
Biophysical Journal Volume 67 October 1994 1439-1454

Stochastic Simulation of Activation in the G-Protein Cascade
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ABSTRACT Activation of the G-protein cascade underlying phototransduction has been modeled by simulating the two-
dimensional diffusional interactions that occur at the rod disc membrane between the three reacting protein species, which are
the activated rhodopsin (R*), the G-protein (G), and the effector protein (E, the phosphodiesterase, PDE). The stochastic
simulations confirm the main predictions of a simplified analytical model (Lamb, T. D., and E. N. Pugh, 1992, Journal of
Physiology 449:719-758), and extend that treatment to more complicated cases, where there is a finite probability of reaction
or a finite time for reaction. The simulations also provide quantitative estimates of the efficiency of coupling from activated
G-protein (G*) to activated effector (E*) in terms of the concentrations, lateral diffusion coefficients, and binding rate constants
of the participating molecules; the efficiency of coupling from G* to E* is found to be not as high as in the previous simplified
analytical theory. The findings can be extended to other G-protein cascades, provided that the physical parameters of those
cascades are specified.

INTRODUCTION

G-protein cascades mediate signal transduction in a wide
variety of signaling systems, of which the photoreceptor is
a prime example. In the general case, an activated receptor
protein (R*) catalyzes the activation of a G-protein to G*,
which in turn activates an effector protein to E* (see Fig. 1).
Although the reactions of G-protein cascades have been un-
derstood in qualitative terms for a number of years, quan-
titative approaches have been lacking. Recently, we pre-
sented a simplified analytical description of the amplification
and the rising phase kinetics of the G-protein cascade of
vertebrate photoreceptors, in which we approximated the lat-
eral diffusion of the molecules in the plane of the disc mem-
brane by the diffusion of heat in two dimensions (Lamb and
Pugh, 1992).
A surprising outcome of the approximate analysis was

that, for the activation of E* by G*, the "coupling efficiency"
(defined below) was predicted to be quite close to unity, even
when the membrane concentration of effector protein was far
lower than the concentration of G-protein. With parameters
appropriate to the photoreceptor disc membrane, we pre-
dicted that the coupling efficiency from G* to E* could ap-
proach 90%, even when the ratio of effector to G-protein
concentration in the membrane was as little as 1:10.

Both to test that prediction, and to extend the analysis to
include parameters that could not be considered in the sim-
plified model, the G-protein cascade of phototransduction
has now been simulated as a stochastic process involving
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two-dimensional diffusion of the protein molecules in the
plane of the disc membrane. The simulations confirm the
general form of the predictions from the simpler analytical
model, although they show that the coupling efficiency is not
as high as previously predicted, and they permit investigation
of the effects of finite reaction probability and finite reaction
time on the kinetics of the cascade. A preliminary report of
these findings has been presented (Lamb, 1993).

THE G-PROTEIN CASCADE

Details of the molecular interactions underlying phototrans-
duction have been reviewed recently (Pugh and Lamb, 1993;
Hofmann and Heck, 1994), and the reactions important to
activation of the G-protein cascade are indicated schemati-
cally in Fig. 1. Activation of the cascade can be divided
conceptually into two phases. 1) An activated receptor pro-
tein, R* (activated rhodopsin, in the case of the photorecep-
tor) catalytically activates numerous molecules of the
G-protein to G*. 2) Each activated molecule of G* must then
bind to a molecule of effector protein, to activate it to E*. The
diffusional nature of these steps is sketched in Fig. 1 B. A
single molecule of R* diffuses laterally in the disc mem-
brane, sequentially encountering and activating molecules of
G, which are themselves also diffusing laterally in the mem-
brane. In the second step the diffusing G* molecules, which
will have been produced at different locations and times ac-
cording to the trajectory of the single R* molecule, must
locate and bind to molecules of effector E.

Diffusion-limited activation

The diffusion limit to the rate of activation occurs when each
molecular contact (of the appropriate species) leads to re-
action, on every occasion and with no delay. Our previous
analytical consideration was further restricted to the case of
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FIGURE 1 The reactions of the G-protein cascade. (A) Overall reaction. In the first phase, a molecule of R* catalyzes the activation of the G-protein
from G to G*; in the second phase, G* binds to the inactive form of the effector protein E, to create the active form E*. (B) Sketch of the diffusional nature
of the activation of G*. The heavy trace represents the path followed by a single active R*, diffusing within a sea of molecules of G (which are not shown).
The R* collides with molecules of G, and activates some of them to G*. The thin traces represent the paths followed by the G*s after their activation. (C)
Microsteps involved in the activation of G*. When the R* comes into contact with an inactive G (= GGDP), there is some probability PRG (see text) that
the two will bind to form R* -GGDP. The GDP then rapidly dissociates, and after some random interval with a mean of TGTp, a GTP is taken up from the
cytoplasm to form the activated complex, R*{-G*GTP. The two protein components then rapidly separate, to form G* (= G*GTP) together with the unaltered
R*, which is free to repeat the cycle.

pure activation (i.e., all inactivation reactions were ignored),
to render the mathematics tractable, and because the inac-
tivation reactions remain poorly understood (see Pugh and
Lamb, 1993; Hofmann and Heck, 1994). In this paper the
stochastic simulations are similarly restricted to the activa-
tion steps, but in the future it will be straightforward to in-
troduce inactivation reactions as soon as the molecular de-
tails and rate constants have been determined.
An analytical treatment of the first reaction step is rela-

tively straightforward in the diffusion limit. Lamb and Pugh
(1992) determined the average behavior using the approach
of Razi Naqvi (1974), who applied the solution given by

Jaeger (1942) for an analogous problem in the two-
dimensional diffusion of heat. That solution is given below
in Eq. 3, and is compared with the results of the stochastic
simulations. To a reasonable approximation, a single mol-
ecule of R* causes activation of G* at a nearly constant rate
(i.e., the quantity of G* approximately ramps with time after
activation of one R*), and the slope can be expressed in terms
of the concentration of G-protein and the lateral diffusion
coefficients.
An analytical treatment of the second step, the coupling

from G* to E*, is made very difficult by the fact that the
spatial distribution ofG* is not readily expressible, inasmuch
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Simulation of G-Protein Cascade

as it depends upon the particular trajectory of a single R*
molecule. Nevertheless, an approximate solution for the cou-
pling was found by Lamb and Pugh (1992), and the time
course ofE* activation was predicted also to ramp with time,
but at a lower rate than for G*. The ratio of the E* activation
rate to the G* activation rate was defined as the coupling
efficiency, CGE, of the reaction from G* to E*. A revised
expression for the coupling efficiency is given below in
Eq. 9, and the predictions are compared with the results of
the stochastic simulations.

Microsteps in the activation of G*

For a more realistic analysis of activation in the cascade, it
is necessary to go beyond the diffusion-limited case to con-
sider the reactions underlying the catalysis of G*. R* cata-
lyzes the replacement of a GDP by a GTP at a binding site
on the G-protein, to give the active form G*GTP. The overall
reaction may be written as GGDP + GTP -* G*GT + GDP;
the underlying microsteps are shown in Fig. 1 C. A molecular
description of these microsteps has been given by Hofmann
and Kahlert (1992).
Upon contact between an R* and an inactive G (= GGDP),

there is some probability PRG (see below) that the two will
bind, to form R*-GGDP. The GDP rapidly dissociates from
this bound complex to leave the naked R*-G complex.
After a finite mean delay time TGTp', a molecule of GTP will
be taken up, forming the activated complex R*-G*GTP. The
actual delay time on any occasion will be stochastic, and the
rate constant kGrF of the step will equal TGTp-1; this rate con-
stant is expected to increase linearly with the cytoplasmic
concentration of GTP, at least at low concentrations. The
activated complex R*-G*GTP is unstable and rapidly dis-
sociates to form the activated G-protein, G*GTP, together with
the unaltered R*. This R* is then available to catalyze the
activation of further molecules of G.
The G*GTP is generally thought to split into its a and fry

subunits, with the a-subunit representing the activated form
G*, although Heck and Hofmann (1993) have recently sug-
gested that G* in fact corresponds to the holomeric form. The
rate of cycling by R* will not, however, be affected by
whether such splitting occurs; the most that a splitting step
could do would be to introduce a delay into the subsequent
activation of E*. In the simulations, splitting of the a and 137
subunits will be assumed to occur instantaneously. In addi-
tion, to minimize the number of parameters, the dissociation
of GDP from the bound complex, and the separation of
R* from G*, will be taken to occur instantaneously (see
Fig.1 C). Thus the catalysis of G to G* will be taken to
involve 1) diffusional contact between the R* and a G, 2) a
finite probability PRG of R*:G binding, and 3) a stochastic
reaction time with a mean of TGTp. In the diffusion limit, the
R*:G binding rate constant kRG (corresponding to PRG' see
below) approaches infinity, and TGTP is 0.

