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Role of Substrate Inhibition Kinetics in Enzymatic Chemical Oscillations

Peidong Shen and Raima Larter
Department of Chemistry, Indiana University Purdue University Indianapolis (IUPUI), Indianapolis, Indiana 46202 USA

ABSTRACT Two chemical kinetic models are investigated using standard nonlinear dynamics techniques to determine the
conditions under which substrate inhibition kinetics can lead to oscillations. The first model is a classical substrate inhibition
scheme based on Michaelis-Menten kinetics and involves a single substrate. Only when this reaction takes place in a flow reactor
(i.e., both substrate and product are taken to follow reversible flow terms) are oscillations observed; however, the range of
parameter values over which such oscillations occur is so narrow it is experimentally unobservable. A second model based on
a general mechanism applied to the kinetics of many pH-dependent enzymes is also studied. This second model includes both
substrate inhibition kinetics as well as autocatalysis through the activation of the enzyme by hydrogen ion. We find that it is the
autocatalysis that is always responsible for oscillatory behavior in this scheme. The substrate inhibition terms affect the steady-
state behavior but do not lead to oscillations unless product inhibition or multiple substrates are present; this is a general
conclusion we can draw from our studies of both the classical substrate inhibition scheme and the pH-dependent enzyme
mechanism. Finally, an analysis of the nullclines for these two models allows us to prove that the nullcline slopes must have
a negative value for oscillatory behavior to exist; this proof can explain our results. From our analysis, we conclude with a brief
discussion of other enzymes that might be expected to produce oscillatory behavior based on a pH-dependent substrate
inhibition mechanism.

INTRODUCTION

Oscillatory behavior has been observed in several enzyme
reaction systems (Field and Gyorgyi); its chemical kinetic
source has been generally attributed to an autocatalytic
mechanism. The question arises whether autocatalysis is a
necessary condition for oscillations or whether it is merely
sufficient; might other types of kinetics explain oscillatory
behavior? A number of early studies suggested that substrate
inhibition kinetics could also be a source of oscillatory be-
havior in chemical systems, particularly enzyme reactions.
Spangler and Snell (1961, 1967) studied a two-enzyme
model system in which the product of one enzyme-catalyzed
reaction acted as an inhibitor for the other enzyme; this two-
enzyme model was shown to exhibit bistability and sustained
oscillations. Sel'kov (1968) investigated a single enzyme
model involving both substrate inhibition and product acti-
vation (dynamically equivalent to autocatalysis) and ob-
served oscillatory behavior. The oscillations observed were
attributed to the substrate inhibition kinetics, but no proof of
this assertion was given. Seelig (1976) investigated a model
involving a single enzyme with substrate inhibition kinetics
only (no product activation) and observed oscillations; how-
ever, this model involves two substrates, only one of which
is an inhibitor. It is not clear whether the existence of multiple
substrates is a necessary condition for oscillatory behavior in
a system governed by substrate inhibition. Several examples
exist in the literature (Degn and Harrison, 1969; Thomas,
1976; Lengyel et al., 1990), but they comprise only evidence
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of sufficient conditions for oscillatory behavior, but not
necessary conditions.
The question remains, then, whether substrate inhibition

involving only a single substrate can lead to oscillatory be-
havior. In this paper, we show that simple substrate inhibition
is insufficient for oscillatory behavior to arise, contrary to the
previous assertions. We further investigate a general model
of an enzyme reaction, applicable to a large number of com-
mon enzyme-catalyzed reactions, which involves both sub-
strate inhibition and autocatalysis. Our careful investigation
shows that although oscillatory behavior is observed in this
system, it is caused by either (1) the autocatalytic properties
of the mechanism or (2) substrate inhibition coupled with
product inhibition. Substrate inhibition alone is insufficient
for oscillatory behavior in this mechanism. We apply the
results of our simulations to the acetylcholinesterase enzyme
for which oscillatory behavior has been reported when the
enzyme is immobilized in an inert matrix (Friboulet and
Thomas, 1982). Our calculations raise a number of questions
regarding the validity of these previous experimental inves-
tigations. We conclude by suggesting experiments involving
other enzymes that should be more likely to exhibit oscil-
latory behavior according to our calculations with this well
accepted enzyme kinetic model.

CLASSICAL SUBSTRATE INHIBITION

We begin by considering a definition of the term "substrate
inhibition." Any reactant (substrate) that causes a decrease
in the rate of production of product as its concentration in-
creases will lead to a reaction that displays substrate inhi-
bition kinetics. In enzyme reactions, a mechanism can often
be written in which an explicit binding of the substrate to the
enzyme catalyst takes place, rendering the enzyme tempo-
rarily unavailable for production of product. A modified
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Michaelis-Menten scheme is the simplest example and will
be discussed below. Algebraically, a substrate inhibition
mechanism will lead to a term in the equation for the rate of
formation of product that is inversely related to the substrate
in question in the following way:

dP f1
dt f2 + Sn

+

where P is the product, S is the substrate, f1 and f2 are func-
tions that may involve other reactants and products, and n is
a number larger than one. Examples in the literature with
terms of this form in the kinetic equations, then, are some-
times attributed to "substrate inhibition" (Lengyel et al.,
1990) even if no binding process that ties up a catalyst is
ever identified. We will consider both definitions in this
paper.
The simplest enzyme kinetic model involving substrate

inhibition is the Michaelis-Menten mechanism modified by
adding a simple substrate-binding equilibrium:

kE
E + S=--ES

k2

ES-- E + P
k3

ES + S±ES2.
k-3

(1)

Degn (1968) studied this classical substrate inhibition
mechanism graphically and showed that when the substrate
S is allowed to flow into the system from a reservoir of
constant concentration S.,

K

So - S

stant, [E.], we again eliminate one of the enzyme variables
(here we choose to eliminate [ES]). Furthermore, the system
can be simplified by de-dimensionalizing the rate equations
using the following definitions:

O[E]T=kl[E0]t, O =-[ESE2]]
[ES2]

es2 =2 Eo

k2
kl[Eo]'

[S]
S = [Eo]'

es = 1 - e - es2,

[E]
[Eo]

K

f=
kl[Eo]

The de-dimensionalized rate equations then become

ds
dT = a(so- s) - se - ps(l - e - es2) + ceS2

+A1 - e - es2)
de
dT =-se + b(1-e-es2) +tl-e-es2) (3)

des2
dT_ p(l-e-es2)S-ces2'

The steady-state solutions of Eq. 3 are easily found by setting
the right-hand sides equal to zero and simultaneously solving
the resulting system for s, e, and es2. The stability of the steady
states are determined by linearizing the system 3 and finding the

(2)

that bistability could exist in this system (see Fig. 1). The rate
expressions given in the figure are those found using the
standard quasi-steady-state (QSS) approximation; because
bistability involves the steady-state solutions of Eqs. 1 and
2, the QSS approximation becomes exact for this case. Aguda
and Clarke (1987) analyzed the dynamics of the classical
substrate inhibition mechanism using stoichiometric network
analysis (Clarke, 1980) and found that the flow step, Eq. 2,
is a critical feature of the network for the existence of bi-
stability; without this feature (i.e., without a flow term), bi-
stability is not seen in the classical substrate inhibition
scheme.
We have continued the study of this simple model to de-

termine whether oscillatory behavior can be supported by it.
Using the QSS approximation, the variables [ES] and [ES2]
can be eliminated from the system of rate equations. Taking
the total enzyme concentration to be constant, i.e., [E.] =

