions are

Rate of association = k,[A][B] units: Ms™
Rate of dissociation = k_[AB]  umits: Ms™!
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The overall rate of the reaction is the forward rate minus the reverse rate:
Net rate = Association rate — Dissociation rate

= k. [A][B] - k_[AB]

Notc carcfully at this point, that depending on the values of the rate
constants and the conceatrations of A, B, and AB the reaction can go for-
ward, backward, or nowhere.

At equilibrium the forward and reverse rates are (by definition) the same.
Thus

k. [A][B] = k_[AB]

k__ [A]B] L .
— = K,, the dissociation equilibrium constant!
k. [AB]
Librium concentrations of reactants and products are related to each other.
The equilibrium constant for such a bimolecular reaction can be written
in two ways:

R
_aB kM
K fam e ™ M MM

D cociation couilin
[ANB] k. . . MXM
K,=—— [AB] k+ units: M= M

What is the half-time of a reversible reaction? For a simple reaction,
A <> A* that starts with a given concentration of A = A,, the rate of the
reaction is
rate = forward rate — backward rate
*

dr
But the total material is constant, so [A] + [A*]

= k,[A] - k_[A®).

=A,x[AY]=A, -
rae = k,[A] ~ k_(A, — [AD
=k, +k)A] —k_A,
= ku[A] - EA,

This is just the first-order equation with an extra constant on the end,
which does not affect the half-time (see your introductory differential equa-
tions textbook). What matters is the coefficient of the reactant concentration,
so the half-time is 0.693/k,, = 0.693/(k, + k_). The effective rate constant
is the sum of the rate constants. This may seem counterintuitive; why should
the reverse rate constant have anything to do with the time for the forward
reaction? The reason is that the time course of the reaction is not the time
to convert all of the A into A*, but is the time to reach equilibrium. The larger
the reverse rate constant, the less A* will be present at equilibrium, and the
faster the reaction will go from 100% A to the equilibrium mixture.

For the bimolecular reaction A + B <> AB, the differential equation is:

rate = k, [A}{B] — k_[AB] as above.

The general solution of this equation is complicated, which is why nu-
merical integrating programs (like HopKINSIM) are so useful for real- life
reactions. However, the pseudo-first-order approximation above can be use-
ful in this case. If B is in great excess, then [AB] will be limited by the
concentration of A and the concentration of B will be effectively constant,
and

[A] and

rate = k, [A][B] — k_[AB] = (k, [BD{A] -

= (k,[B] + k_){A] + a constant

k (A, - [AD
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and the apparent rate constant is k, [B] + k_. Thus, plotting [B] vs. appareat
rate constant (which can be estimated from the half-time of the reaction)
gives a line with a y intercept of k_ and slope of k,. Remember, the con-
centration of B must be much higher than that of A to use the pseudo-
first-order approximation. Actually estimating all the rate constands by fit-
ting to simulated data has the advantage of being applicable to all conditions.

Linked reactions

Many important processes in the cell consist simply of a single reaction, but
most of cellular biochemistry involves series of linked reactions. For ex-
ample, when two macromolecules bind together the complex will often

undergo some type of internal rearrangement or conformational change,
linking a first-order reaction to a second-order reaction.

A+B=2AB
AB =2 AB*.
One of thousands of examples is GTP binding to a G-protein, causing
it to undergo a conformational change from the inactive to the active state
upon binding GTP.

Similarly, the simple enzyme reaction considered in most biochemistry
books is simply a series of reversible second- and first-order reactions:

E+S=2ES
ES <=Fp
EP =2E+P,

where E is enzyme, S is substrate, and P is products. These and much more
complicated reactions can be described rigorously by a series of rate equa-
tions like those explained above. For example, simple enzyme reactions
nearly always involve one or more additional first-order reactions where the
molecules undergo conformational changes.

Linking reactions together is the secret of how the cell carries out un-
favorable reactions. An unfavorable reaction can be driven forward by a
favorable reaction up- or downstream. All that matters if the total free energy
change for all of the coupled reactions is negative. For example, the un-
favorable reaction producing ATP from ADP is driven by being coupled to
an energy source in the form of a proton gradient across the mitochondrial
membrane that is derived in turn from the oxidation of chemical bonds of
nutricats.

APPENDIX 2: ANSWERS TO THE PROBLEMS
Probiem 1

1.8. The half-time is 0.07 s.

1.9. k,, is 0.6930.07 = 10s™".

1.10. The time to 0.75 uM is 0.14 s, so the time from 0.5 t0 0.75 uM
is 0.14-0.07 = 0.07 s, the same half-time as the first half of the reaction.
From 0.75 to 0.875 puM it is also 0.07 s. It is always the same because the
reaction is a simple exponential without a “memory.” The reaction from any
point onward is the same as the reaction from time zero, and the time to use
up half of what is left is always the same.