Activation of E*

The activation ofE* involves diffusional contact between G*
and the inactive effector, E. In the case of the phototrans-

duction cascade, a complication is that the phosphodiesterase
molecule actually comprises two catalytic components: two
nearly identical subunits (a and 13) are each enzymatically
active, and each has an inhibitory y-subunit that can bind G*.
As discussed by Pugh and Lamb (1993), the available evi-
dence suggests that the two catalytic components behave
more or less independently. Therefore, to avoid complication
and to maintain comparability of treatment between different
G-protein cascades, the effector E will be represented as a
single enzymatic component. In the case of the photorecep-
tor, the concentration CE of effector subunits E will be double
that of the holomeric phosphodiesterase (PDE), and the en-
zymatic activity will be half that of the fully activated PDE.
Thus the additional reaction G* + E* E**, which occurs
only in photoreceptors, will be accommodated simply by
doubling the number of particles of effector.
The only parameter needed to specify the reaction of G*

with E is the probability PGE (or rate constant kGE) that dif-
fusional contact between G* and E leads to their binding, to
form G*-E (= E*).

THEORY

Activation of G* in the continuous model

A theoretical expression for the diffusion-limited rate of ac-
tivation ofG* was derived by Lamb and Pugh (1992) in their
Eq. Al. Here that expression is generalized to nondiffusion-
limited cases, by considering a finite rate constant of binding
of R* to G, and by introducing a finite GTP binding time,
TGTp. Whereas conceptually it may be easiest to view the
binding of R* to G as occurring with some probability PRG
upon collision (see Fig. 1 C), this probability actually applies
over a finite interval, such as the simulation time step At, and
in the continuous case the binding is more appropriately
specified in terms of a rate constant kRG (defined subse-
quently). The diffusion limit to the rate of activation of G*
in the continuous model occurs when kRG is infinite and TGTp
is 0.
An expression is required for the rate at which a single

molecule of R* activates molecules of G, when the two mo-
lecular species undergo diffusion, with lateral diffusion co-
efficients DR* and DG. As discussed by Razi Naqvi (1974)
and Lamb and Pugh (1992), this problem is mathematically
equivalent to the case of a stationary R* reacting with dif-
fusing molecules of G, which move with an effective lateral
diffusion coefficient DR* + DG. The molecules of G are con-
sidered as infinitesimal points, whereas the immobile R* is
assigned an effective collision radius equal to the sum of the two
molecular radii, PRG = PR + pG. This problem is in turn equiva-
lent to the two-dimensional diffusion of heat into a sink at in-
temal radius p, and has been solved by Jaeger (1942).
The symbol cd(r, t) will denote the concentration of in-

active G-protein remaining at radius r and time t, from an
initial uniform level of CG, and vG(t) will denote the rate of
activation of G* by a single R* formed at the origin at time
0. For simplicity, subscripts will be dropped unless needed
to avoid ambiguity; thus c = cG(r, t), C = CG, v = vG(t),
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k = kRG, P = PRG and D = DR* + DG; the concentration
CG(P, t) at the collision radius p will be denoted cP.
The rate v of activation of G* is equal to the rate ofremoval

of G, and may be expressed in terms of the flux of inactive
G at the collision radius p as

v = k(-nrp2)cP, (la)

= (2-ip)Dac/ar IP. (lb)

Eq. la expresses the rate of reaction at the collision radius,
whereas Eq. lb expresses the rate of diffusion of G into the
region. Together Eqs. la and lb express the boundary con-
dition for the diffusion equation, at r = p. k has dimensions
of time-' and represents the rate constant of destruction of
G, when the concentration c is taken as uniform over the area
-np2 at a value of c = cp.

For this boundary condition, and with initial condition
c = C, the solution derived by Jaeger (1942) for the con-
centration cp at the collision radius p is

cp = C I(a, a) (2)

where the function I(a, a) has been defined and tabulated by
Jaeger, and where a = k p2/2D and a = Dt/p2. The rate v is
then obtained by substitution of Eq. 2 into Eq. la, as v = k
(-rrp2)CI(a, a). Given that I(a, 0) = 1, the initial rate vo at very
early times remains finite when k is finite, at a value of
VO = k(7Tp2)C.

Expansion of the function I(a, a), according to Eq. 16 of
Jaeger (1942), gives the solution for the rate of activation
of G* as

G* s- (for a single R*). Hence when TGTp is large, G*(t) will
ramp in time with a slope of kGTp.
The expression required for v therefore has a limit of kGTP

when TGTp is large, and a limit given by Eqs 3a and 3b when
TGp approaches 0. I have not been able to derive such an
expression on purely theoretical grounds, but I found it pos-
sible to obtain a very good match to the simulations, as well
as the correct limiting behavior, with the expression

(3c)

where Vdiff represents the rate predicted by Eq. 3a, and where
an exponent of b 1.5 provided the best fit to the simula-
tions. Eq. 3c represents a kind of weighted average of the
rates of reaction due to diffusion and due to GTP binding.

Diffusion and reaction on a square lattice

In this paper lateral diffusion of molecules and the reactions
between molecules will be simulated in terms of a discrete
square-grid lattice. For a previous simulation of the
diffusion-limited catalytic activation reaction in two dimen-
sions (i.e., the first step in the cascade), see Torney et al.
(1987). The purpose of this and the following section is to
relate the parameters of the continuous model to those of the
square lattice approximation.

In the continuous case, the expected mean-square distance
(r2) traversed by a molecule diffusing in two dimensions is
given by

(r2) = 4Dt (4)
V= 4irDC{z-1 - yz-2- (vT2/6 - y2)Z-3 + .. .} (3a)

where

z = 4D/kp2 + ln 4Dt/p2 -2y, (3b)

andy e0.57722 is Euler's constant. The total quantity of G*,
denoted G*(t), is given by the time integral of the rate v in
Eq. 3a.
The factor 4D/kp2 (= 2/a) in Eq. 3b mediates the effect of

the R*: G binding reaction. For k = 00, this factor is 0, and
the equation gives the diffusion limit to the rate of activation.
(In this case Eq. 3 reduces to Eq. Al of Lamb and Pugh
(1992), if only the first term in the expansion { } is taken).
For k small, the factor 4D/kp2 dominates Eq. 3b so that z is
very weakly dependent on time, and v is therefore nearly
constant. Thus, if the reaction is far from the diffusion limit
because of k being small, then the time course of G*(t) is very
close to a ramp.

Finite time for GTP binding

To account for a finite mean time TGTP for binding of GTP
to R*-G, it is helpful first to consider the limit to the rate
of activation of G* when TGTp becomes large. When this
occurs, the rate of activation v will approach the reciprocal
of TGTp termed the rate constant of GTP binding, kGTp =

TGTP-. Thus if TGTP were 1 ms, then v would be close to 1000

where D is the molecule's lateral diffusion coefficient, and
t is time (see, e.g., Berg, 1983). In a square lattice with spac-
ing Ax, and for a time increment At, the simulated diffusion
coefficient may be shown to be given by

D = (AX)2 = DD=4A&t Pmove maxPmove(5

in the case where each molecule is able to move to any
one of the four nearest orthogonal locations on the lattice,
and where Pmove is the probability that the molecule moves
in each interval At. Thus the maximum diffusion coef-
ficient that can be simulated under these conditions is
Dmax = 1/4(AX)2/At.

In the continuous model, two molecules of circular cross-
section come into contact when the distance between their
centers equals the collision radius p, given by the sum of their
molecular radii, e.g., PRG = PR* + PG. In the square lattice,
the simplest notion of "contact" is when the second molecule
occupies one of the four orthogonal locations nearest the first
molecule; this is comparable to the case above for the per-
mitted molecular movements in the simulation of diffusion.
However, given that the molecules are only able to move in
discrete increments and at discrete intervals rather than in a
continuum, and that the lattice spacing Ax may not equal p,
this is not necessarily the most appropriate representation of
contact. It is possible instead to assign any arbitrary com-
bination of the eight lattice points surrounding a molecule as
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being positions of contact for the purposes of binding; see
inset to Fig. 2 B. The number of such "contacting" locations
will be denoted ncontact with n+ in the orthogonal directions
and nx in the diagonal directions.