[E] + [ES] + [ES2], we can eliminate [E] as well. Thus, in
the QSS approximation the classical substrate inhibition
scheme has only one dynamical variable, [SI, and would not
be expected to produce oscillations.
To determine whether the QSS prediction holds for the full

system, we carried out a standard linear stability analysis
(Gray and Scott, 1990) of the three steady states found by
Degn. The full set of rate equations corresponding to Eqs. 1
and 2 can be written in the usual way using mass-action
kinetics. Taking the total enzyme concentration to be a con-
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FIGURE 1 Enzyme reaction rate in a bistable system. (curve #1) Rate
of Michaelis-Menten mechanism alone. (curve #2) Rate of Michaelis-
Menten mechanism plus substrate inhibition from Eq. 1. (curve #3) Sub-
strate flow rate into reaction system. Bistability will exist when substrate
inhibition is combined with a flow term (i.e., where curves #2 and #3
intersect; the middle intersection is unstable). The three rate expressions are
given below:

Rate (#1) = kE+S (Michaelis-Menten alone)Km + S

Rate (#2 k2EOS (Michaelis-Menten
Rate (#))-Km + S + (k3/k_3)S 2 + Substrate inhibition

Rate (#3) = K(So- S) (Flow Rate)

where

Km
k + k2

Kk=
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eigenvalues ofthe Jacobian matrix evaluated at one ofthe steady
states. The resulting characteristic equation is

A3+b1A2+c1A+dl=0. (4)

where the coefficients are defined as

b= a + b + c + e + esp + s +ps +f

c = ab + ac + bc + be + ce + besp + as + cs

+ aps + 2eps + esps + pS2 + af+ cf+ 2esfp

d, = abc + bce + acs - besps + aps2 + acf

The presence of a Hopf bifurcation in this system can be
most easily detected by re-writing the characteristic Eq. 4 in
the following form:

(A2 + 02) (A+ a1) = 0. (5)

The three eigenvalues, then, will be

A1,2 = +iw, A3 =-a1, (6)

because a Hopf bifurcation occurs when the real part of a
complex conjugate pair of eigenvalues changes sign; hence,
the existence of eigenvalues A1,2 in the form above is a nec-
essary condition for oscillatory behavior. Comparing the two
forms of the characteristic Eqs. 4 and 5 allows the following
identifications:

b, = a1, c1 = w2, d1 = a1o2.

Hence, a condition that guarantees the existence of a Hopf
bifurcation in this system is

for the enzyme:
ki k2 k3

E+S=ES ES=E+P ES+S ES2. (8)
k-i k-2 k-3

The QSS expression for the rate of reaction, R, for the re-
versible mechanism (Eq. 8) is

E 25- K1K2P)
Km + (1 + S/K3)(S + KD2P)

where

kKm
K, =k'

Kk-1 +k2Km Ik1

k-2K =2- k '

2

k-2K 2=-
1

(9)

k_3
K =3a k3

and Eo2 = k2Eo.

As for the classical substrate inhibition scheme of the pre-
vious section, we consider an open system in which the dy-
namical variables are allowed to enter and/or leave the sys-
tem via diffusion. To simplify our presentation, we consider
first the case in which the substrate only diffuses in from a
reservoir of constant concentration S., whereas the product
only diffuses out; i.e., the following pseudo-reactions are in-
cluded with mechanism 8.

ko kp

SO0- S P-->PO (10)
From QSS theory, the rate equations for the two dynamical
variables substrate (S) and product (P) can be written

dS
-d = koSo- R

dP
- = kpP + R, (11)

b1c1 - di = 0. (7)
By substituting the preceding expressions for b1, c1 and
d1, it is easy to show that every term in the resulting
expression for Eq. 7 is positive regardless of the value of
the steady state; hence, none of the steady states will ever
exhibit a Hopf bifurcation, regardless of parameter val-
ues. These calculations prove that although the classical
substrate inhibition mechanism is sufficient for bistabil-
ity, oscillatory behavior cannot be sustained by such a
mechanism. The results of Seelig (1976) and others
(Degn and Harrison, 1969; Thomas, 1976; Lengyel et al.,
1990) indicate that a more complex scheme is neces-
sary; in particular, multiple substrates in a system
with substrate inhibition kinetics can lead to oscillatory
behavior.

SUBSTRATE INHIBITION WITH REVERSIBLE
PRODUCT FORMATION

From the above results, it is clear that the classical substrate
inhibition scheme does not support oscillations because it is
inherently a one-variable system. By making the second step
of scheme 1 reversible, however, we will introduce a second
quantity (the product, P) into the system as a dynamical
variable and will also provide, in essence, a second substrate

where R is given by Eq. 9. An analysis of the steady-state so-
lutions of Eq. 11 will indicate whether oscillatory behavior is
possible for the reversible system. Again, a linear stability analy-
sis was carried out in which the Jacobian matrix J is given by

/ aR

J= daR aR .
-kp +

(12)

The eigenvalues of J, A, satisfy the characteristic equation

A2 - trA + det = 0. (13)

where tr = -aR/aS- kp + aR/aP is the trace of J and det=
kp MURM3 is its determinant.

Oscillatory behavior may arise only if the steady states of the
system are unstable foci or unstable nodes, which occurs when
tr and det are both greater than zero. One can show that

aR E K3(d)
- (KMK3 + Kn2K3P + K35 + KnPS + S)

where

d =KmKiK2K3 + KnK3S+ K1K2K3S+ K2 + K1K22

which is always less than zero; therefore, aRI.)S must also be less
than zero for tr > 0. However, if MUMs < 0, det will be less than
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zero, too. Therefore, there is no way for the tr and det to both
be larger than zero at the same time and we can conclude that
no oscillations will occur for the system (Eqs. 8-10). Hence,
simply adding the reversible product formation is insufficient to
render the classical substrate inhibition scheme oscillatory.
To determine whether the restrictions on diffusion through

the pseudo-reactions Eq. 10 are responsible for these results,
we consider what changes will occur ifwe allow the diffusion
steps in Eq. 10 to be reversible:

ko kp
so-s P--Po. (14)

The rate equations for S and P will become

dS = ko (S - S) - R
dP

= kp(Po- P) + R.

We de-dimensionalize Eq. 15 by setting u = kp/ko, T = tko,
Eo2= k2Eoko, and R = Rlko:

dS
dSo= - S- R
dT

d=P
= U(P0 - P) + R.

