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The opening rate of voltage-gated potassium ion channels exhibits
a characteristic knee-like turnover where the common exponential
voltage dependence changes suddenly into a linear one. An ex-
planation of this puzzling crossover is put forward in terms of a
stochastic first passage time analysis. The theory predicts that the
exponential voltage dependence correlates with the exponential
distribution of closed residence times. This feature occurs at large
negative voltages when the channel is predominantly closed. In
contrast, the linear part of voltage dependence emerges together
with a nonexponential distribution of closed dwelling times with
increasing voltage, yielding a large opening rate. Depending on
the parameter set, the closed-time distribution displays a power
law behavior that extends over several decades.

Voltage-dependent ion channels of biological membranes are
formed by porelike single proteins that poke through the cell

membrane. They provide the conducting pathways for the ions
of specific sorts (1, 2). Such potassium (K�) and sodium (Na�)
channels participate in many important processes occurring in
living cells. For example, these are crucial for the phenomenon
of neural excitability (3).

Two features are important for the biological function of these
naturally occurring nanotubes. First, they either are dwelling in
open conformations, allowing for the ion flow to pass through,
or are resting in closed nonconducting conformations. Between
these two conformation types the ion channel undergoes spon-
taneous temperature-driven transitions—the so-called gating
dynamics—which can be characterized by the residence time
distributions of open, fo(t), and closed, fc(t), states, respectively.
The mean open and closed residence times, �To(c)� :� �0

�

tfo(c)(t)dt are prominent quantifiers of the gating dynamics. In
particular, they determine the mean opening (closing) rates ko(c)

:� �Tc(o)��1. The second important feature refers to the fact that
the gating dynamics is voltage dependent. This voltage depen-
dence provides a mechanism for a mutual coupling among
otherwise independent ion channels, being realized through the
common membrane potential. Both ingredients are central for
the seminal model of neuronal activity put forward by Hodgkin
and Huxley in 1952 (3).

The dichotomous character of gating transitions yields a
bistable dynamics of the Kramers type (4). Therefore, a priori
one expects that both the opening and the closing gating rates
will expose an exponential Arrhenius-like dependence on volt-
age and temperature. Indeed, the closing rate of many K�

channels follows such a pattern; in clear contrast, however, the
opening rate usually does not. To explain the experimental
voltage dependence of the activation time constant of the
potassium current for a squid giant axon, Hodgkin and Huxley
(3) postulated that the gating behavior of a potassium channel
is determined by four independent voltage-sensitive gates, each
of which undergoes a two-state Markov dynamics with a form
(3, 5)

ko�V	 �
ac�V � Vc	

1 � exp
 � bc�V � Vc	�
[1]

for the opening rate, which is commonly used in neurophysiol-
ogy. In Eq. 1, ac, bc, Vc are some experimental parameters.
Notwithstanding that in their work (3) this kind of dependence
has been used for a single gate, the opening rate of the whole K�

channel can also be fitted by Eq. 1 (see, e.g., in ref. 6). The same
modeling for a whole channel is used also for dendritic K�

channels in neocortical pyramidal neurons (5).
Note that in Eq. 1 the voltage dependence of the opening rate

changes in a knee-like manner from an exponential behavior into
a linear one (cf. Fig. 1). This typical experimentally observed
behavior of delayed rectifier K� channels presently lacks an
explanation in physical terms. A qualitative explanation of this
gating dynamics has briefly been mentioned in recent work (8).
However, a definite analysis leading to the functional form in Eq.
1 is not available. A first main objective of the present work is to
fill this gap, and, moreover, to provide additional insight into the
voltage behavior of Eq. 1 within an exactly solvable stochastic
Fokker–Planck–Kramers model.