Equivalence of parameters between continuous
and lattice models

The square lattice and the continuous case cannot be made
precisely equivalent to each other because of their different
geometries: in one case the collision boundary is square,
whereas in the other it is circular. However, for the range of
parameters considered in this paper, the equivalence appears
to be very close. It was found that at very low rates ofbinding
(k -O 0) the parameter 2/a in Eq. 3b was given by (na,ntJ/4)
PmovePRG (see Fig. 4), and that at very high rates of binding
(k -° oo) the effective collision radius varied approximately
as irp2 = ncontact(AX)2 (see Fig. 2 B). When the number nwnl,,(
of "contacting" locations was restricted to the four orthogo-
nal positions (so that nx = 0, and n+ = 4 = nc,ntact), it was
found that the best description of the behavior of the square
lattice was given by the following interrelations:

'lTp2 = 4(AX)2, (6)
2,0 kRG = (IT/4)PRG (1 + PmovePRG) At1, PRG - 1 (7)

so that the parameter 4D/k p2 (= 2/a) that appears in Eq. 3b
1,0 becomes

4D/kp2 = Pmove/PRG(l + PmovePRG).

0 20 40 60 80 100
t (ms)

FIGURE 2 Determination of appropriate values for the lattice size and
the contacting locations in the square lattice simulations. Except where
otherwise stated, all traces were obtained with the standard simulation
parameters in Table 1. (A) Finite lattice size. The upper traces plot
G*(t), and the lower traces plot E*(t), for square lattices of the indicated
sizes of N. X N. pixels. For G*(t) there is no significant difference
between the simulations with N. equal to 400 or 500, although for E*(t)
the simulation with N. = 400 is marginally smaller than for N. = 500.
(B) Number of contacting locations. The simulated G*(t) responses are
plotted for the indicated combinations of locations defined as "con-
tacting" for the purposes of binding of the molecules (see Text). As
indicated in the inset, n+ and nx are the numbers of orthogonal and
diagonal locations at which contact is defined to be possible. Thus, for
n+ = 4 and nx = 0, a molecule of G can bind to an R* if and only if
the G occupies one of the four locations immediately adjacent to the R*.
The broken trace plots the diffusion limit for G*(t) in the continuous
model, calculated from Eq. 3 with kRG = mo and TGTP = 0, and with
collision radius PRG = 4.5 nm; this trace virtually superimposes on
the simulation for n+ = 4 and nx = 0. The simulated traces were
averaged from at least 50 repetitions in (A) and from at least 20
repetitions in (B).

(8)

In these equations Pmove refers to the sum of the probabili-
ties of movement of the two species, Pmove = Pmove, R* +

Pmove, GI corresponding to the fact that D = DR, + DG in the
continuous case. To a first approximation the parameters in
Eqs. 6-8 simplify to: p Ax, k PRG/At and 2/a PmOVePRG'
The term (1 + Pmove PRG) is a correction factor that was
found to be needed when both Pmove and PRG become large;
this occurs when the simulation time step At is larger than
ideally it should be. Fig. 4 illustrates the predictions
of Eq. 3, using the values of p and 4D/kp2 obtained from
Eqs. 6 and 8.

Coupling from G* to E*

For the subsequent reaction ofG* with E, it seems reasonable
to assume that expressions for PGE and kGE analogous to those
in Eqs. 6 and 7 will be applicable. In the previous analysis
ofLamb and Pugh (1992), a highly simplified approach gave
a rough estimate for the efficiency of coupling from G* ac-
tivation to E* activation; this coupling efficiency CGE was
defined as CGE = VE/VG, where VE and vG are the average rates
of activation of E* and G*. The prediction obtained previ-
ously was that, in the diffusion limit,

CGE = exp(-q) (9a)

where q satisfies

E1 (q) = 4lTDeffCE/VG (9b)
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and where E1(q) is the exponential integral. In that formu-
lation, the effective lateral diffusion coefficient Deff was

taken to be

Deff ='DR*+ DG* + DE (9c)

In the present simulations the shape of the coupling re-

lation, as a function of effector concentration CE, is found to
be accurately predicted by Eqs. 9a-c (Fig. 7), but the relation
is shifted along the concentration axis by a factor of about
two. In addition the three lateral diffusion coefficients are

found not to be equally effective in contributing to the cou-

pling (Fig. 8). To account for these findings, the effective
lateral diffusion coefficient Deff in Eq. 9c is here replaced by
the weighted form

Deff = WR*DR* + WG*DG* + WEDE (9d)

where WR*, WG* and WE are weighting coefficients determined
by fitting the results in Figs. 7 and 8.

METHODS

The reactions of the G-protein cascade were simulated
numerically using random walk techniques. The computer
program "WALK" was written in FORTRAN 77 and
compiled with Microsoft 32-bit Fortran PowerStation. The
program is available by anonymous FTP from the Bio-
physics Internet Server, and may be found in the directory

"Computer-Programs" (see footnote at beginning ofthis article).
Minimum requirements are a 486 processor with 6 MB RAM,
running MS-DOS.
A region of disc membrane was represented by a square

lattice with nonabsorbing boundaries. For purposes of visual
demonstration, the program allows the protein molecules to
be represented as multipixel circular regions, but for the cal-
culations presented in this paper each molecule was repre-

sented by a single pixel on the lattice. The full set of standard
simulation parameters is given in Table 1. The standard lat-
tice was 400 X 400 pixels with lattice spacing Ax = 5 nm,

giving a region 2 ,um square, and the simulation step time
was At = 2.5 ,us. The rationale for the choice of these and
other parameters is given below. During a single time step
in the simulation, each molecule was allowed to diffuse, and
thereafter each molecule of R* and G* was tested to deter-
mine whether a reaction should occur.

Simulation of lateral diffusion

Lateral diffusion of molecules was simulated using a pseu-

dorandom number generator to determine whether, and
where, a molecule should move. Given the probability of
movement Pmove (= D/Dmax) of the molecule (see Eq. 5) and
a random number x uniformly distributed in the interval 0-1,
the factor dim = 4x/pmove was calculated. Ifdim was less than
4 then the molecule was moved a single lattice position in one

TABLE 1 Standard parameters for simulation of phototransduction in amphibian rods at 220C

Symbol Value Units Definition

Phototransduction: protein concentrations and lateral diffusion coefficients
CG 2,500 gm-2 Concentration of G-protein in membrane
CE 250 gm-2 Concentration of effector protein in membranet
DR' 0.7 IIM2 S-1 Lateral diffusion coefficient of R*
DG 1.2 RM2 S-1 Lateral diffusion coefficient of G
DG* 1.5 ,M2 S-1 Lateral diffusion coefficient of G*
DE 0.8 gM2 S-1 Lateral diffusion coefficient of E

Simulation: lattice and time parameters
N. 400 Number of lattice points (in each dimension)
Ax 5 nm Lattice spacing
At 2.5 ,us Time increment
tmax 100 ms Maximum time of simulation

Simulation: dependent parameters
L 2 ,um Lattice width and height; = N Ax
NG 10,000 Initial number of molecules of G: = L CG
NE 1,000 Initial number of molecules of E; = L2CE
ftot 0.069 Fractional lattice occupancy; = (NG+NE)INX2
N, 40,000 Number of time increments; = tmax/At
Dmax 2.5 .m2 s-1 Maximum lateral diffusion coefficient; = /4(Ax)2/At