The Jacobian matrix of Eq. 16 is

( aR daR
-1-J= i as ap (17)

aS -u + -p
For the matrix J given by Eq. 17, the trace is tr =-1 -
u- adRS + aR/aP, and the determinant is det = u -
aR/aP + u MR/S.
As before, the conditions for oscillation are that both tr

and det are greater than zero. Now, however, there are more
terms in det than just dR/aS alone. Because aR/aP is always
less than zero, it is required that dR/aS be also always less
than zero to ensure that tr > 0. A visual inspection of the QSS
reaction rate R versus substrate concentration S curve (Fig. 2)
reveals that this requirement is the same as saying that the
substrate concentration must fall to the right of the maxi-
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FIGURE 2 Enzyme reaction rate as a function of substrate concentration
(curve R(S)) and product concentration (curve R(P)) calculated from Eq. 9.
Parameter values are: Er2 = 0.01 s-5, Km = 0.1 mM, K12 = K1K2 = 0.01,
K3 = 1.0 mM, and kn2 = 0.1. For Curve R(S), P = 5.0 mM; for R(P),
S = 1.0 mM.

mum; this range of values ofS is the range in which substrate
inhibition dominates the rate. Also, starting from the con-
ditions that the tr and det are both larger than zero, one can
derive that u must be less than 1, meaning that ko > kp, i.e.,
the diffusion rate of substrate into the system must be greater
than the rate ofproduct diffusion out. So, oscillatory behavior
does become possible for the classical substrate inhibition
scheme when the product formation is made reversible
and both substrate and product are taken to follow re-
versible pseudo-reactions for diffusion. However, we will
show below that the range of parameter values over which
oscillatory behavior can occur is so narrow it is essen-
tially undetectable.

For certain ranges of parameter values, the system also
exhibits bistability. Fig. 3 shows the steady-state values of S
as a function of So for different E02 (equal to k2Edk0) values.
At higher enzyme concentration, the system exhibits mul-
tiple steady states, i.e., bistability. The region of parameter
space in which oscillations are possible (i.e., for which tr >
0 and det > 0) is shown in terms of the parameters So and
E02 in Fig. 4. The oscillatory region is extremely narrow,
and it is doubtful that any oscillations could ever be ob-
served experimentally in such a system. Oscillations cal-
culated via computer simulations are shown in Fig. 5.
Sustained oscillations occurred over a very narrow range
of E02 values (from 0.0433 to 0.0434 M, see Fig. 5 for
other values of parameters) as predicted from the linear
stability analysis.

SUBSTRATE INHIBITION + AUTOCATALYSIS

As reviewed in the introduction, an early study by Sel'kov
(1968) of a mechanism involving both substrate inhibition
and product activation was found to exhibit oscillatory be-
havior; although Sel'kov attributed this behavior to the sub-
strate inhibition nature of the mechanism, the results of the
previous section make it more likely that the product acti-
vation kinetics (which is essentially the same as autocataly-
sis) is actually the key mechanistic feature. In a chemical

So (M)

FIGURE 3 Steady-state values of substrate concentration (S) as a func-
tion ofparameter S0, the substrate concentration in the reservoir, for different
values of Er2 = k2E(/ko. #1, #2, #3, and #4 correspond to E,2 = 0.02, 0.05,
0.08, and 0.1, respectively. Bistability occurs for E02 > 0.05. Other parameter
values are: Km = 1.0 mM, K12 = K,K2 = 0.0001, u = 0.1, P0 = 0, K3 =

1.0 mM, and k.2 = 0.01.
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FIGURE 4 The oscillatory region in parameter (S0 - E02) space. Oscil-
lations exist for So and Em2 values that fall within (not between) the narrow

black lines; the oscillatory region is calculated from the conditions tr > 0
and det > 0. Other parameter values are: Km = 1.0 mM, K12 = KIK2 =

0.0001, u = 0.1, P0 = 0, K3 = 1.0 mM, and kn2 = 0.01.

mechanism, key kinetic features cannot be totally separated.
The combination of the effects of substrate inhibition and
autocatalysis may lead to dynamical behavior that goes be-
yond the well understood effects of autocatalysis alone.
Rather than re-investigating the Sel'kov mechanism, we

chose to look at a more experimentally meaningful but simi-
lar mechanism. The model we study in this section has been
used to describe quantitatively the kinetics of many enzyme

systems (Ableles et al., 1992), among these acetylcholines-
terase (AChE) and papain. In these enzyme systems, one of
the products is H+ and the enzymes are pH-dependent; the
mechanism is slightly more complex than that considered in
the first section:

Ks k2

E+ S -ES ES-E* + Pi (i

E* ->E+P2+H+
Kss

E* + S= E*S.

Here, two products (P1 and P2) are formed in subsequent
steps from two forms of the enzyme-substrate intermediate
complex (ES and E*). The second of these, E*, is involved
in the substrate inhibition step (the last step, taken to be
reversible). For AChE, the following species identifications
can be made:

E = AChE, S = ACh+ (acetylcholine),

P1 = choline, P2 = acetate anion.

The form E* is known as the acetyl enzyme species. Using
the QSS approximation, the following reaction rate law is
observed to hold for this system (Chay and Zabusky, 1983):

Rate =- VmaxS (19)

where

Vmax = k2k3Eokmax +k2+ k3
K_ K2k3K +-2 3

Kss(k2 + kA3)
Kssa - k2

FIGURE 5 Oscillations in substrate concentration calculated from com-

puter simulation of Eq. 16. Parameter values are: So = 0.011 M, Em2 = 0.0433
M,Km = 1.OmM, K12 = K1K2 = 0.0001,u = 0.1, Po = 0, K3 = 1.0 rM, and

kn2 = 0.01. The oscillations occur only in a very narrow parameter region; for
example, if S0 is fixed at 0.011 M, sustained oscillations only occur at Em2 values
from 0.0433 to 0.0434 M (see Fig. 4).

The dependence of the rate expression (Eq. 19) on the sub-
strate concentration is qualitatively the same as that in the
classical substrate inhibition model (see rate expressions in
Fig. 1), i.e., substrate inhibition is characterized by a higher
than linear dependence on substrate in the denominator of
the QSS expression. Hence, the substrate S inhibits the re-

action in the same way S does in the classical substrate in-
hibition scheme. Indeed, plots of Eq. 19 are qualitatively
similar to curve #2 labeled "M-M + Sub Inh" in Fig. 1 (see
Fig. 6 b). Hence, we might expect that this mechanism would
exhibit bistability but not oscillations.

Zabusky and others have shown (Zabusky and Hardin,
1973; Caplan et al., 1973) via numerical simulations of a

model of this form that limit cycle oscillations do occur. The
papain enzyme was modeled in these studies, i.e., the pa-

rameter values used in these simulations are those for papain.
It is important to note that for papain KSS = 0, i.e., papain
does not exhibit substrate inhibition. However, papain (as
well as all the other enzymes in this class) have pH-
dependent rate constants, k2 and k3, that yield a bell-shaped
enzyme activity curve as shown in Fig. 6 a. This diagram
shows the rate (from Eq. 19) as a function of pH for a fixed
substrate concentration using the pH-dependent rate con-

stants that apply to AChE. To the right of the maximum in
the curve (i.e., for pH > 8.5), the reaction is actually auto-
catalytic in HW. H+ is a product of the reaction, so as the
reaction proceeds, one moves toward the left in Fig. 6 a. If
the initial pH is very basic (pH > 8.5), the movement toward
the left leads to an increasing rate and, hence, autocatalysis.
So, although the reaction may be inhibited by substrate, it is
simultaneously activated by one of the products (H+). This
feature is known (Hahn et al., 1974) to lead to oscillations
in the absence of substrate inhibition effects.