The ion current recordings made on the level of single ion
channels (2) reveal yet another unresolved, interesting, aspect of
the gating dynamics. Namely, the distribution of closed residence
times of many channels is not exponential. In particular, it has
been shown by Liebovitch et al. (9) that the closed residence time
distribution fc(t) in a rabbit corneal endothelium channel can be
reasonably fitted by a stretched exponential with only two
parameters. This result initiated the construction of the so-called
fractal model of ion channel gating (9, 10). Other channels—e.g.,
K� channels in neuroblastoma � glioma (NG 108-15) cells—
exhibit a power-law scaling behavior as well—i.e., fc(t)  t�� with
� � 3

2
(11). To explain this type of fractal-like behavior Mill-

hauser et al. (12) proposed a one-dimensional diffusion model.
Similar power laws with � � 3

2
have also been reported (13–15),

and several variations of diffusion theory have been introduced
to explain the gating behavior of different channels (16–19).

The observed nonexponential behavior can be fitted by a finite
sum of exponentials; consequently, it can alternatively be ex-
plained with a corresponding discrete Markovian scheme (11).
These discrete Markovian models have proven their usefulness
in many cases (20). Nevertheless, such an approach presents a
fitting procedure; as such it is intimately connected with the
danger of a proliferation of parameters. In particular, kinetic
schemes containing as many as 14 structurally unidentified
closed substates have been proposed (21).

An important lesson to be learned from the detailed studies
of a simple protein—myoglobin—by Frauenfelder et al. (22) is
that proteins exist in a huge number of quasidegenerate micro-
scopic substates, corresponding to a single macroscopic confor-
mation (cf. Fig. 2). It is thus conceivable that at room temper-
atures the ion channel dwells in a huge number of almost
degenerate (within kBT) conformational substates. Both the
fractal and diffusion models of the ion channel gating have been
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inspired by this crucial property of proteins. We conjecture that
the ultimate theory of the ion channel gating must take this
property into account. This program requires a compromise
between Markovian discrete state models and a continuous
diffusion model. This can be achieved by a Kramers type theory
(4, 8). The discrete Markov models can then be considered as a
limiting case of more general Kramers type approach (4).

Theoretical Modeling
The complex structure of the multidimensional conformational
space of proteins implies an intricate kinetics despite an appar-
ently simple bistability that is observed (22). Two popular
theoretical approaches have been developed to cope with this

complexity. A first one uses a simple bistable dynamics as a basis.
To model the complexity of the observed kinetics this dynamics
is amended by using an additional stochastic time dependence of
the energy profile, or kinetic constants. Such an approach is
nowadays commonly known under the label of ‘‘f luctuating
barriers’’ (23–27). Alternatively, one can attempt to model the
complexity of the energy profile itself in the simplest possible
way. Our strategy is to find such a minimal model of the second
kind that does allow for a rigorous analysis and does reproduce
some nontrivial features of the gating dynamics.

Let us assume that the conformational stochastic dynamics
between the open and closed states can be described in terms of
a one-dimensional reaction coordinate dynamics x(t) in a con-
formational potential U(x) (Figs. 2 and 3). Because the distri-
bution of open residence time intervals assumes typically a single
exponential (1), in the following we rather shall focus on the
behavior of the closed residence time intervals. To evaluate the
distribution of closed residence time intervals it suffices to
restrict our analysis to the subspace of closed states by putting an
absorbing boundary at the interface, x � b, between the closed
and open conformations (see Fig. 3). We next assume that the
gating dynamics is governed by two gates: an inactivation gate
and an activation gate. The inactivation gate corresponds to the
manifold of voltage-independent closed substates. It is associated
with the flat part, �L � x � 0, of the potential U(x) in Fig. 3.
In this respect, our modeling resembles that in ref. 28. The
mechanism of inactivation in potassium channels is quite so-
phisticated and presently not totally established (1). It is well
known that inactivation can occur on quite different time scales
(1). The role of a fast inactivation gate in Shaker K� channels is
taken over by the channel’s extended N terminus, which is
capable of plugging the channel’s pore from the cytosol part
while diffusing towards the pore center (29). The slow inactiva-
tion apparently is due to a conformational narrowing of the
channel pore in the region of selectivity filter (1). In both cases,
no net gating charge translocation occurs and the inactivation
process does not depend on voltage. When the inactivating plug
is outside of the pore, or the selectivity filter is open (x � 0 in