Reaction parameters: diffusion limit
PRG 1 Probability R* and G bind upon collision§ see Eq. 7
TGTP 0 p,s Mean time for a GTP to bind to R*-G' = 1GrP
PGE 1 Probability G* and E bind upon collision§ as Eq. 7
n+, nx 4, 0 Number of pixels where "contact" occurs

t For the photoreceptor, the concentration CE of effector protein subunits is double the concentration CPDE of the holo-PDE, which contains two catalytic
subunits; see section titled Activation of E*.
§ The probabilities PRG and PGE' for the binding of R* to G, and G* to E, apply over the simulation time increment At. These reactions may alternatively
be specified, in terms independent of the simulation, by reaction rate constants kRG and kGE (see Eq. 7).
1 When a finite time for GTP binding was introduced (TGTp > 0), as in Fig. 5, it was necessary to specify the lateral diffusion coefficient of the molecular
species R*fG; this was set to DR-G = 0.4 p.m2 s- . This parameter is not needed when TGTp = 0, because the species spends no time diffusing.
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of the four orthogonal directions, according to the value of
INT(dim) + 1; otherwise the molecule was not moved.
A difficulty arises when the molecule would have moved

into an occupied position. The simplest solution is not to let
the molecule move on that occasion, but this leads to a sig-
nificant reduction in the simulated diffusion coefficient in
cases where the fraction of occupied lattice positions, f,., is
appreciable; for the standard conditions the error was typi-
cally 10%. It was found that a substantial improvement could
be obtained by randomly trying further directions until a
vacant position was found. Nevertheless, when the fractional
occupancy of the lattice was appreciable, a residual reduction
in effective diffusion coefficient remained (see following
test). Except in early simulations, a correction was made to
Pmove to minimize this error.
To test the accuracy of the diffusion algorithm under the

standard simulation conditions, the mean square distance
traveled by molecules was compared with theory. A random
initial distribution of molecules of G and E was allowed to
diffuse in the absence of any R*, so that no reactions oc-
curred. The initial positions of the molecules in a central
region of interest, and the final positions of the same mol-
ecules at the end of the simulation, were recorded. Then, for
the two species of molecule, the average of the mean square
distances traveled was calculated and compared with Eq. 4.
To provide a clear distance, 1, from the boundary of at least
1 Am (200 pixels), the lattice was extended to 600 X 600
pixels in this test, and only molecules initially within the
central 200 X 200 pixel region were monitored. To allow a
fair comparison with theory, it was necessary to restrict the
expected (r2) to be considerably smaller than the square of
the clear distance available for diffusion, i.e., 4 D tm. << 12.
Thus the simulation time was restricted to tmax = 10 ms, and
all other parameters were set to the standard values in Table
1. With DG and DE equal to 1.2 and 0.8 ,Am2 S-1, this gave
an expected (r) of 0.048 and 0.032 Am2 for G and E,
respectively.
When the concentration of molecules was low (e.g., CG =

CE = 250 ,m-2, corresponding to a fractional lattice occu-
pancy of fto = 1.25%), the values of (r) obtained by the
simulation were within 1% of the expected values. However,
when the concentration of the G-protein was increased to its
standard value of CG = 2500 ,um-2, taking the fractional
occupancy to f,0, = 6.9%, the values of (r2) were low by a
little over 3%, i.e., by roughly 1/2 fo. Therefore the prob-
ability of movement was increased slightly to correct for this
effect: Pmove was increased by 1/2fgO (ca 3%, in the standard
case). With this correction the simulated values of (r2) were
found to be in extremely close agreement with theory.

Lattice spacing

The lattice spacing was chosen so as to provide a round
number close to the collision radii of the reacting molecules.
The diameters of rhodopsin, the G-protein, and the PDE are
believed to be approximately 3, 6, and 7 nm, respectively (see
Lamb and Pugh, 1992), giving a collision radius for the re-

action between R* and G Of PRG (= PR* + PG) 4.5 nm, and
for the reaction between G* and E Of PGE 6.5 nm. Hence
Ax was chosen as 5 nm.

Lattice size

It is inevitable that the finite extent of the lattice will affect
the accuracy of the simulations at longer times. To help mini-
mize such edge effects, all the simulations in this paper began
with the single R* placed at the center of the lattice.
The effect of lattice size is investigated in Fig. 2 A. The

curves plot the average time course of activation ofG* (upper
set of curves) and of E* (lower set), for square lattices with
the indicated number Nx of pixels in each dimension. All
other parameters were held constant at the standard values
(see Table 1). The finite lattice extent imposes a limitation
at earlier times for the activation of E* than for the activation
of G*, because of the lower density of effector protein in
comparison with G-protein.

Although a lattice size of 200 X 200 pixels (1 ,um square)
is adequate for simulations to 25 ms, it is necessary to use
a lattice of 400 X 400 pixels to avoid significant edge effects
at times out to 100 ms. Even with this size it appears that the
simulation for E* falls slightly below that obtained with a
lattice of 500 X 500 pixels (2.5 gm square). However, be-
cause the activation of G* is not noticeably affected, and to
obtain acceptable computation times, it was decided to stan-
dardize on a lattice size of 400 X 400 pixels (2 ,um square).

Time increment

The time increment in the simulations must be set sufficiently
small so that the probability of movement (pmove) of the most
mobile molecular species is smaller than unity. From Eq. 5
the maximum diffusion coefficient that can be simulated is
given by Dm. = 1/4 (Ax)2/At. Because the most mobile spe-
cies (G*) requires a lateral diffusion coefficient of DG0 = 1.5
pum2 5s1 (see Table 1), At must be kept less than about 4 ,us
for Ax = S nm. In fact, the value of At should be made as
small as possible to maximize the effective rate constant of
binding kRG (see Eq. 7); this, however, will increase the com-
putation time roughly in inverse proportion to At. As a com-
promise At was set to 2.5 ,us for the standard case, giving
Dm = 2.5 gm22s- and Pmove G* = 60% for G*, and giving
kRG 500 k s-1 when PRG = 1. The effect of reducing At
fivefold, to 0.5 ,us, was to increase the computation time by
about fourfold, but the consequent increase in kRG resulted in
only a few percent increase in the simulated rate of activation
of G*.

Number of "contacting" locations

The effect of altering the number ncontact of neighboring lo-
cations assigned as "contacting," in the sense defined earlier,
is illustrated in Fig. 2 B for the activation of G* by R*. The
annotations near the traces indicate the numbers of orthogo-
nal (n+) and diagonal (n.) positions defined as contacting.
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The broken trace plots the analytical theory of Eq. 3, for
the diffusion-limited continuous case (i.e., with kRG and
kGTp infinite) and with PRG = 4.5 nm. This curve is virtu-
ally indistinguishable from the simulated trace for n.ntact =
4 (n+ = 4, nx = 0).
The effect of altering the number of contacting locations

in the square lattice appears equivalent to the effect of al-
tering the collision radius PRG in the continuous model. The
traces in Fig. 2 B are in fact quite well described by Eq. 3
with PRG and 2/a given by more complicated forms of Eqs.
6 and 8 that take into account the arrangement of contacting
locations; curves not shown. The interpretation of the results
in Fig. 2 B is that, although the precise number of locations
defined as contacting is not critical, the best fit of the square
lattice simulation (with PRG = 1) to the diffusion-limited
continuous case is obtained when the contacting locations are
defined as the four orthogonal ones.

In early simulations, before the introduction of a correc-
tion to Pmove (see section titled Simulation of Lateral Diffu-
sion), when the simulated diffusion coefficients were re-
duced by a few percent, a similar match to the diffusion-
limited continuous case was obtained by increasing the
number of pixels defined as contacting to seven; i.e., with
n+ = 4, nx = 3. Those simulations are used only in
Figs. 7 and 8.

Variance

For simulations repeated many times (e.g., .50 repetitions)
a reasonable estimate of the ensemble variance could be ob-
tained. It was found that the variance of the number of mol-
ecules produced had a similar time course to the mean num-

ber produced, and a broadly similar amplitude; thus, o(t)
,u(t), as one might expect intuitively for a stochastic scheme
of this kind. However, the equivalence did not seem to
be exact. For conditions approaching the diffusion limit
(PRG 1, TGTp 0) the variance of G*(t) was usually a little

larger than the mean, whereas for conditions well below the
diffusion limit (PRG << 1, or TGTp>> 0) the variance of G*(t)
may have been a little smaller than the mean. It is not clear
whether this behavior represents statistical variation due to
the limited number of repetitions, whether it represents a

shortcoming in the simulations, or whether it is to be ex-

pected theoretically.

Computation time

For the standard parameters (a 400 X 400 lattice containing
11,000 molecules, and with At = 2.5 ,s) a single simulation
to tm. = 100 ms required more than 4 x 108 calls to the
random number generator routine, and took approximately
1.5 h on a 486DX 33 MHz processor. All simulations were

repeated at least 20 times, and a few were repeated 100 times
(taking about a week).