In contrast with these theoretical predictions, no oscilla-
tions have ever been reported for the AChE system (also
described by Eq. 18), except when the enzyme is immobi-
lized in a membrane (Friboulet and Thomas, 1974); further-
more, we have been unable to reproduce the immobilized

S(M)

t (sec)

1-r,
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FIGURE 6 The rate of the pH-dependent enzyme reaction as a function
of pH and substrate concentration. The rate R is given by Eq. 21. Parameter
values for these plots are taken from data for AChE: Kw = 10-14 M2, u =

0.1, bi= 3.865 X 10-3 M, b2 = 1.786 X 10-5 M, Ka = 10-10M, Kb = 10-7
M, Kh = 0.001 s-1,c' = 8.571 X 103 S-', Ho = 10-108 M, and Eo = 1.3 X
10-l' M. (a) Dependence of the enzyme reaction rate on pH. The maximum
R value occurs when pH is equal to the average of the two equilibrium
constants for the enzyme, pKa and pKb; for example, for AChE, the peak
is at pH = 8.5. For high pH (to the right of the maximum), the reaction
follows an autocatalytic mechanism because production of the product H+
will increase the rate. For low pH (to the left of the maximum), the reaction
is characterized by product inhibition. For this plot, parameter values are as

given above with the following addition: S = 5.0 X 10-5 M. (b) Dependence
of the enzyme reaction rate on S. The maximum R value occurs when S is
equal to the square root of b, times b2. To the right of the maximum, the
reaction is characterized by substrate inhibition because increases in S will
decrease the rate. For this plot, parameter values are given above with the
following addition: H = 10-9 M.

AChE experiments in which oscillations were reported. In
addition, for the case of immobilized AChE, oscillatory be-
havior was reported at a pH of 7.5 for a substrate concen-

tration, which corresponds to a pH optimum of approxi-
mately 8.0. (The pH optimum shifts toward the acid when
this enzyme is immobilized, an effect that is well understood
(Goldstein, 1974). The magnitude of the shift is dependent
on the substrate concentration and is approximately 0.5 pH
units at the substrate concentrations at which oscillations
were reported.) Because the reported pH (at 7.5) at which
oscillations were observed lies to the left of the pH optimum
of 8.0, we would not expect oscillatory behavior to occur in
this system on qualitative theoretical grounds using the ar-

gument that oscillations might occur if autocatalysis is domi-
nant. However, because substrate inhibition also exists in this
mechanism, it is possible that a complicated interaction
might arise between the two important dynamic elements of
substrate inhibition and autocatalysis in this system and that
autocatalysis alone cannot fully explain the dynamical be-

XTlkss
EH*S+

b

EH*S E S
2 k'|[H ] k"[H ]

FIGURE 7 The full mechanism for the pH-dependent enzyme reaction
model. The main reaction route occurs in the vertical direction. Each of the
active enzyme species exists in equilibrium with inactive protonated and
de-protonated forms. The equilibria are driven by the pH of the system. EH
is the active form of the enzyme; EH2 and E- are the protonated and de-
protonated inactive enzyme forms. EHS and EH* are enzyme intermediate
complexes. The substrate can combine with EH* to form another complex
EH*S that cannot react further to give product. So substrate inhibition is
involved in this mechanism. Pp, P2, and H+ are the products of the reaction.
The rate law for this mechanism is given in Eq. 20 with the following
definitions:

kak' k"' k"'
k a aK

aKa=k Ka aaa Kaff= k''

kb kb kb _-
-b -b -b -bbk- b ~ k'b k"fb' k- b

havior of this enzyme. A second possibility is that the re-

ported observations of oscillatory behavior in this system are

in error (because, indeed, these experimental results have
never been confirmed by other investigators).

Because many enzymes obey the same type of kinetics as

AChE, our investigation also has the general goal of deter-
mining under what set of conditions oscillatory behavior
might be expected to occur in this entire class of enzymes.

In the next section we derive expressions for the Hopf bi-
furcation conditions that allow us to highlight the depen-
dence on the parameter values that characterize each indi-
vidual enzyme in this class. With these results, we show that
oscillatory behavior in AChE would be very difficult to ob-
serve experimentally (a result similar to that for the reversible
classical substrate inhibition scheme); other enzymes in this class
may have a broader range of oscillatory behavior that is much
more amenable to experimental investigation. Such enzymes

may be identifiable from the formulae we derive below.

PH-DEPENDENT MECHANISM

Fig. 7 shows a detailed mechanism that explains the source

of the pH dependence of the rate constants in model 18. As
can be seen, each enzyme species can exist in a protonated

S
(pKa+pKb)/2 a

+ H+
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or de-protonated form. This results in an apparently enor-
mous number of variables to keep track of; however, in most
cases, the protonation and de-protonation reactions occur
very rapidly and are usually taken to exist in a pseudo-
equilibrium state (Ableles, 1992). The equilibrium constants
consisting of ratios of forward and reverse rate constants for
the protonation/de-protonation equilibria are given in Fig. 7.
This pseudo-equilibrium approximation will eliminate all of
the enzyme species except EH, EHS, EH*, and EHS* as
variables; these are analogous to E, ES, E*, and E*S of the
preceding section. If, then, the QSS approximation is made,
the following rate law can be derived:

k2EH0S
R- ° (20)

where

=Km(1 +
H

+ a + s(1 + +K a'

/21 H K"a\ k2S2
1 +H K"'\l

+ kS + Kb + H + k3Kss\ Kb HI

where H = [He], Km = (k-1 + k2)/kl, and EHo is the total
enzyme concentration. If we make the simplifying assump-
tion that all of the protonated and deprotonated forms of
enzymes have the same equilibrium constant (i.e., that Ka =
K' = Ka" = Ka'and Kb = K' =Kb = K, but Ka ' Kb), this
expression can be simplified somewhat:

R = k2EHOS
(1 + K + ia) (Km + S(2 3k) + k3K2,)

(21)

The resulting rate expression (Eq. 21) is similar to that used
by other investigators (Chay and Zabusky, 1983) to fit ex-
perimental kinetic data and derive values of the rate constants
k2, k3, etc.

TWO-VARIABLE MODEL

We consider an open system in which the reactions of Fig. 7
(under the simplifying assumptions described in the previous
section) are supplemented by flow terms:

Ko Kh

so=--S [H+]. =-[H+]
Koh

[OH-]. = [OH-]. (22)

where R is given by Eq. 21 and A = [H+]- [OH-] = H -
Kw/H. We also assume that the transfer rate ofH+ is the same
as that of OH- (Kh = Kob). Using the following definitions,
Eq. 23 can be more easily analyzed:

S b2
f(S) = 1 + b +

,y(H) = 1 + -H+ -aKb H

k2k3
k2 + k3

(24a)

(24b)

(24c)

where the b1 and b2 coefficients are related to the parameters
of the preceding section in the following way:

= (k2 + k3)Kss
- k2 9

k3Km
b =+2 k2 + k'

Substituting the expressions 24 and the definition of A into
Eq. 23 yields the following forms of the rate equations:

dS =Eo
dt=K(0-S) - (S)y(H)

dH H2
dt H2 + Kw

h H H P(S)yH)]

(25a)

(25b)

We wish to determine whether the steady-state
solutions of Eq. 25 undergo a Hopf bifurcation. Setting
dS/dt = dH/dt = 0, we can eliminate S from the resulting
pair of algebraic equations and derive the following 8th-
order polynomial for H:

h8H8 + h7H7+ h6H6 + h H5 + h4H4

+ h3H3+ h2H2+ h H + h = 0. (26)