1.12. Changing the concentration changes the rate by the same propor-
tion (the rate is k[{A]) so it takes just as long to use up half of the reactants.

Problem 2

2.2. Equilibrium concentration of A = 0.33 uM, A’ =0.67}LM.K‘,‘=
k/k_ =10/5=2=A'/A = 067033 = 2.

23. 50% maximum at 0.05 s, 75% at 0.1 s, 87.5% at 0.15 s. Each
half-time is 0.05 s.

24. k,, =0.693/0.05 = 145" (Quite close to k, + k_ = 1557") Part
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discrete time points is that rounding errors occur. Dividing by a slightly
erroncous number magnifies the error. The more accurate way to estimate
kg, is by running a simulation of an irreversible reaction with a final con-
centration equal to the equilibrium concentration in the unknown reaction
data.

k. halftime k, k,+k

10 0.035 198 20
25 0.055 126 125
1 0.065 10.7 1

Thus k,, is the sum of the forward and reverse rate constants.
2.6.

k_ A A’ A’/A k, fk_
10 05 05 1 1
25 0.67 033 05 05

1 083 0.17 02 02
2.7. This is left as an exercise for the reader.

Problem 3
31
pH K
7 9
8 .01
9 .001

3.2. Dilution does not change the ratio; both are diluted equally.

3.5. Half-time is 0.07 s; k is 10s7.

36. Weneed k k. = K=9andk, +k_ =k, =105, s0k, =
9s'andk_=1s""

Problem 4
4.4 It is exponential. Half-time is 0.07 all along the curve, and k__ is

10s™.
45. kg, isnot obviously related to the rate constants until you do the next

parts of the problem.
4.6.
k, 05 075 1 2 4
ke 5 75 10 20 40
k,,, is proportional to k.
47.
B 10 20 30 40
Koo 5 10 15 20
k. is proportional to B. k,, = k,B.

48

K 1 3 5 8 10
ke 11 13 15 18 20
AB 009 08 067 056 050

49 k_=LB+k
4.10.

B 10 20 30 40
k. 20 30 40 50

Slope is 1 uM ™ 's™! and y intercept is 10 s~
411. k, is25 pM s ' and k_is 15°L.

Problem 5

5.2. It is not an cxponential (although it is close). Saccessive half-times
are 020, 0.28, and 0.30 s. It is faster at the beginning than at the end; it is
actually a hyperbolic curve.
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53. You can ecither solve the differential equation exactly (sot impos-
sible, but very difficult) or use the simulation program to generate theoretical
curves until you find a single pair of raic constants that match the experi-
mental data. This is straightforward, since the ratio of the rate constants is
constrained to fit the equilibrium data from the long time scale part of the
experiments, so there is only one variable. The higher the rate constants, the
faster the reaction, so you can immediately tell if your values are too high
or too low.

54 k,islpM s and k_is 03 s\

Problem 6

62. The apparent rate constant for the first reaction is k, B + k_,,
as in Problem 5, or 25 s The apparent rate constant for the second
reaction is k,, + k_,, as in Problem 2. It is psendo-first-order, because
the first reaction is slower than the second, so it behaves like the one
step reaction in the previous problem. The second reaction is invisible
because it is so fast; AB is rapidly converted into AB’ and the time
course of AB’ formation in this experiment is the same as that of AB
in the previous experiment.

6.3. The second reaction becomes slower, relative to the first, so the
second reaction becomes rate limiting. Calculating the actual k, and com-
paring them to the predicted k, for each reaction is left as an exercise for
but lengthens the lag, enough to be able to observe an overshoot in the value

of [AB].
64.

K, = K=

k., A B AB’ AB/A*B Ki K, K, =Kk,

1 02102 921 0016 0008 04 002 0.008

10 0.1849 9.185 0.136 0.08 04 02 008
100 00840 9.084 0611 038 04 2 0.8

The equilibrium constant for the overall reaction A + B == AB' is the
product of the equilibrium constants for the two coupled reactions.
6.5.