Shortcut: creation of G* without G

A major factor extending the computation time is the large
number of molecules of inactive G-protein: 10,000 Gs on the
2 ,um X 2 ,m region, for a standard G-protein concentration
of CG = 2500 um-2. An order of magnitude increase in speed
can be obtained by doing away with these molecules of G,
and simply allowing G*s to be created at the location of the
R*, in a stochastic fashion and at some specified mean rate;
this leaves 1000 molecules of E dominating the computation
time. Activation of G* under these conditions closely ap-
proximates a ramp in time, and the approach will therefore
be appropriate when the reaction is not diffusion-limited,
through either a low binding probability or a finite reaction
time (see Theory, and Figs. 4 and 5). This shortcut greatly
facilitates study of the coupling reaction from G* to E*.
Simulations under these conditions (see Fig. 9) confirm the
earlier prediction in Eq. A8 of Lamb and Pugh (1992) that,
when G*(t) is a ramp in time and the coupling reaction from
G* to E* is diffusion limited (i.e., PGE = 1), then E*(t) will
also be a ramp.

RESULTS

Diffusion-limited activation of G* and E*
(standard parameters)

The standard parameters for simulation are presented in
Table 1; the values under Reaction Parameters approximate
the diffusion limit to the rate of protein activation. The results
of simulation with these parameters are shown in Fig. 3. The
upper panel illustrates the superposition of traces for G*(t)
and E*(t) from the first 20 simulations. This panel demon-
strates the wide degree of variability obtained in successive
simulations as a result of the finite number of activated mol-
ecules, and it shows that considerable averaging will always
be needed to obtain a reliable estimate of the response.

Fig. 3 B plots the averages for G*(t) and E*(t) determined
from a total of 100 such simulations. For G*(t) the average
simulated response is virtually identical to the theoretical
prediction of the diffusion limit in the continuous case (bro-
ken curve) obtained from Eq. 3 with kRG = 0 and PRG = 4.5
nm. The close agreement here, between the simulation with
PRG = 1 and the continuous theory with kRG infinite, results
from having chosen the number of contacting pixels as

ncontact = 4; see Fig. 2 B. As mentioned earlier, the ensemble
variance had a time course very similar to the mean, for both
G* and E*, although the variance was a little greater than the
mean in this diffusion-limited case.
The average rates of activation for the two proteins (cal-

culated over the interval 20-80 ms) were VG= 6370 G* S-1
and VE = 4280 E* s-1, corresponding to a coupling efficiency
CGE from G* to E* of 67.2% (= vE/vG) at an E:G concen-
tration ratio in this standard case of 1:10. Factors affecting
the rates of activation and the efficiency of coupling will be
investigated below.
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time for GTP binding to (TGTp = 0); see Fig. 1 C and Table
1, Reaction Parameters. Nondiffusion-limited cases are il-
lustrated in the next two figures, where PRG was decreased
below unity (Fig. 4) or TGTpwas made finite (Fig. 5). The
solid traces plot the averages of at least 20 simulations for
each condition. The families of simulated responses in the
two figures are quite similar, in that the curvature of the
traces becomes progressively less pronounced as the rate of
activation drops below the diffusion limit. Thus, as predicted
earlier, the time course ofG* activation becomes more nearly
linear with time (or ramp-like), when lateral diffusion is no
longer the limiting factor.

In Fig. 4 the probability PRG (that, upon contact, R* binds
to G within the interval At) was varied from 100% to 1%,
whereas in Fig. 5, TGTp (the mean time for GTP binding) was
varied from 0 to 800 p,s. Each of these parameters may al-
ternatively be expressed in terms of a rate constant ofbinding

80 100 (see Theory). kRG (- PRG/At, see Eq. 7) is the rate constant
80 100 with which R* binds to G upon contact, and in Fig. 4 it varied

from -500 -5 k s- . kGTp (= TGTp-1) is the rate constant of
binding of GTP to the naked R*--G complex; in Fig. 5 it was
infinite in the top trace and ranged from 20 to 1.25 k s-1 in
the lower traces.
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FIGURE 3 Simulations obtained with the standard parameters in Table 1,
corresponding to the diffusion limit for activation. (A) Raw traces. The
individual responses for G*(t) and E*(t) from the first 20 simulations are

plotted. (B) Mean responses. The averages from 100 simulations are plotted
as the solid traces. The broken trace (which is barely discernible) plots the
diffusion limit for G*(t) in the continuous model, calculated from Eq. 3 with
kRG = X0 and TGTP = 0, and with collision radius PRG = 4.5 nm (i.e., as in
Fig. 2B).

G* activation: finite rate constants

The approximation to the diffusion-limited rate of activation
of G* in Fig. 3 represents an extreme case obtained by setting
the probability of R*:G binding to unity (PRG = 1) and the
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t (ms)

80 100

FIGURE 4 Effect of finite probability of binding, PRG' on the activation
of G* in the square lattice simulation. PRG represents the probability that
contact between an R* and a G leads to their binding during the simulation
time step, At. In the continuous model the binding is more appropriately
described by a rate constant, kRG (see Eq. 1). The relationship between the
rate constant kRG and the probability PRG is given in Eq. 7, and may be
approximated by kRG # PRG/At. The solid traces plot the simulated responses,

averaged from at least 20 simulations. The dotted traces plot the theoretical
predictions for the square lattice, calculated from Eq. 3 with the equivalent
values of pRG and 2/a given by Eqs. 6 and 8. The broken trace plots
the theoretical prediction for the continuous model, obtained from Eq. 3
with kRG = °° TGT = 0 and PRG = 4.5 nm; this is the same trace as in
Figs. 2 B, 3 B, and 5.
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FIGURE 5 Effect of finite GTP binding time, TGr, on the activation of
G* in the square lattice simulation. Upon binding ofR* to G, the bound GDP
is assumed to dissociate instantaneously, but there is then a stochastic time
with mean TGTp before a molecule of GTP binds, generating the active com-
plex R*-G*GTP (see Fig. 1 C); the rate constant of GTP binding is kGTp =
T.GTP-. The solid traces plot the simulated responses, averaged from at least
20 simulations. The dotted traces plot the theoretical predictions for the
square lattice, calculated from Eq. 3c with the indicated values of TGTp. The
broken trace again plots the theoretical prediction for the continuous model,
obtained from Eq. 3 with kRG = oo, TGT = 0 and PRG = 4.5 nm; this is the
same trace as in Figs. 2 B, 3 B, and 4.

In both figures the solid traces plot the stochastic simu-
lations, whereas the dotted and broken traces plot the theo-
retical predictions obtained from Eq. 3. The single broken
trace in each figure plots the diffusion-limited continuous
theory, with PRG = 4.5 nm (as in Figs. 2 B and 3). In Fig. 4
the dotted traces plot the predictions of the square lattice
approximation, for the indicated values of the binding prob-
ability PRG' with PRG and 4D/kp2 obtained from Eqs. 6 and 8.
In Fig. 5 the dotted lines plot the predictions of the square
lattice approximation for finite GTP binding time, obtained
from Eq. 3c, using the indicated values of TGTp.
The simulated responses and the theoretical traces agree

quite well throughout the range of values ofPRG and TGTp. At
the top of each figure, the three traces representing the dif-
fusion limit are virtually indistinguishable from each other
(and are identical in the two figures). Thus, what appears to
be the top "trace" in each figure actually comprises three
separate traces which almost superimpose: the simulation
with PRG = 1 and TGTP = 0 (top solid trace), the continuous
theory with PRG = 4.5 nm (broken trace), and the square
lattice theory with PRG = 1 and TGTp = 0 (top dotted trace,
hidden beneath the other two traces).
The first interpretation of the results shown in Figs. 4 and

5 is that Eq. 3 (with the parameters from Eqs. 6 and 8) pro-
vides a good description of the simulated activation of G*,
both in the diffusion-limited and nondiffusion-limited cases.

The second interpretation is that, for the conditions inves-
tigated, the continuous model and the square lattice are
closely equivalent. The third interpretation is that, despite the
difference in mechanisms involved between a finite prob-
ability PRG for binding of R* to G and a finite time constant
TGTP for binding of GTP to R* -G, the two processes have
functionally similar effects in giving rise to a comparable
time course for the activation of G*. For example, the traces
with PRG = 20% in Fig. 4 are almost identical to the traces
with TGTP = 100 ,us in Fig. 5.