The roots of this polynomial corresponding to positive
values of both S and H can then be determined using a
standard root-finding algorithm; we used FindRoots in
Mathematica (Wolfram Research).
To find the Hopf bifurcations in this system, we form the

Jacobian matrix and evaluate it at one of the steady states
found from the solution of Eq. 26:

The reaction is thus taken to occur within a membrane that
is fed by reservoirs of substrate at constant concentration and
fixed pH (see Fig. 8). Taking the same approach as Zabusky
(1973) (i.e., including the water equilibrium H+ + OH- =
H20), we use the QSS approximation, which reduces the
model to a pair of coupled ordinary differential equations:

dS _
- K0(S, . S)-R

dA _

-Kh(AO-A)+R,

(23a)

-Ko + R ,, R lyti=RH2 f3+_ _
y

R2K
p

-Kh- R

(27)

where, from Eq. 24, we see that 13' and y' are the following
derivatives:

d,B 1 b2
I=dS =b1 s

dSy 1 Ka
I

= _

dH Kb H2 (28)

(23b) The eigenvalues of Eq. 27 will thus satisfy the following
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FIGURE 8 Schematic drawing of enzyme reaction occurring in open
membrane system. The membrane is taken to be homogeneous with
uniform enzyme distribution. The enzyme reaction takes place only
inside the membrane. A reservoir at fixed pHo and constant substrate
concentration, S0, provides continuous feed of substrate and H+ or OH-.
Diffusion and electric charges in the membrane are not considered in
this model.

where RSS is the steady-state value of the enzyme reaction
rate. Combining condition 32 with the condition that all con-
centrations are positive, we may use the steady-state equa-
tions to rewrite this result as an allowed range of reservoir
concentrations:

KS < So, <'/, + S
Ko bb2Ko (35)

where we note that RSS is still a function ofH (the concen-
tration ofH+ within the membrane) and H. (the concentration
in the reservoir). Conditions 34 and 35, then, are the con-
ditions for the existence of a Hopf bifurcation. The values of
H that are allowed in this result are given by Eq. 33.

For the case described here (i.e., for Kh > KO), we find that
the allowed values of S fall to the left of the maximum in Fig.
6 b, whereas the allowed values ofH fall to the right of the
maximum in Fig. 6 a. Hence, the rate is not inhibited by
substrate but is activated by product, i.e., the reaction is au-
tocatalytic in H'. Therefore, any oscillations found for this
case are purely caused by autocatalysis.

Another case exists for which Kh < Ko. The conditions for
the existence of a spiral focus (r < 0) for this case are

quadratic characteristic equation:

A2 -pA + q = 0,

and the eigenvalues will take the following form:

S> b1b2

(29) and

H>VKK or pH<½/2(pKa + pKb),

A+ p

where

p = Jll + J22

= -(Ko + Kh) + Rt
9 H2+K y)

q = J -1J22- 12J21

= KoKh + R( +K K -KW )

(30) which coupled with condition 34 (forp > 0) can yield a Hopf
(30) bifurcation. The conditions 36 correspond to the substrate

inhibition range in Fig. 6 b and the product inhibition range
in Fig. 6 a (i.e., no autocatalysis). Therefore, we find that
oscillations can, in principle, occur when substrate inhibition

(31a) is coupled with negative feedback (product inhibition) in this
type of enzyme reaction.

(31b)

Hopf bifurcations will occur when r < 0 while p = 0. Two
possibilities exist that depend on the relative magnitudes of
Kh and Ko. For the case Kh > K. (i.e., where H+ has a higher
transport coefficient than the substrate), the conditions for a

Hopf bifurcation reduce to the conditions for the existence
of a spiral focus (r < 0):

S < bb2 (32)

H < KaK (33)

coupled with the condition that this spiral become unstable
(p > 0). The latter condition results in the following expres-
sion, which S and H must satisfy:

1' Hm y'
R5 R-- H2+K > (Ko + Kh), (34)

EXAMPLE: ACETYLCHOLINESTERASE (ACHE)
To illustrate the general results derived in the preceding sec-
tion, we have chosen the acetylcholinesterase enzyme,
AChE, as an example. Rate constant data derived from ex-
periment for this enzyme are given in Table 1 in the form of
equilibrium and rate constants and values of b, and b2 defined
in Eq. 24. With these numerical values, the only free
parameters that remain in the equations derived in the pre-
ceding section are SO and H. (the reservoir concentrations)
and E. (the total concentration of enzyme). We find that
oscillatory behavior arises only through the autocatalytic
process (i.e., Kh must be larger than KO) for AChE.

TABLE 1 Parameter values for AChE (Chay and Zabusky,
1983)

K (M)
1 x 10-l0

b1 (M)
3.865 x 10-3

Kb (M) Km (M)

1X 10-7 1.25 X 10-4

b2 (M) K. (M)
1.786 X 10-5 3.3 X 10-3

k2 (S-')
6 X 104

Kh (S 1)
0.001

k3 (s-1)
1 X 104

K. (s-1)
1 x 10-4

(36a)

(36b)
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Choosing chemically reasonable values for So, pHo, and
Eo, the steady-state Eq. 25 can be solved. Fig. 9 gives the
steady-state dependence on pHo (Fig. 9 a) and on S0 (Fig.
9 b-d). Fig. 9 a shows steady-state values of pH, and S and
has a rough "S" shaped dependence on pHo, meaning that
multiple steady states are possible. The solid line is the stable
node region, the dashed line represents a saddle point, and
the unstable spiral region is indicated by very small empty
circles below the saddle point region.
The steady-state dependence on So is shown in Fig. 9 b-d

and reveals the existence of an isola, another form of bist-
ability. Isolas have been observed in some inorganic reac-
tions (Gray and Scott, 1983; Murray, 1989; Gray and Scott,
1990), but none have been reported in biochemical or bio-
logical systems. The isola state only exists within a certain
range of pHo and Eo values. For example, if pHo is fixed at
10.8, the isola appears when the value of Eo is between 0.8
x 10-10 M and 1.8 X 1010 M. When Eo is less than 0.8 X
10`1 M, the isola will shrink and disappear; when Eo is larger
than 1.8 X 1010 M, the isola will connect to the upper
steady-state line and become a mushroom. Furthermore, it
appears that the AChE system will display sustained oscil-
lations only when the parameter values are such that the isola
exists. The range of So values that can produce sustained

11

10[

pH

8

7

1

11

10

pH

8

7

L0.2 10.4 10.6 10.8 1:
pHO

C~~~~~~I

IC

2.0 4.0 6.0

So (mM)

8.0

oscillations is small (0.0059-0.0061 M) and located to the
left of the isola (empty circles) next to the saddle point region
(dashed lines).