Fig. 1. Dependence of opening (ko) and closing (kc) rates on voltage for a
Shaker IR K� channel from ref. 6 at T � 18°C. The opening rate is described by
Eq. 1 with the following parameters (6): ac � 0.03 msec�mV, bc � 0.8 mV�1,
and Vc � �46 mV. The closing rate is given by kc � 0.015 exp(�0.038V) msec�1

(V in mV) (6, 7). Inset shows the same dependencies on a semilogarithmic scale.

Fig. 2. Gating dynamics as an activated diffusion on a complex free energy
landscape. Two global minima correspond to open and closed macroconfor-
mations. One assumes a large number of quasidegenerate (within kBT) and
voltage-independent closed substates separated from the open conformation
by a voltage-dependent potential barrier. This idea is sketched by a simplified
model of the Fokker–Planck–Kramers type, and by a discrete model with open
(O), closed (C), and inactivated (I) states.

Fig. 3. Studied model and its diffusion counterpart.
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Fig. 3) the channel can open only if the activation barrier is
overcome.

The dynamics of the activation gate occurs on the linear part
of the ramp of the potential U(x)—i.e., on 0 � x � b in Fig. 3,
as in refs. 18 and 19. Note that for 0 � x � b, the inactivating
plug diffuses outside of the channel’s pore and the selectivity
filter is open. During the activation step a gating charge q moves
across the membrane; this feature renders the overall gating
dynamics voltage dependent. The channel opens when the
reaction coordinate reaches the location x � b in Fig. 3. This fact
is accounted for by putting an absorbing boundary condition at
x � b. Moreover, the channel closes immediately when the
inactivation gate closes (x � 0), or when the activation gate
closes. To account for this behavior in extracting the closed
residence time distribution we assume that the channel is reset
into the state x � 0 after each closure (see below).

The diffusional motion of the inactivated gate is restricted in
conformational space. We characterize this fact by the intro-
duction of a conformational diffusion length L (Fig. 3) and the
diffusion constant D � kBT that are combined into a single
parameter—the conformational diffusion time

�D � L2�D. [2]

This quantity constitutes an essential parameter for the theory.
We assume that the activation barrier height U0 is linearly
proportional to the voltage bias V (18, 19)—i.e., in terms of the
gating charge q we have

U0 � � q�V � Vc	. [3]

Moreover, U0 is positive for negative voltages—i.e., for V �
Vc—vanishes at V � Vc, and becomes negative for V � Vc. Thus,
for V � Vc the channel ‘‘slips’’ in its open state, rather than
overcomes a barrier. In addition, the fraction � of the voltage-
dependent substates in the whole manifold of the closed states
should be very small, implying that

� � b�L��1. [4]

Analytical Solution. The corresponding Fokker–Planck equation
for the probability density of closed states P(x, t) reads

�P�x,t	
�t

� D
�

�x � �

�x
� 	

�U�x	

�x � P�x,t	, [5]

where 	 � 1�(kBT). To find the distribution of closed residence
times fc(t), we solve Eq. 5 with the initial condition P(x,0) � 
(x),
in combination with a reflecting boundary condition dP(x, t)�dx
�x��L � 0, and an absorbing boundary condition, P(x, t)�x�b �
0 (4). The closed residence time distribution then follows as

fc�t	 � �
d�c�t	

dt
, [6]

where �c(t) � ��L
b P(x,t)dx is the survival probability of the

closed state.
By use of the standard Laplace transform method we arrive at

the following exact solution:

f̃c�s	 �
A�s	
B�s	

, [7]

where

A�s	 � exp(�	U0�2)�	2U0
2 � 4�2�Ds [8]

B�s	 � �	2U0
2 � 4�2�Ds

� cosh��	2U0
2 � 4�2�Ds�2�

� �2���Ds tanh ��Ds � 	U0�
� sinh��	2U0

2 � 4�2�Ds�2�. [9]