E* activation: dependence on the concentration
of effector

The production of activated effector protein E* is examined
in Fig. 6, as a function of the initial concentration CE of
inactive effector. For reference, the broken trace plots the
activation of G* under the standard diffusion-limited con-
ditions. The solid traces plot the activation of E* at the in-
dicated concentrations of effector, from 25-750 ,pm-2 (cor-
responding to an E:G concentration ratio ranging from 1%
to 30%). In these simulations the coupling was diffusion-
limited, i.e., the G*:E binding probability, PGE' was unity.
At the highest concentrations of effector, the activation of

E* approaches that of G*, but at lower concentrations the rate
of activation progressively drops. The coupling efficiency of
the activation of E* by G*, denoted cGE, was determined by
taking the ratio vE/vG of the rates of activation of E* and G*
(with the slopes determined over the interval 20-80 ms). This
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E*

250

0

-2CE (ji,m

0 20 40 60
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80 100

FIGURE 6 Activation of E* as a function of the concentration CE of
effector protein; all other parameters were set to the values in Table 1. For
reference the broken trace plots the standard activation of G*, and the solid
traces plot the simulated activation of E* for the indicated values of CE.
Activation in both cases corresponded to diffusion-limited conditions, with
PRG = 1 and TGTP = 0 for G*, and with PGE = 1 for the coupling from G*
to E* (Table 1). At least 50 simulations were averaged to obtain each trace.
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coupling efficiency CGE has been plotted in Fig. 7 against the
concentration of effector CE (lower scale; also given as the
concentration ratio CE/CG on the upper scale). For the filled
symbols the rates of activation of G* and E* were both dif-
fusion limited (data from Fig. 6), whereas for the open sym-
bols the rate of G* activation was reduced below the diffu-
sion limit through a finite GTP binding time constant of TGTp
= 100 ,us. The coupling efficiency was higher in the latter
case because the rate VG of G* activation (which appears in
the denominator) was then lower.
The results in Figs. 6 and 7 indicate that a reasonable

coupling efficiency can be obtained with considerably less
effector protein than G-protein present in the membrane.
With an E:G concentration ratio of 1/10, the coupling effi-
ciency exceeds 65% (even when the activation of G* is dif-
fusion limited), and as the concentration of effector increases
the coupling efficiency approaches unity.

Nevertheless, the coupling is not in fact as efficient as
predicted by the earlier analytical approximation of Lamb

0 CE/CG

and Pugh (1992); see Eqs. 9a-c. That simplified model pre-
dicted that a coupling efficiency of 50% would be achieved
at an E:G concentration ratio of -3%, whereas the simula-
tions indicate that a rather higher concentration ratio of-6%
is actually needed to obtain a 50% efficiency of coupling.
The curves near the points in Fig. 7 plot a modified form of
the earlier theory, in which the diffusion coefficients have
been weighted; see Eq. 9d and Fig. 7 legend. The curves have
the same shape as previously but are shifted by a factor of
-2 on the concentration axis.

E* activation: dependence of coupling on
diffusion coefficients

The dependence of the coupling efficiency CGE on the lateral
diffusion coefficients is investigated in Fig. 8. The three sets
of symbols indicate the effects of altering the lateral diffusion
coefficients of the three species, R* (A), G* (* ), and E (0).
To maintain a constant rate VG of G* activation when the
diffusion coefficient of R* was increased, a corresponding
decrease was made to the diffusion coefficient of the inactive
G-protein; i.e., the sum DR* + D.3 (equal to D in Eq. 3) was
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FIGURE 7 Dependence of the coupling efficiency CGE on the concentra-
tion CE of effector protein, determined from results such as those in Fig. 6.
The mean rates VG and VE of activation of G* and E* were determined over
the interval 20-80 ms, and the coupling efficiency was then calculated as
CGE = VE/VG. The filled symbols are taken directly from Fig. 6, and represent
the coupling efficiency when the activation of both G* and E* is diffusion
limited. The open symbols are taken from corresponding results obtained
with a GTP binding time of TGTp = 100 ps, i.e., when the activation of G*
occurred at less than the diffusion limit, so that VG (which appears in the
denominator of cGE) was smaller. The curves were obtained from Eq. 9,
using the weightings (see text) specified in the legend to Fig. 8, which gave
D,ff = 1.4 p.m2 s-'. The mean rates of activation of G* were VG = 6370 G*
s-' in the diffusion-limited case and 5270 G* s-1 with TGTp = 100 ps. (The
open symbols were obtained from early simulations, where no correction
was made to Pmov. and the "contacting" locations were defined as n+ = 4,
nx = 3.)
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FIGURE 8 Dependence of the coupling efficiency CGE on the lateral dif-
fusion coefficients of R* (A), G* (*), and E (0). In the cases of G* and
E, the respective lateral diffusion coefficients DG. and DE alone were altered,
and all other parameters were as set out in Table 1. However, when altering
the diffusion coefficient of R*, DR*, it seemed most appropriate to maintain
a constant rate VG of activation of G*. Thus, when DR. was varied, a comple-
mentary change was made to DG, so that the sum DR* + DG (equal to D in
Eq. 3) was kept constant at 1.9 11m2 S-1. If DG was not adjusted in this way,
then the coupling efficiency actually declined with increasing DR. because
of the elevated rate VG of activation of G*. The arrows indicate the default
values of the three diffusion coefficients. The curves fitted to the three sets
of points were obtained from Eq. 9, a and b, with the effective diffusion
coefficient Doff in Eq. 9d weighted according to WR. = 0.12, wG. = 0.58 and
WE = 0.56. In these early simulations, no correction was made to Pmovc and
the "contacting" locations were defined as n+ = 4, n, = 3.
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kept constant at 1.9 ,tm2 s-1. All other parameters were held
at the values in Table 1 for the standard case.

Fig. 8 shows that the diffusion coefficient of R* has rela-
tively little effect on the coupling efficiency of the subse-
quent activation of E* by G*. Indeed, if the value of DR*
alone is altered, without the compensating change in DG, then
the coupling efficiency actually drops as DR. rises (not
shown); this occurs because the rate VG (which appears in the
denominator) increases, whereas the rate VE barely changes.
The diffusion coefficients of G* and E have more marked
effects on the coupling efficiency CGE, and it is apparent that
a low value of DG* leads to a precipitous drop in coupling
efficiency. The curves fitted to the results in Fig. 8 are from
the modified form of the previous theory, in which the ef-
fectiveness of the three diffusion coefficients are individually
weighted; see Eq. 9d. The weightings used were WR* = 0.12,
WG* = 0.58 and WE = 0.56, rather than each being unity as
in the earlier simplified theory.
Taken together, the results of Figs. 6-8 show that efficient

coupling from G* to E* can be obtained at surprisingly low
E:G concentration ratios, and that the degree of coupling can
be predicted accurately by a modified form of the theory of
Lamb and Pugh (1992).

E* activation: finite rate constant of binding
of G* to E

The kinetics of activation of E* are investigated in Fig. 9,
upon systematic alteration of the probability PGE of binding
of G* to E. The values of the corresponding rate constant kGE
are given approximately by kGE PGE/At (analogous to Eq.
7), and forpGE = 1% the value is kGE 3000 s-1. The effect
of a reduced binding probability is both to decrease slightly
the rate of E* activation and also, very interestingly, to in-
troduce a delay into its activation. The effective delay can be
quantified by fitting a straight line to the later time course of
E*(t) and measuring its intercept with the abscissa (see dot-
ted lines). For a binding probability ofPGE = 1% the effective
delay tGE is found to be approximately 12 ms, whereas for
PGE = 0.1% the delay increases to almost 60 ms.

In qualitative terms, the explanation for this behavior is the
following. Molecules of G* are activated rampwise with
time, but at first they cause little activation of E* because of
the low probability of binding per collision. As a result the
total quantity of available G* builds up steadily with time,
and slowly these molecules spread outward spatially. At later
times, G* molecules formed much earlier will have had many
collisions with molecules of E, and binding will eventually
occur at almost as high a rate as would have occurred if each
collision had been successful.
The occurrence of an effective delay in the activation of

E* may have a direct correlate in the response of real pho-
toreceptors. From analysis of the electrical response of am-
phibian rods (which provide the basis for the parameters of
Table 1), Lamb and Pugh (1992) reported that the total ef-
fective delay teff- from photon absorption to activation of E*,
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FIGURE 9 Activation of E* when the binding of G* to E occurs with
finite probability PGE. To speed the simulations, the shortcut described in the
Methods section was employed, with G* being activated at a mean rate of
5000 G* s-1 (broken trace). The solid traces plot the simulated activation
of E*, at the indicated values ofPGE; each trace is the average of at least 60
simulations. The parameter PGE represents the probability that, upon contact
between a G* and an E, the two bind during the simulation time increment,
At = 2.5 ,us. In the continuous model the binding of G* to E is more

appropriately expressed in terms of a rate constant kGE, given by an equation
analogous to Eq. 7 for kRG. The dotted traces are straight lines fitted to
the final ramplike rise of E*(t); to enable fitting of the bottom response (for
PGE = 0.1%) the simulation time in that case was extended to tm,, = 200
ms (not shown). The intercepts of the dotted lines with the abscissa give the
effective delay time tGE of the coupling from G* to E.

clamped conditions and at 22°C; this represents an upper

limit for the coupling delay from G* to E* activation. In
light-scattering experiments Heck and Hofmann (1993) re-

ported a delay of 5-10 ms between activation of G* and E*.
A plausible explanation for an appreciable part of these ex-

perimentally reported delays would be a finite rate constant
of binding of G* to E.