Autocatalysis is generally the cause of an isola-shaped
steady-state diagram (Gray and Scott, 1983; Murray, 1989;
Gray and Scott, 1990); however, substrate inhibition can
change the shape of the isola in this system. If b, is taken to
be infinity, indicating no substrate inhibition, the isola will
not close at the right side (see Fig. 9 d), indicating that three
steady states exist even as the reservoir substrate concen-
tration (SO) increases beyond the biological range. But if b1
is decreased to approximately 10-' M, indicating strong sub-
strate inhibition, another multiple steady-state region at low So
will appear (a very small "S" shape in Fig. 9 c). We conclude
that substrate inhibition kinetics increases the complexity of the
system beyond that due to autocatalysis alone.
The range of (SO, pH., E.) values over which Hopf bifur-

cations occur is shown in Fig. 10. Note that the lowest ex-
ternal pH values for which oscillatory behavior is observed
is pHo = 10.2. This result is in sharp contrast to that predicted
from the qualitative autocatalytic kinetics for this system. As
shown in Fig. 6 a, we would expect oscillatory behavior
whenever autocatalysis is dominating, which corresponds to
pH values greater than or equal to 8.5 (or 8.0 in the immo-

11-____________________
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FIGURE 9 Steady-state pH value inside membrane as a function of control parameters pHo and S0 for AChE. Other parameter values are: Kw = 10-14
M2, u = 0.1, b, = 3.865 X 10-3 M, b2 = 1.786 X 10-5 M, Ka = 10-10 M, Kb = 10-7 M, Kh = 0.001 s-1, a = 8.571 X 103 s-1. For parts a-d in a certain
range of parameters, the pH shows multiple steady states. The solid line or points represent the stable region (stable nodes and stable foci), the dashed line
represents a saddle point, and the empty circles represent either unstable focus or unstable node; for the latter regions, we can expect oscillatory behavior.
(a) Steady-state pH dependence on pHo is a common "S" shaped curve. Here S0 = 0.006 M and Eo = 1.3 X 10-10 M. (b) Steady-state pH as a function
of S0 gives an isola shape at certain parameter ranges. Here pHo = 10.8 and Eo = 1.3 X 10-10 M. (c) The effect of increasing substrate inhibition. Here
b, = 1.0 X 10-3 M. For smaller values of bp, substrate inhibition increases. (d) No substrate inhibition. Here b, is taken to infinity, indicating no substrate
inhibition.
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FIGURE 10 Oscillation and bifurcation regions in SO - Eo space for the
AChE reaction system. Parameter values are: K. = 10"4 M2, u = 0.1, b,
= 3.865 X 10-3 M, b2 = 1.786 x 10-5M, Ka = 10-10 M, Kb = 10-7 M, Kh

0.001 s-1, a = 8.571 X 103 s . (a) Oscillation region inS0 - E0 parameter

space at pHo = 10.8. The dotted area corresponds to damped oscillations,
i.e., the region in which the steady state is a stable focus; the shaded area

corresponds to possible limit cycle oscillations, i.e., an unstable focus or

unstable node. (b) The bifurcation region in S0 - Eo parameter space for
different values of pHo.

bilized enzyme case); the discrepancy between the qualita-
tive prediction and the calculated cutoff amounts to approxi-
mately two orders of magnitude in the reservoir [H+]0.

Because of this discrepancy between qualitative prediction
and calculation, we checked the linear stability analysis re-

sults by carrying out numerical simulations in the range for
which oscillatory behavior is predicted from the linear analy-
sis. Fig. 11 shows the oscillations, which are indeed observed
only within the range calculated from the linear stability
analysis. The parameter region in which these simulated os-

cillations occur is extremely small. In addition, the period of
the oscillations is quite long (nearly 0.5 h), so it is doubtful
that such oscillations would even be detected experimentally.
(It should be noted here that the oscillations observed by
Friboulet and Thomas for the immobilized AChE case were

oscillations in the transmembrane potential. Because our

analysis does not include any electrical effects, we are unable
to calculate the expected response of the electrical potential
to these concentration oscillations. We hope to extend our

analysis in the future to include these electrical effects.)
We have studied further the general conditions that lead

to oscillatory behavior for the case Kh > Ko. Recall that the
conditions for the existence of a Hopf bifurcation in this case

9.

9,
pH

9.

0.03 0.04 0.05 0.06 0.07

S(mM)

FIGURE 11 Simulated oscillations in AChE reaction system. Parameter
values are: K, = 10-14 M2, u = 0.1, bi = 3.865 X 10-3 M, b2 = 1.786 x
10-5 M, Ka = 10`' M, Kb = 10-7 M, Kh = 0.001 s-1, a = 8.571 X 103 s-',
50 = 0.006 M, Eo = 1.3 X 10-10 M, and pHo = 10.8. (a) Oscillations in
substrate concentration inside the membrane. (b) Oscillations in pH inside
the membrane. (c) Limit cycle in S - pH space.

reduce to: (1) H+ concentrations within the autocatalytic
range, i.e., pH > (pKa + pKb)/2; and (2) S concentrations in
the range for which substrate inhibition is inoperative, i.e.,
S < Sm., where S.. is the value of S at which R has a maxi-
mum. Beyond this, we can also conclude that oscillations will
only occur if the enzyme has a small enough value of Ka, i.e.,
that pKa > 8. Both papain (pKa = 8.2) and AChE (pKa =

10.0) fall in this category, then, and any oscillatory behavior
observed experimentally for these enzymes can be explained by
a mechanism that relies on the effects of autocatalysis only.

EXAMPLE: A PROTEASE ENZYME TO
ILLUSTRATE SUBSTRATE INHIBITION

Oscillatory behavior can also arise via substrate inhibition
coupling with product inhibition in these pH-dependent en-

zyme reactions. An imaginary protease enzyme with rate
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TABLE 2 Parameter values for a protease enzyme

Ka (M) Kb (M) Km (M) k1 (s-1) k3 (s 1)

1x 10-7 1 X 10-4 2.0 x 10-5 1 X 102 1 X 102
b1 (M) b2 (M) K. (M) Kh (sI') Ko (s-1)

1.0 X 10- 1.0 x lo- 5.0 X 10-i 0.001 0.004

constant parameters as shown in Table 2 was chosen to il-
lustrate the substrate inhibition route that could lead to os-

cillations. These parameter values do not correspond to any
known enzyme, but they are not chemically unreasonable.
The predictions we calculate here illustrate the behavior of
any real enzymes that might, in the future, be found to follow
predominately substrate inhibition kinetics in this form. Sub-
strate inhibition is known to lead to oscillations in a two-
substrate system; here we have two dynamical variables, one
substrate and one product (H+). The steady-state values as a

function of pHo are shown in Fig. 12. Both a single steady-
state region (Fig. 12 a) and the multiple steady-state region
(Fig. 12 b and c) are found to possess a Hopf bifurcation, so

this system may possibly exhibit oscillatory behavior. The
oscillatory region in the SO- Eo parameter plane is shown in Fig.
13. At low Eo, one narrow region exists; at high Eo, two narrow

regions appear. Oscillations are found when the parameter val-
ues are in these narrow oscillatory regions; Fig. 14 shows some

typical oscillations that are computed in this range.
As in the previous section, we have further studied the

general conditions that lead to the existence of a Hopf bi-
furcation for the case Kh < Ko. Again, the conditions for the
existence of a Hopf bifurcation in this case reduce to: (1) H+
concentrations in the range for which this product inhibits the
reaction, i.e., pH < (pKa + pKb)/2; and (2) S concentrations
in the range for which substrate inhibition is effective, i.e.,
S > Sm., where S.. is the value of S at which R has a maxi-
mum. Beyond this, we have also determined two more re-

quirements for oscillatory behavior here: (1) a large value of
Kb is required, i.e., pKY < 6; (2) substrate inhibition must be
relatively strong, i.e., a small value of bp, b1 < 10-3 is nec-

essary. Our search of the literature has not yet turned up any

enzymes that fall in this category, but the conditions do not
seem to be unreasonable. Indeed, AChE itself is very close
to this situation with pKb = 6.3 and b1 = 3.865 X 10-3,
although it is not in this class of substrate inhibition-driven
oscillators. Further searching may reveal enzymes that might
be expected to yield oscillatory behavior by the mechanism
described for this imaginary protease enzyme.