The explicit result in 7–9 allows one to find all moments of the
closed residence time distribution. In particular, the mean closed
residence time �Tc� � lims30[1 � f̃c(s)]�s reads

�Tc� � �D�
	U0�e	U0 � 1 � �	 � ��e	U0 � 1	

	2U0
2 . [10]

This very same result 10 can be obtained alternatively if we
invoke the well-known relation for the mean first-passage time
�Tc� � 1�D �0

b dxe	U(x) ��L
x dye�	U(y) (4). This alternative

scheme provides a successful validity check for our analytical
solution in 7–9.

Elucidation of the Voltage Dependence in Eq. 1. Upon observing the
condition 4, Eq. 10 by use of 3 reads in leading order of �

ko �
1

�Tc�
�

	q
��D

V � Vc

1 � exp
�	q�V � Vc	�
. [11]

With the parameter identifications

bc �
q

kBT
[12]

and

ac �
q

��DkBT
[13]

the result in 11 precisely coincides with Eq. 1. The fact that our
approach yields the puzzling voltage dependence in Eq. 1
constitutes a first important result of this work.

Let us next estimate the model parameters for a Shaker IR K�

channel from ref. 6. In ref. 6, the voltage dependence of ko(V)
at T � 18°C has been parameterized by Eq. 1 with the parameters
given in the caption of Fig. 1. Then, from Eq. 12 the gating charge
can be estimated as q � 20e (e is the positive-valued elementary
charge). As to the diffusion time �D, we speculate that it
corresponds to the time scale of inactivation; the latter is in the
range of seconds and larger (6). Therefore, we use �D � 1 sec as
a lower bound for our estimate. The fraction of voltage-
dependent states � is then extracted from Eq. 13 to yield, � �
0.0267. This value, indeed, is rather small and thus proves our
finding in Eq. 11 to be consistent.

Analysis for the Closed Residence Time Distribution. The exact results
in Eqs. 7–9 appear rather entangled. To extract the behavior in
real time one needs to invert the Laplace transform numerically.
With � �� 1, however, Eqs. 7–9 are formally reduced to

f̃c�s	 �
1

1 � �ko�D	 � 1��Ds tanh��Ds
. [14]

This prominent leading order result can be inverted analytically
in terms of an infinite sum of exponentials, yielding:
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fc�t	 � �
n � 1

�

cn�n exp(��nt), [15]

where the rate constants 0 � �1 � �2 � . . . are solutions of the
transcendental equation

tan��n�D �
ko�D

��n�D
[16]

and the expansion coefficients cn, respectively, are given by

cn �
2

1 � ko�D � �n�ko
. [17]

Note from Eq. 6 that the set cn is normalized to unity, i.e. ¥n�1
�

cn � 1.
The analytical approximation, Eqs. 15–17, is compared in Fig.

4 with the precise numerical inversion of the exact Laplace
transform in Eqs. 7–9. The numerical inversion has been per-
formed with the Stehfest algorithm (30). As can be deduced from
Fig. 4, for t � 10 msec the agreement is very good indeed. A
serious discrepancy occurs only in the range 0.01 msec � t � 0.1
msec, which lies outside the range of the patch clamp experi-
ments (t  0.1 msec). Moreover, the agreement improves with
increasing �D (not shown).