Inspection of Fig. 9 shows that the traces for E*(t) remain
approximately parallel until PGE drops below 1%. This in-
dicates that the coupling efficiency CGE is only weakly de-
pendent on the rate constant of binding, and that it remains
quite high until kGE drops below about 3000 s- . Similarly,
the coupling delay tGE begins to increase significantly only
when kGE drops below roughly the same level.

DISCUSSION

Phototransduction serves as a model G-protein system, be-
cause the important physical parameters of the cascade (such
as the concentrations and lateral diffusion coefficients of the
protein molecules) are known accurately, and because the
molecular reactions of activation are particularly well un-

derstood. The least well understood aspects of phototrans-
duction relate to the inactivation reactions that underlie re-

had a mean of 16 ms (range 10-20 ms) under voltage-
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inactivation processes have been described in general terms,
there remains uncertainty about the details and the relative
importance of the different reactions, and the quantitative
parameters of inactivation have not yet been determined
in vivo. For these reasons, as well as for rendering the
mathematical analysis tractable, it is at present necessary
to restrict quantitative treatment to the activation steps in
transduction.

In this paper the process of activation in the G-protein
cascade of phototransduction has been studied by stochastic
simulation. The simulations confirm the main predictions of
the previous simplified analytical approach of Lamb and
Pugh (1992) and extend that treatment by dealing with
nondiffusion-limited conditions and providing a corrected
description of the coupling from G* to E*.

Activation of G*

Activation of the G-protein to G* has been simulated under
diffusion-limited conditions (i.e., when the rate of reaction
is determined by the rate of molecular collisions occurring
as a result of two-dimensional lateral diffusion of the protein
molecules), as well as when the probability PRG of binding
of R* to G is less than unity, or when the time rGTp to bind
GTP is finite. Under all of these conditions the rate of ac-

tivation is well described by Eq. 3. Although Eq. 3 may

appear complicated, and despite its inclusion of a logarithmic
time dependence, the equation in fact predicts a rate of G*
activation, which is roughly constant. The greatest deviation
from a constant rate of activation occurs in the diffusion
limit, but inspection of Fig. 3 (or mathematical analysis of
Eq. 3) shows that even in this case the curvature is relatively
minor (see Lamb and Pugh, 1992). The diffusion-limited rate
is then given approximately by the simple expression

VG 1.3 + DG)CG. (10)

When the probability PRG of R*:G binding decreases, or

the time TGTP for GTP binding increases, the rate of G* ac-

tivation drops and the curvature ofthe traces becomes less. Thus,
especially in nondiffusion-limited cases, the activation of G* is
described to a very good approximation by a ramp in time.

Delayed ramp activation of E*

The ramplike activation of G* is significant because the pre-

vious theoretical analysis ofLamb and Pugh (1992) predicted
that a constant rate of G* activation would lead to a constant
rate ofE* activation, in the case of diffusion-limited coupling
from G* to E* (see Eq. A8, Lamb and Pugh, 1992). That
theoretical prediction has been verified in the present simu-
lations (see Fig. 9, uppermost solid trace).

Thus, when the coupling from G* to E* is diffusion lim-
ited, then the activation of E* is simply a scaled version of
the activation of G*; i.e., G*(t) ramps with time, with zero

delay. The effect of lowering the probability PGE of binding
of G* to E (thereby taking the coupling reaction below the
diffusion limit) is to introduce a delay into the time course

of E* activation while causing relatively little change in the
efficiency of coupling (lower traces in Fig. 9). A delay ofjust
this kind seems to occur in transduction both in intact rod
photoreceptors where the delay is about 15 ms at room tem-
perature (Lamb and Pugh, 1992) and in reconstituted disc
membranes where a delay of 5-10 ms has been reported
(Heck and Hofmann, 1993). A plausible cause of this ex-
perimentally observed delay in E* activation would be a low
probability PGE of binding of G* to E. Examples of the kind
of mechanism that could give rise to a low rate constant of
binding kGE (equivalent to a low probability of binding PGE)
would include the need for precise molecular orientation be-
fore binding occurs, or the existence of an energy barrier to
be overcome upon binding.

Relevance of the simulations to the
photoresponse

The simulations show that, over a wide range of the reaction
parameters PRG' TGTP, and PGE, the number of activated mol-
ecules of E* ramps with time after a brief flash of light
(provided that inactivation reactions are ignored). This ramp-
ing is precisely the form of E*(t) needed to explain the rising
phase of the electrical response of vertebrate photoreceptors
(Lamb and Pugh, 1992); it enables the activation phase of the
light response to be explained quantitatively over an ex-
tremely wide range of light intensities.
The values adopted here for the lateral diffusion coeffi-

cients of the proteins are the best current estimates applicable
to amphibian rods at room temperature; see Pugh and Lamb
(1993). However, even if these values are in error, the form
of the predictions should still be accurate. Adopting these
values for the diffusion coefficients, the simulations show
that at the diffusion limit E* can be activated at around 4000
catalytic subunits s-1 per R*. Thus the simulations confirm
in a direct way our previous theoretical interpretation that the
reactions of the G-protein cascade can occur rapidly enough,
simply as a result of lateral diffusion of proteins at the surface
of the disc membrane, to account fully for the gain and speed
of phototransduction. Therefore the simulations confirm the
finding of Lamb and Pugh (1992) that there is no need to
invoke an aqueous path for diffusion of G*GTP (i.e., move-
ment of G*GTP into the cytoplasm) to explain the kinetics of
phototransduction. In line with this conclusion, evidence has
recently been obtained that G*GTP binds tightly to the mem-
brane after activation in vivo (Catty et al., 1992; see Hofmann
and Heck, 1994), and it is therefore unlikely that any ap-
preciable fraction moves into solution over the time scale of
activation of the light response.

Factors affecting the coupling efficiency
from G* to E*

The activation of effector protein to E* has been studied as
a function of the concentration CE of effector in the mem-
brane, and as a function of the lateral diffusion coefficients
of the three proteins. The effectiveness of coupling from G*
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to E* can be characterized by the ratio of the rates of acti-
vation, termed the coupling efficiency, CGE = VElVG. As pre-
dicted by the previous simplified analysis, a reasonable ef-
ficiency of coupling is achieved at a surprisingly low
concentration ratio of effector protein to G-protein in the
membrane.

However, the simulations exposed a quantitative short-
coming of the previous approximate analysis, and indicated
that the required concentration ratio is roughly double that
predicted by the simplified theory. Thus, to achieve a cou-
pling efficiency of CGE = 50% with parameters applicable to
the amphibian rod photoreceptor, the required effector pro-
tein to G-protein concentration ratio is CE/CG 6% rather
than about 3% according to the previous analysis. Never-
theless, the required concentration ratio, of about 1/16, is still
quite low. Furthermore, it must be remembered that in the
case of the photoreceptor the concentration CE is expressed
in terms of PDE catalytic subunits, of which there are two
per PDE holomer. Thus the concentration of PDE molecules
needed to achieve a coupling efficiency of50% is only about
3% of the concentration of G-protein molecules; i.e., for
CG = 2500 pum-2 the required effector subunit concentration
is CE 150 ,um-2, corresponding to about 75 PDE
molecules/4Im2.
The most recent biochemical measurements of the pro-

tein content of amphibian rod photoreceptors indicate that
the holo-PDE is in the ratio to rhodopsin of approximately
1 PDE: 270 R (Dumke et al., 1994), whereas the G-protein
is established as being in the ratio 1 G:10 R (Hamm and
Bownds, 1986). These ratios correspond to protein concen-
trations of CG = 2500 G-proteins/tLm2 (as in Table 1) and 93
PDE holomers/p_m2, or CE = 185 PDE catalytic subunits/
j.m2. Inspection of Fig. 7 indicates that this PDE concen-
tration (with the other parameters at their standard values)
should correspond to a coupling efficiency of about 59% if
the activation of G* is diffusion limited and about 64% if the
activation of G* is slowed by a GTP binding time with a
mean of 100 ,us. If the rate of G* activation were slower than
calculated using the parameter values in Table 1, then the
efficiency of coupling to E* would be higher still.