NULLCLINE ANALYSIS OF
OSCILLATORY BEHAVIOR

To analyze the origin of sustained oscillations and excit-
ability, it is particularly illuminating to examine the two
nullclines, defined as dH/dt = 0 and dS/dt = 0, of the dy-
namical system. First, consider a plot of the nullclines in the
phase plane spanned byH and S. The intersections of the two
nullclines define the steady states. In both the classical sub-
strate inhibition case and the pH-dependent enzyme model,

pH

pH

0 2 4 6 8

pHo
10 12

pHo

pH

6

pHo

FIGURE 12 Steady-state pH as a function of pHo for a protease enzyme
system. The solid line or points represent the stable region (stable nodes and
stable focus), the dashed line represents unstable saddle points, and the
empty circles are unstable focus regions that can give rise to oscillatory
behavior. Parameter values are: K, = 10-14 M2, u = 4.0, b1 =1.0X 10-4
M, b2 = 1.0 X 10-5 M, Ka = 10-7 M, Kb = 10-4 M, Kh = 0.001 s-' and
a = 100.0 s-1 (a) SO = 4.5 X 10-4 M, and Eo = 4.5 X 10-7 M. The unstable
focus is in the single steady-state region. (b) When Eo is increased to 7.0
X 10-7 M and SO = 5.45 X 10-4 M, the unstable focus region corresponds
to multiple steady states. (c) Blow-up of unstable focus region in b.

multiple steady states will arise (normally three steady
states). A graphical analysis of the flow (i.e., the vector field)
in the phase plane around these intersections gives qualitative
information regarding the existence of oscillations. We have
carried the qualitative approach further and are able to show
that only the steady states at which both nullclines have a

negative slope can develop limit cycle oscillations. We use
the pH-dependent enzyme system as an example of our

proof. The two nullclines are given by

dt H2 + K h Ho H+ )+R=O (37a)

I2 a

LO.

8

6 9

4

2

0
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FIGURE 13 Oscillatory region in S0- Eo parameter space for the pro-
tease reaction system at pHo = 7.0. The black region corresponds to an
unstable focus for the following parameter values: K, = 10-14 M2, u = 4.0,
b1= 1.0 X10-4M,b2 = 1.OX 10-5M,K. = 10-7M,Kb = 10-4M,Kh
= 0.001 s-1, and a = 100.0 s1.

pH

dSdS = Ko (S0 - S) - R = 0. (37b)

We note that the derivative with respect to S of Eq. 37a and
37b evaluated at the steady state yields two slopes:

Kh( + ) -aR/aH

dH=/aRaS

dS aR/aH
dHl Ko + aR/dS

(38a)

(38b)

The conditions for the system to display sustained oscilla-
tions are that the real part of the eigenvalues are larger than
zero; this means that p in Eq. 31a is larger than zero. This
condition can be written as

H2 aR aR
- (Ko + Kh) + +K- - >0 (39)

Combining the condition, Eq. 39, with Eq. 38, a and b yields

dS < _(1 + /Ko) (1 + Kwj) (40a)

dS Ko + Kh + aR/aS (1+Kw (40b)
dH< K0 + aRiaS Hk

The slope of the two nullclines must satisfy the conditions
40 to give rise to a limit cycle. For the autocatalytic case,

aR/aS and aRiaH are both larger than zero, so the slopes in

condition 40 a and b are both negative for this case. For the
substrate inhibition case, aR/aS and aR/dH are both less than
zero; however, from condition 39 we can write

aR H2
aR

TS >KO+Kh+h2+K | (41)

Eq. 41 is the condition for the existence of a Hopfbifurcation.
When it is substituted into Eq. 40, a and b, we can easily see

that the right-hand sides ofthe equation will both be negative.
It is clear from these results that for the steady state to go

pH

0.08 0.12 0.16

S (mM)

FIGURE 14 Simulated oscillations for the protease reaction system. Pa-
rameter values are: KW = 10-14 M2,u = 4.0, b, = 1.0 X 10-4 M, b2 = 1.0

X 10-5 M, K. = 10-7 M, Kb = 10-4 M, Kh = 0.001 s-1, a = 100.0 s-1,
So = 5.45 x 10-4 M, Eo = 7.0 X 10-7 M, and pH0 = 7.0. (a) Oscillations
in substrate concentration inside membrane. (b) Oscillations in pH inside
the membrane. (c) Limit cycle in S - pH space.

through a Hopf bifurcation, the slopes of the nullclines must
both be negative.

For the AChE case, Fig. 15 a shows the two nullclines
(dHldt = 0 and dS/dt = 0) in S-log[H] space. The nullcline
dH/dt = 0 has an "isola" shape with a closed curve for certain
ranges ofparameter values. The appearance of this isola-type
nullcline depends on the values ofpHo and Eo. At pHo = 10.8,
the closed curve nullcline shrinks and finally disappears as

Eo decreases to 0.8 X 1010 M; it grows to become a mush-
room as Eo increases to 2.0 X 10-10 M. The observed os-

cillatory behavior always occurs in conjunction with the
"isola" shape of this nullcline. The system will display sus-

tained oscillations only when the H nullcline has this shape,
which occurs when 0.8 X 10-10M < Eo < 2.0 X 10-10M for
pHo = 10.8, for example. Oscillations arise only when the

Eo (mM) S (mM)

time (sec)

time (sec)

n
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FIGURE 15 The two nullclines (dH/dt = 0 and dSldt = 0) in Log[H] - S space. (a) The two nullclines for the AChE reaction system. The solid line
represents dH/dt = 0, the dashed line represents dS/dt = 0. The closed curve of dH/dt = 0 appears only under certain parameter values. (b) Blow up of
the region in a where the two nullclines cross at an unstable steady state. Parameter values for a and b are: Kw = 10-14 M2, u = 0.1, b, = 3.865 X i0-O
M, b2 = 1.786 X 10-5 M, Ka= 10- M, Kb = 10-7 M, Kh = 0.001 s-', a = 8.571 X 103 s-1, So = 0.006 M, Eo = 1.3X 10`' M, and pHo = 10.8. (c) The
two limit cycles surround the unstable steady state; they are shown superimposed on the nullcline dH/dt = 0. Here So = 5.983 and 6.00 mM for the two
limit cycles. (d) The two nullclines superimposed on the computed limit cycle for the protease reaction system. Parameter values are: K, = 10- 14 M2,
u = 4.0, b1 = 1.0 X 10-4 M, b2 = 1.0 X 10-5 M, Ka = 10-7 M, Kb = 10-4 M, Kh = 0.001 s-1, a = 100.0 s-', S0 = 5.45 X 10-4 M, Eo = 7.0 X 10-7
M, and pHo = 7.0.

point at which the two nullclines cross (the steady-state
value) is located on the negative slope of the H nullcline with
Log[H] < -8.5 (pH > 8.5, the condition for autocatalysis);
this occurs only in a very small range of parameter values.
The S nullcline can be chosen by changing S0 so that it will
cross the H nullcline at a region of negative slope and in the
pH > 8.5 range (see Fig. 15 b). The appropriate S0 value is
very small when these conditions are satisfied. Fig. 15 c

shows the limit cycle near the steady state at the H nullcline.
The large cycle corresponds to S0 = 0.005983 M and the
small one to S0 = 0.006 M. The amplitude of the oscillations
decreases rapidly with a small changes of S0. Fig. 15 d shows
the nullclines and the limit cycle around the steady state for
the imaginary protease case. This is qualitatively similar to
the AChE example.