B halftime kg B halftime  k,

4 078 8.88 256 .00666 104.0

8 .046 15.1 512 00579 119.7
16 .0284 244 1024 00505 1372
32 018 385 2048 00478 1450
64 01215 570 4096 00465 1490
128 .00875 792 5000 .00463 149.7

You could keep going, but you sce that the plateau is at k. = 150
s~! and it should be equal to k., + k_,. It does not get quite linear at
the low cnd, but taking the first three points as linear, the best fit is
ku, = 4.23 + 1.3 B, or you would estimate k, , as 13 pM s 'and k_,
as 4.23 s!. The overall equilibrium constant is 0.8 uM ™!, from the data
in Problem 6.4, and this is equal to the product of the individual equi-
librium constants,

13k,,
423k,

k+lk+2
kK k,

The plateau is k,, + k_, = 150, and you can solve for k,, and k_,. You
would estimate k., as 108.1s7" and k_, as 41.9 s™". This is not perfect,
because we cannot get a clean line at the low end of the scale (see
Problem 6.6) but it is certainly close. To get a more accurate answer,
you would need to start with these estimates, simulate the whole set of
reactions, and adjust the rate constants until the simulation fits the time
courses over the whole range of reaction rates. This is somewhat tedious
and has been antomated in some systems.

6.7. The answer is: k,, = 15 pM7's™ k_, = 257 k,, = 2057,
k,=5s"\

= 0.8.
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Problem 7

72. There is a lag because two T’s need to bind before MTT, the final
product, can be generated. One T binds with single exponential kinetics, but
it may come off before the second one can bind, so the probability of getting
both T’s on simultancously is low, and it takes some time before this hap-
pens. Once AMTT forms, it falls apart very quickly into A and MTT. Higher
concentrations of T reduce the lag.

7.3. The key to this game is to redoce the namber of unknowns as much
as possible in a given experiment, then vary the unknowns that are left to
best fit the experimental data. One idea: Based on the biology, it is rea-
sonable to assume that the rate constants for the first two reactioas are
the same. This cuts the number of unknowns to four. Experimentally,
you could mix the actin-myosin complex with ATP and observe the time
course of the decrease in light scattering in a spotted-flow machine as the
myosin dissociated from the actin filaments. By testing a range of ATP
concentrations you would have enough data to find a unique solution of the

7.4. One simple mechanism is the following: RB == RB’; RB’ ==
RB"; where RB represents the pair of Rb tumor suppressor genes and the
Pprimes represent mutations in one or both of the genes. Patients with mu-
tations in both genes (RB”) develop cancer. Patients who inherit one mu-
tation (initial concentration of RB’ = 1.0) develop cancer with a first-order
time course and a rate constant of 0.075 month ™! for the second reaction.
The fit to this curve is excellent. The reverse rate constants are 0 for both
lag. You will be able to get an approximate fit to the data with k,, = 0.05
month™, k_, = 0,k,, = 0.075 month™', k_, = 0. Considering that the data
are very limited and based on referrals of patients to a cancer hospital, the
fit is not so bad. In fact, things are much more complicated than this simple
two-hit model, given that additional steps are required for the tumors to
develop. We should also take into account that the retina contains about
2,000,000 cells, any one of which can develop cancer. In addition, we have
not taken into account that the number of dividing neurcblasts decreases to
0 during the first few years of life, changing the mumber of cells in the retina
that are susceptible to development of these tumors. Mutations that occur
after the cells stop dividing presumably are silent. Let us know if you de-
velop a more realistic model that gives a better fit to the data.

Problem 8

83. The answerisk,, is 10 uM ™ 's " and k_, is 1s™ k,,is 557! and
k_,is1s "k ;is03s'andk_is1 uM's7.

83a. K_ is about 0.2 uM; V__ is 0.024 uM s\ It is very difficult to
estimate becanse of the scatter in the points. The data are perfect. The scatter
in the Lineweaver-Burk plot is the major disadvantage to all the classical
methods of analyzing kinctic data. Before computers, the only kind of curve
that was convenient to fit was a straight line. The classical approaches
(Lineweaver-Burk, Scatchard, ctc.) were desigaed to transform nonlinear
data into straight lines. These manipulations (reciprocals, divisions) may
exaggerate errors (in this case, rounding errors) to the point that a least-
squares linear fit is inappropriate and misleading.

83b. The fast phase is the first turnover of S into P, as E binds its first
S. This involves only the reactions E + S <> ES <> EP, and it is controlled
by k., and k. ,. With high S, the ES <> EP reaction is rate-limiting. The fast
phase has an initial rate of 4.2 uM s, which will be approximately the rate
of the reaction ES — EP, or k, , ES. What is ES during the fast phase? During
this phase, almost all of the E has bound S already (the second step is rate
limiting because it is slower than the first step), but has not released it, so
ES is approximately equal to the initial concentration of E, or 1 uM. Thus
k,,ES=42pMs™ =k, ,1 M, ork,,is ~4.25”", not far off the real answer
of 557