Optimization of protein concentrations

One can reasonably expect the protein concentrations in the
outer segment to have been "optimized" for the purposes of
transduction. Some of the criteria for optimization are im-
mediately apparent, but at this stage there are presumably
other criteria yet to be determined.

For the purpose of maximizing the gain of transduction,
the concentration of each of the three protein species should
be high. A higher rhodopsin concentration will lead to the
absorption of a greater proportion of the incident photons; a
higher G-protein concentration will lead to a greater rate of
activation of G* and hence to a higher gain of transduction;
a higher PDE concentration will lead to a greater coupling

There are, however, inevitable "costs" associated with
high protein concentrations, which conflict with the purpose
of maximizing the transduction gain, or which cause other
drawbacks. A very high total concentration of protein will
lead to a reduction in the fluidity of the disc membrane
(Peters and Cherry, 1982) and thereby to a reduction in each
of the lateral diffusion coefficients. This will lower the rates
of activation of G* and E* and thereby lower the gain of
transduction. It would seem that this consideration will be
of greatest importance in detenrining the optimal concentration
of rhodopsin, as the quantity of the photopigment far outweighs
that of the other proteins (-1 R: 0.1 G: 0.004 PDE).

Each of the three proteins will be subject to the disad-
vantage that, even in darkness, its presence will inevitably
lead to some residual level of activation, and therefore to a

phenomenon broadly equivalent to a steady background of
light; i.e., it will cause an "equivalent background" of the
kind postulated originally by Stiles and Crawford (1932).
Such an equivalent background will be disadvantageous to
the organism, in that it will elevate the threshold for stimulus
detection in the overall visual system; for reviews see Barlow
(1972) and Pugh (1988). At the level of the photoreceptor,
the disadvantage of an equivalent background is that it will
reduce the magnitude of the circulating current in darkness
(the dark current). It is also possible that the presence of a

continual equivalent background at an excessive level could
lead to degeneration of the photoreceptor outer segments
(Fain and Lisman, 1993).

Rhodopsin exhibits spontaneous thermal activation to R*
(Baylor et al., 1980, 1984), although at the exceedingly low
rate of .10-11 R* s-1/rhodopsin at room temperature. Like-
wise, the G-protein will be subject to thermal activation to
G*. For example, the GGDP may spontaneously lose its bound
GDP; alternatively, the GDP may occasionally be converted
back to GTP as a result of the inevitable slight degree of
reversibility of the inactivation reaction that hydrolyzes the
terminal phosphate of G*GTP. Similarly, the "inactive" PDE
will inevitably exhibit residual hydrolytic activity in dark-
ness even in the absence of G*. It is unlikely that the y

subunits could totally inhibit the hydrolytic activity of the
PDE when they are present, but in any case these y subunits
will exhibit finite binding constants so that there must be a

finite probability that they will dissociate from the a,3 sub-
units and thereby relieve the inhibition (see Wensel and
Stryer, 1986).

Hence, in optimizing transduction, it would be beneficial
to increase the concentration of the G-protein until a region
of diminishing returns was reached in the rate of activation
of the effector to E*. This might occur upon approaching a

limit to the rate of activation of G*, or when the coupling
from G* to E* could no longer keep up with vG. Thus, there
would be no advantage in having a G-protein concentration
so high that the rate of activation vG became limited by kGTp,
nor would there be any advantage in having VG so high that
the coupling efficiency CGE from G* to E* dropped signifi-
cantly. In either case the high concentration of G-protein

efficiency and hence also to a higher gain of transduction.
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would be disadvantageous in contributing to spontaneous
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activation of G* in darkness (i.e., producing an equivalent
background) without significantly aiding transduction.

It would similarly be worthwhile to increase the concen-
tration of the PDE but again only until the advantages were
outweighed by the disadvantages. At high concentrations of
PDE, very little improvement is gained in the rate of acti-
vation of E* by any further increase in concentration, be-
cause the incremental slope in Fig. 7 becomes small. But a
high PDE concentration is disadvantageous in causing an
increased resting rate of hydrolysis of cyclic GMP, raising
the equivalent background and unnecessarily suppressing the
circulating current or costing energy in maintaining a higher
basal guanylate cyclase rate.

This optimization problem is one in which a factor (e.g.,
protein concentration) leads to advantage (e.g., increased
gain) in a saturating manner, and to disadvantage (e.g.,
equivalent light) in a manner that causes the noise variance
to increase in a linear manner. In this class of optimization
problem, it is possible to show that the optimal signal-to-
noise ratio occurs at between 50 and 100% of the maximum
possible output level, depending on the baseline level of
noise variance. Typically one might expect the optimum out-
put level to be in the range 60-80% of the maximal output.
Thus it would be reasonable to expect that activation of G*
would proceed at roughly 60-80% of the diffusion limit, and
that coupling from G* to E* would occur with an efficiency
of around 60-80%. Lower values would lead to an inad-
equate gain of transduction, whereas higher values would
lead to an excessive equivalent background in darkness with
relatively little circulating current in the photoreceptors and
with elevated threshold in the visual system.

Inspection of Fig. 7 would therefore suggest that the op-
timum PDE concentration should be -200-400 subunits
M-2 -

, or 100-200 holomers ,um2. It is satisfying that the
most recent estimates of native PDE concentration corre-
spond quite closely to this, at just under 100 holomers ptm-2
(Dumke et al., 1994). This result is consistent with the idea
that the quantity ofPDE has been optimized, in the sense that
there is just sufficient PDE present to achieve a respectable
efficiency of coupling, but there is no more than that.

Relative expense of the proteins

Although it is reasonably straightforward from the approach
above to predict the optimal quantity of PDE in the case of
a given amount of G-protein, it is difficult to go further. To
predict the optimal concentration of each of the protein mol-
ecules, it will be necessary to express all of the advantages
and disadvantages of the proteins in quantitative terms.
The high concentration of photopigment in the cell can be

viewed as an indication that native rhodopsin is relatively
innocuous, exhibiting little in the way of disadvantage in
comparison with the other proteins. The very much lower con-
centration ofPDE suggests that the "expense" (or the disadvan-
tage relative to the advantage) of the PDE may be much greater
than that of the other two proteins. This would be consistent with
the notion that the spontaneous activity per molecule (or the

"equivalent background" per molecule) is much greater for the
PDE than for the G-protein or rhodopsin.
Even so, the residual activity of the PDE is quite low. The

resting hydrolytic rate constant of the PDE in darkness in
intact amphibian rods has been estimated as -0.5 s-1 from
electrophysiological experiments (Hodgkin and Nunn,
1988), whereas the fully activated hydrolytic rate constant in
bright light has been estimated as -300 s-' from electro-
physiological experiments (Lamb and Pugh, 1992) and as
--1000 s-' from biochemical experiments (Dumke et al.,
1994). Thus the maximal PDE activity is -600-2000 times
greater than the resting PDE activity. Note, however, that this
represents a lower limit for the inhibition ratio per se, given that
the resting PDE activity in vivo will inevitably include a con-
tribution from any residual R* and G* activity. Other estimates
of the PDE inhibition ratio are at least 1700 (Wensel and Stryer,
1986), and at least 300 (Dumke et al., 1994).
The organization of the phototransduction cascade may be

viewed in the following terms. The receptor protein rho-
dopsin is present at a very high concentration, but it has an
extremely high energy barrier that minimizes spontaneous
activation of the high-gain catalytic cascade of reactions. The
G-protein has a smaller barrier to spontaneous activation, and
is present at a lower concentration. The effector protein PDE
has an even smaller barrier to spontaneous activation, and is
present at the lowest concentration.

Inactivation reactions

Because of the present uncertainty about the reactions in-
volved in inactivation of the photoresponse, the analysis in
this paper has been restricted to the activation steps of trans-
duction. However, as soon as the turnoff reactions are thor-
oughly understood and properly quantified, it will be
straightforward to include them in a modified version of the
"WALK" program.
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