DISCUSSION AND CONCLUSION

We have continued the study of the classic substrate inhi-
bition scheme originally studied by Degn (1968) to deter-
mine whether oscillatory behavior can be supported by it.
Our calculations prove that although the classic substrate
inhibition mechanism is sufficient for bistability, oscillatory
behavior cannot be sustained by such a mechanism, because
it is inherently a one variable system. By making the second
step of scheme 1 reversible, however, we introduce a second

species (the product, P) into the system as a dynamical vari-
able and also provide, in essence, a second substrate for the
enzyme, a feature that had been known to result in oscilla-
tions via substrate inhibition. However, we find that simply
adding reversible product formation is insufficient to render
the classical substrate inhibition scheme oscillatory. Only
when the product formation is made reversible and both sub-
strate and product are taken to follow reversible pseudo-
reactions for diffusion (i.e., the reaction is taken to occur in
a flow-through reactor) does oscillatory behavior become
possible for the classical substrate inhibition scheme. How-
ever, even here, the range of parameter values over which
oscillatory behavior can occur is so narrow it is essentially
undetectable experimentally.
From these results, we can draw the following conclu-

sions. Oscillatory behavior observed experimentally cannot
be caused by substrate inhibition kinetics alone unless other
conditions are met. One condition, known since 1976
(Seelig, 1976), occurs when multiple substrates are involved.
This makes sense because a single substrate scheme is in-
herently a one-variable problem that renders oscillations im-
possible (these results also show that the QSS approximation
is a valid indicator of the inherent dynamics in these sys-

tems). Multiple substrates merely allows for two or more

variables and provides a mechanism by which the reactant
that causes inhibition can be coupled to another reactant.
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Even then, the multiple substrate condition is not sufficient
to produce oscillatory behavior; we have shown that this
requirement must be coupled with an additional requirement
for the reaction to occur in a flow reactor. The Thomas model
(Thomas, 1976) is a well studied example that includes both
of these effects; it is a two-variable model for the uricase
enzyme in which the two variables are the two substrates uric
acid and oxygen; it also contains flow terms for both sub-
strates. From our careful study of the classical substrate in-
hibition mechanism with reversible flow terms, we would
conclude that it is the presence of the flow terms that is
crucial for oscillatory behavior in a substrate inhibition
mechanism with two substrates.

In the second model system studied, which included both
autocatalytic effects as well as substrate inhibition, oscilla-
tory behavior was observed from autocatalytic or substrate
inhibition mechanisms. However, combination of these two
effects cannot lead to oscillations. The mechanism of the first
example is autocatalytic because of the pH dependence of the
enzyme reaction rate, an effect well known to lead to os-
cillatory behavior (Zabusky and Hardin, 1973; Hahn et al.,
1974; Chay, 1981). In the second example, substrate inhi-
bition leads to oscillations when it is coupled with product
inhibition.
We can further conclude that AChE, an enzyme that fol-

lows the kinetics of the second model, is not the best choice
for studying oscillatory behavior in enzyme systems because
the kinetic parameters for this enzyme reduce the range of
values over which oscillations are expected; again, the range
of values over which we calculate oscillatory behavior is so
narrow it is essentially experimentally undetectable. Papain
is a better case, as has already been observed in previous
simulation studies; however, papain does not involve sub-
strate inhibition at all, so these oscillations are caused by
autocatalysis.
Our results also allow us to predict from a general class

of enzymes those that might be good candidates for the gen-
eration of oscillatory behavior. From our analysis, we find
that pepsin and chymotrypsin have a pH dependence similar
to that of AChE and papain (see Table 3). The bell-shaped
pH dependence of the enzyme activity for these two enzymes
indicates that two ionizing groups near the active site of the
enzyme with different pKa values play key roles in the ca-
talysis mechanism. If the substrate of the enzyme reaction is
an ester, H+ will be the product of the reaction. So for high
pH conditions, the reaction will be the autocatalytic and
might produce oscillations. Chymotrypsin, in particular,
which has a pKa value greater than 8, might be expected
to produce oscillations via the autocatalysis route. Chy-

TABLE 3 PKa and pKb values for common pH-dependent
enzymes

Enzyme PKb PKa

Chymotrypsin (Ableles et al., 1992) 7.0 9.0
Acetylcholinesterase (Chay and Zabusky, 1983) 6.3 10.0
Papain (Ableles et al., 1992) 4.2 8.2

motrypsin is a serine hydrolase enzyme, and it is likely
that other enzymes in this class might also produce os-

cillatory behavior.
Pepsin might fall in the second category exemplified by

the imaginary protease enzyme studied in our simulations
because its pKb value is <6. The second criterion for oscil-
latory behavior of enzymes in this category is that the pa-

rameter b1 in our model be small enough (<10-s). This pa-

rameter depends on the substrate of the reaction (through
KSS), and a thorough search of the literature has not revealed
any substrates that would provide pepsin with the proper

kinetic parameters to yield oscillations. It is possible that
other substrates for pepsin might produce oscillatory behav-
ior. Pepsin is an aspartyl protease, and other enzymes in this
class or in the sulfhydryl hydrolase class (characteristic of
papain) might be good candidates as well for oscillatory be-
havior.
The enzyme reaction is the most basic dynamic element

in the biological world. Our model studies of oscillatory con-
ditions for a pH-dependent enzyme in the presence of sub-
strate inhibition have been analyzed in detail when the re-

action takes place in an open system. However, in the real
biological world, most enzymes are associated with cell
membranes that have fixed electrical charges. The local con-
centration of substrate and product can be influenced by these
charges, which are in turn affected by the local pH and ionic
strength. So, buffer and salt solutions will also affect the
enzyme reaction if the enzyme is immobilized in a charged
membrane.

Others have shown that the oscillatory behavior of an en-

zyme reaction in a charged membrane may be influenced by
buffer and salt concentration (Chay and Zabusky, 1983;
Chay, 1980). The pH and ionic strength influence the dy-
namics of the system through their effect on the fixed charges
in the membrane. For example, AChE has been experimen-
tally studied immobilized in a BSA membrane, which has an

isoelectric point of 5.0. At pH = 5.0 or above, the membrane
is negatively charged and the transfer rate of the substrate
ACh+, a cation, is large at high pH and is dependent on the
charge of the membrane. As the AChE-catalyzed reaction
proceeds, H+ is produced and the membrane local pH is
decreased; hence, the local charge on the membrane is also
decreased, influencing the transfer rate of ACh+ into the
membrane. High ionic strength of the solution will also
eliminate the high surface charge on the membrane. The
transfer rates K. and Kh in the model for substrate and H+
from reservoir to the membrane are then functions of reaction
product (H+), buffer, and ionic strength instead of constants,
as we have taken them to be in the present study. It is our

plan to continue our investigation to include the effects of
charge and associated properties such as pH and ionic
strength.
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