The slow phase begins when EP starts dissociating into E and P, allowing
E to react with another S and continue at a steady state. Thus the fast phase
continues until all the E is saturated. Why is this not when EP is equal to
the initial concentration of E? The answer is that EP is in equilibrium with
ES, and this equilibrium determines the steady-state concentration of EP.
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From the graph, this is whea EP is ~0.83 uM (the slow and fast phases do
not form a sharp angle, so you have to extrapolate). Since the enzyme is
satorated, ES = 1 pM — EP = 0.17 uM. This tells us the equilibrium
constant for Reaction 2; &, ./k_, = 0.83/0.17 = 5. Using the estimate for k,,
above, we get k_, = 0.84 571,

The slow phase is the reaction EP <> E + P, and its rate is approximately
k., EP, where EP is the steady-state concentration of EP. This phase is what
was scen in the steady-state experiment in part (a), and the lag in production
of P there is the fast phase here (production of EP rather than P), which has
told us so much. The slow rate from the graph is 0.27 uM s~ which should
bek ;EP =k ;08 uM,ork,;=03s™.

83c. This s just the bimolecular binding reaction from Problem 4 above,
and we have a vast excess of S, so the pscudo-first-order analysis applies.
Alternatively, just use HopKINSIM. This is a two-unknown system (k.,)
and we can measure the time course all the way to equilibrium, so it would
be easy. Doing it the analytical way,

S 1 2 4 8 12
| 3% 924 198 3465 693 99

Least squares fit gives k., = 82 pM's™! and k_ = 2.4 s™. This is within
an order of magnitude of the correct answer, but not accurate. The problem
again is dividing by a number subject to rounding and other errors. This is
the advantage of simulating the full time course of a reaction, which gives
exactly the right answer and uses all the data. The general rule is fit the data,
not the transform, whenever possible.

8.3d. Same problem as (8.3c), but starting with P rather than S. k’s are
given above.

83e. If we assume that the reverse reaction is negligible (a common
assumption in this sort of problem), then this experiment is like Problem 1,
a first-order, irreversible reaction, EP — E + P. Starting with all the enzyme
as EP is wrong, because it will be in equilibrium with ES, but without doing
the other experiments, we do not know what that equilibrium will be. If you
knew the equilibrium constant from the burst experiment, thea you could
set ES to 0.17 uM and EP to 0.83 uM at the start. Still, running KINSIM
would provide a reasonable estimate of k, ;.

Doing it analytically, assuming that the reaction EP — E + P is irre-
versible, gives a half-time of 1.7 s and a k_ ; of 0.4 s™". This is close to the
actual value of 0.3 s™', largely because we have been able to ignore the
reverse reactions (EP — ES <> E + S). The association reactions do not
occur because of the presence of the large excess of nonradiocactive sub-
strate. Any free enzyme is immediately bound to a “black™ molecule and
thus will not be seen in our experimental results.

8.5. The equilibrium constants are K, = 10 uM, K, = 5,K; = 03 pM .
Do you understand the units involved? K_ (which we found above to be 02
#M) does not represent any of these equilibrium constants, so it is not really
an affinity for anything. It represents the concentration of substrate needed
to produce a half-maximal steady-state rate, so an enzyme with a lower K
will require less substrate to saturate, 5o in that sense it has a higher affinity.
It can be related to the k’s if certain simplifying assumptions are made (ES
to EP equilibrium is infinitely fast, irreversible product release) as you have
learned in biochemistry, but it cannot be simply calculated for a more re-
alistic model such as this one.

86. V_, is the maximum rate of production of P in the presence of
infinite substrate. Under those conditions, the third step (product release) is
limiting, so the rate of production of P is k_; [EP], or 03 s™! * 0.083 uM
= 0.025 uMs ™', close to the observed value of 0.02363 uMs ™. (Where did
the 0.083 uM come from?) It is an overestimate because the rate of pro-
duction is really limited by two reactions, the second and the third. In our
case, the third is much slower, so it dominated the calculation. For the
mathematically inclined, the correct effective rate constant to use is

/(i)
ks

This number gives some information about the rate constants in the mecha-
nism, but only if we know the equilibrium conceatration of EP, or assume
that it is negligible and that the reaction is limited by the concentration of
ES, as is assumed in the Michaclis-Menten analysis.
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Problem 9

k,=k,=1pM sk  =001sk ,=003sk;=k, =2
pM s TSk =k =4s 5k =k =1pM sk =k =65
The profilin catalyzes the nucleotide exchange by hopping from one actin
molecule to another on a subsecond time scale. The half-life of the
complex of profilin with actin is 175 ms. During this time, the nucleotide
highly is likely to dissociate from the PAT complex, since its half-life
is 117 ms.
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