Origin of the Power Law Distribution. The features displayed by the
closed residence time distribution fc(t) depend sensitively on the
applied voltage V. When V � Vc—e.g., V � �45 mV, as in Fig.
4—the activation barrier towards the channel opening disap-
pears and the opening dynamics becomes diffusion limited. In
this case, the diffusion time �D � 1 sec largely exceeds the mean
closed residence time �Tc� � 18.4 msec. Put differently, �D ��
�Tc� and the closed residence time distribution exhibits an
intricate behavior with three distinct regions (see Fig. 4). Most
importantly, for the intermediate time scale

�Tc�
2��D �� t ��� D [18]

we find from Eq. 14 (by considering the limit �D 3 �) that the
closed residence time distribution obeys a power law, reading

fc�t	 �
1

2���D	1/2kot3/2 . [19]

This type of behavior is clearly detectable in Fig. 4, where it
covers about two decades of time. As follows from Eq. 18, an
increase of �D by one order of magnitude (while keeping �Tc�
fixed) extends the power law region by two orders of magnitude.
This conclusion is fully confirmed by our numerics (not shown).
This power law dependence, which extends over four orders of
magnitude, has been seen experimentally for a K� channel in NG
108-15 cells (11). On the contrary, for channels, where �D is
smaller, the power law region 18 shrinks and eventually disap-
pears, whereas the mean opening rate defined by Eq. 10 still
exhibits a steep dependence on the voltage. Thus, our model is
capable of describing for different channels both the emergence
of the power law and its absence.

On the time scale t � �D the discussed power law distribution
crosses over into the exponential tail; the latter is fully described
by the smallest exponent �1 in Eq. 15, i.e., by

fc�t	 � c1�1 exp
��1t�. [20]

This feature is clearly manifest in Fig. 4. The transition towards
the exponential tail in the closed residence time-interval distri-
bution can be used to estimate the diffusion time �D on pure
experimental grounds!

Finally, let us consider the opposite limit, �D �� �Tc�, for V ��
Vc. For the considered set of parameters this occurs—e.g., for
V � �55 mV—when the channel is predominantly closed. Then,
the diffusion step in the opening becomes negligible and in the
experimentally relevant range of closed residence times, defined
by �Tc�, the corresponding distribution can be approximated by
a single exponential, 20. A perturbation theory in Eq. 16 yields
�1 � ko (1 � (ko�D)�3). For the parameters used we have �1 �
0.96ko and, from Eq. 17, c1 � 0.95. This is in a perfect agreement
with the precise numerical results obtained from Eqs. 7–9. Thus,
the distribution of closed residence times is single exponential to
a very good degree. Consequently, one and the same channel can
exhibit both an exponential and a power-law distribution of
closed residence times, as a function of the applied transmem-
brane voltage. With an increase of �D the voltage range of
the exponential behavior shifts towards more negative voltages,
V � Vc, and vice versa.

Reduction to a Diffusion Model. Let us relate our model to that
introduced previously by Millhauser et al. (12). The latter one is
depicted with the lower part in Fig. 3. It assumes a discrete
number N of closed substates with the same energy. The gating
particle jumps with the equal forward and backward rates k
between the adjacent states, which are occupied with probabil-
ities pn(t). At the right edge of the chain of closed states the ion
channel undergoes transition into the open state with the
voltage-dependent rate constant �. To calculate the closed
residence time distribution fc(t) one assumes p0(0) � 1,
pn�0(0) � 0, and d�c(t)�dt � ��p0(t), where �c(t) � ¥n�0

n��N

pn(t) is the survival probability (12, 17).
We consider the continuous diffusion variant of this model

(31) in a scaling limit: we put �x 3 0, k 3 �, � 3 �, N 3 �,
keeping the diffusion length L � N �x, the diffusion constant
D � k(�x)2, and the constant ko � ��N all finite. The latter one
has the meaning of mean opening rate (see below). Note that in
clear contrast with our approach, the rate parameter ko in the
diffusion model is of pure phenomenological origin. The prob-
lem of finding the closed residence time distribution is reduced
to solving the diffusion equation

�P�x,t	
�t

� D
�2P�x,t	

�x2 [21]

Fig. 4. Closed residence time distribution for a diffusion-limited case. The
numerical precise result (solid line) is compared with the analytical approxi-
mation in Eqs. 15–17 (broken line). The latter one coincides with the exact
solution of the diffusion model by Millhauser et al. (12) in the scaling limit.
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with the initial condition P(x,0) � 
(x � 0�), the reflecting
boundary condition �P(x, t)��x �x��L � 0 and the radiation
boundary condition (32).

�P�x,t	
�x

�x � 0 � �
Lko

D
P�0,t	. [22]

We emphasize that the radiation boundary condition 22 is not
postulated, but is rather derived from the original discrete model
in the considered scaling limit. Using the Laplace transform
method, we solved this problem exactly and obtained the result
in Eq. 14. In conclusion, our approximate result in Eqs. 14–17
provides the exact solution of the diffusion model (12, 17) in the
scaling limit! Note, however, that this diffusion model so ob-
tained is not able to resolve the puzzling voltage dependence in
Eq. 1.

Synopsis and Conclusions
With this work we put forward a unifying generalization of the
diffusion theory of ion channel gating by Millhauser et al. (12,
17). Our theory reproduces the functional form of the puzzling
voltage dependence in Eq. 1. The latter had been postulated
almost 50 years ago in the pioneering paper by Hodgkin and
Huxley (3) and is commonly used in neurophysiology up to now.
The proposed model of the Fokker–Planck–Kramers type ex-
plains the origin of steep voltage dependence in Eq. 1 within a
clear physical picture that seemingly is consistent with both our
current understanding of the physics of proteins and basic
experimental facts. Our study furthermore reveals the connec-
tion between the voltage dependence of the opening rate and the
intricate behavior for the closed residence time distribution in
corresponding voltage regimes. A particularly appealing feature
of our approach is that our model contains only four voltage-
independent physical parameters: the diffusion time �D, the
fraction of voltage-dependent substates �, the gating charge q,
and the threshold voltage Vc. Several experimental findings
could be described consistently while others call for an experi-
mental validation.

In particular, (i) when the activation barrier is very high, i.e.,
V �� Vc, the activation step determines completely the opening

rate: the distribution of closed residence times is nearly expo-
nential, as well as the voltage dependence of the opening rate.
The channel is then predominantly closed. We remark that the
opening rate should exhibit an exponential dependence on
temperature as well. This conclusion follows from Eqs. 11 and 12
and the fact that in accord with our model the parameter ac in
Eq. 1 is temperature independent. Indeed, with the diffusion
time �D being inversely proportional to the temperature—i.e.,
with �D � 1�D � 1�(kBT)—one obtains ac � 1�(�DkBT); i.e.,
the coefficient ac is temperature independent (cf. Eq. 13). In
contrast, (ii) when the activation barrier vanishes—i.e., the
voltage shifts towards the positive direction—the closed resi-
dence time distribution becomes nonexponential. On the inter-
mediate time scale given in Eq. 18, this distribution exhibits a
power law behavior, fc(t)  t�3/2, which crosses over into an
exponential one at t � �D. The emergence of the exponential tail
can be used to determine the conformational diffusion time �D
experimentally. (iii) When the activation barrier assumes nega-
tive values at voltages V � Vc, our result for the opening rate
exhibits a linear dependence on voltage and, consequently (see
Eq. 11), it no longer depends on temperature. The weak tem-
perature dependence will emerge, however, when we renormal-
ize the diffusion coefficient D due to the roughness of random
energy landscape (cf. Fig. 2). Assuming uncorrelated Gaussian
disorder, one gets D � kBT exp(��
U2��(kBT)2) (4, 33, 34),
where �
U2� is the mean-squared height of the barrier between
substates. Then, ko � exp(��
U2��(kBT)2), and because
��
U2� � kBT this non-Arrhenius dependence is weak at room
temperatures. This result has a clear thermodynamic interpre-
tation: when the activation barrier vanishes the closed-to-open
transition is entropy dominated and thus the opening rate will
only weakly depend on temperature. In accord with our model,
this type of behavior correlates with a nonexponential kinetics.

The temperature behavior of the opening rate (or, equiva-
lently, the mean closed time) presents a true benchmark result
of our theory. We are looking forward to seeing this feature
being tested experimentally.

We thank Peter Reimann for fruitful discussions. This work has been
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