
A Gaussian-chain model for treating residual
charge–charge interactions in the
unfolded state of proteins
Huan-Xiang Zhou*

Department of Physics, Drexel University, Philadelphia, PA 19104

Communicated by Robert L. Baldwin, Stanford University Medical Center, Stanford, CA, January 17, 2002 (received for review December 4, 2001)

Characterization of the unfolded state is essential for under-
standing the protein folding problem. In the unfolded state, a
protein molecule samples vastly different conformations. Here I
present a simple theoretical method for treating residual
charge– charge interactions in the unfolded state. The method is
based on modeling an unfolded protein as a Gaussian chain.
After sampling over all conformations, the electrostatic inter-
action energy between two charged residues (separated by l
peptide bonds) is given by W � 332(6��)1/2[1 � �1/2xexp
(x2)erfc(x)]��d, where d � bl1/2 � s and x � �d�61/2. In unfolded
barnase, the residual interactions lead to downward pKa shifts
of �0.33 unit, in agreement with experiment. pKa shifts in the
unfolded state significantly affect pH dependence of protein
folding stability, and the predicted effects agree very well with
experimental results on barnase and four other proteins. For T4
lysozyme, the charge reversal mutation K147E is found to
stabilize the unfolded state even more than the folded state
(1.39 vs. 0.46 kcal/mol), leading to the experimentally observed
result that the mutation is net destabilizing for the folding. The
Gaussian-chain model provides a quantitative characterization
of the unfolded state and may prove valuable for elucidating the
energetic contributions to the stability of thermophilic proteins
and the energy landscape of protein folding.

There is growing evidence indicating that there are residual
charge–charge interactions when proteins are unfolded

(1–6). A quantitative characterization of these residual inter-
actions will lead to a fuller understanding of the folding
problem. This task is hampered by the fact that, in the unfolded
state, a protein molecule samples vastly different conforma-
tions (7). The simplest polymer model that captures the
conformational sampling in the unfolded state is the Gaussian
chain, which has recently been used to account for the effect
of spatial confinement on protein stability (8). Here we show
that this model can be used to account for the residual
charge–charge interactions and quantitatively reproduces ex-
perimental results on pH dependence of folding stability for
five proteins.

That residual charge–charge interactions exist in the unfolded
state is not surprising. According to Coulomb’s law, two charged
residues fully solvated in water have an interaction energy

U0 � �332��r �kcal�mol�, [1]

where ‘‘�’’ (‘‘�’’) is for like (opposite) charges, � is the dielectric
constant of water ( � 78.5 at room temperature), and r is the
distance between the charges (in Å). As the unfolded chain
samples different conformations, residues close along the se-
quence will tend to sample short distances (9). At a distance of
8 Å, the residual interaction energy between a pair of charges is
0.5 kcal/mol.

Residual charge–charge interactions in the unfolded state will
lead to shifts in pKa from values of model compounds. pKa shifts
in turn will affect pH dependence of folding stability, which is
governed by (10)

�Gunfold �pH� � �Gunfold �pH0� � �kBT ln 10��
pH0

pH

QudpH

� �kBT ln 10��
pH0

pH

QfdpH,

[2]

where kBT is the product of the Boltzmann constant and the
absolute temperature, and Qu (Qf) is the total charge on
the protein at a given pH in the unfolded (folded) state. If the
protein has a total of N ionizable groups with pKa values of pKi,u
in the unfolded state, then

Qu � ��
i

1��1 � 10pKi,u�pH� � N�, [3]

where N� is the number of ionizable groups that become charged
on protonation (Arg and Lys). Residual charge–charge interac-
tions in the unfolded state are easily detected experimentally
when the pH dependence of �Gunfold predicted by Eq. 2, using
Qu calculated with model-compound values for pKi,u, deviates
from measurement (2–4, 6).

Elcock (11) recently calculated residual charge–charge inter-
actions in a single conformation of the unfolded state, obtained
from unfolding the native structure by molecular dynamics
simulations. This unfolded model was called ‘‘native-like.’’ The
Gaussian-chain model allows the unfolded protein chain to
sample different conformations and predicts pH dependence of
folding stability that is in better agreement with experiment. A
simple analytical expression derived for the residual interaction
energy now makes it an easy task to treat electrostatic effects for
any unfolded protein.

Methods
Charge–Charge Interactions in the Unfolded State. To account for
screening by salt ions, we assume that the interaction between
two charged residues follows the Debye–Hückel theory:

U � �332exp���r���r, [4]

where � � (8�Ie2��kBT)1/2 (� I1/2�3.04 Å�1 at room tempera-
ture) and I is the ionic strength. Tanford’s book (12) gives a very
useful discussion of this and alternative applications of the
Debye–Hückel theory to flexible polyelectrolytes (the lineariza-
tion involved in Eq. 4 is applicable to protein chains but perhaps
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not to highly charged polymers such as DNA). In a Gaussian
chain, the distance between two residues is not fixed but
distributed according to (12)

p�r� � 4�r2�3�2�d2�3/2 exp��3r2�2d2�, [5]

where d is the root-mean-square distance. This mean distance
depends on l, the number of peptide bonds separating the two
residues. For a Gaussian chain, one has d � bl1/2. To account for
the fact that the distance of interest is between two side chains,
we add a shift to the classical result, resulting in

d � bl1/2 � s. [6]

The effective bond length b and the shift distance s are the only
adjustable parameters in our theory. Our earlier work (13) has
indicated that b is in the range of 6 to 9 Å. All results in this paper
were calculated with b � 7.5 Å and s � 5 Å.

When the distance between charged residues i and j is sampled
from the Gaussian distribution, the mean interaction energy has
the magnitude

Wij � 332�
0

	

dr p�r�exp���r���r,

� 332�6���1/2
1 � �1/2x exp�x2�erfc�x����d, [7]

where x � �d�61/2 and erfc(x) is the complementary error
function.

Total Charge on the Protein at a Given pH. We assume that, in the
absence of the residual charge–charge interactions, the pKa

values of the ionizable groups take model-compound values
pKi,0. The distribution of the protonation states xi of the ioniz-
able groups is governed by the Hamiltonian (14)

H � �kBT ln 10��
i

�pH � pKi,0�xi � �1�2��
i � j

Wij�xi � xi0��xj � xj0�, [8]

where xi � 0 (1) when group i is unprotonated (protonated) and
xi0 is the protonation state when the group is charge neutral (1
for Asp and Glu and 0 for Arg and Lys). Because one may expect
that residues in the unfolded state should be less well solvated
than model compounds, there is a possibility that solvation (in
addition to residual charge–charge interactions) also perturbs
pKa values. This possibility was not studied in the present paper.
The average protonation of group i at a given pH is

x� i � �
�xi


xi exp��H�kBT���
�xi


exp��H�kBT�, [9]

which was evaluated by a Monte Carlo simulation. The total
charge on the protein is

Qu � �
i

�x�i � xi0�. [10]

This was then integrated numerically over pH to yield pH
dependence of the unfolding free energy (see Eq. 2).

The pH titration of an ionizable group can be described by a
pKa value. This was obtained by fitting the pH dependence of
x�i to the Hill equation:

log
x�i

1 � x�i
� ni�pKi,u � pH�. [11]

Note that, regardless of the value of the Hill coefficient ni, pKi,u
equals the pH at which the group is 50% protonated.

The calculation of Qu requires as input only a file listing the
following information about each ionizable group: residue num-
ber (for calculating sequence separation l between groups),
protonation state xi,0 when the group is neutral, and pKi,0 for the
corresponding model compound. Five proteins are studied:
barnase, chymotrypsin inhibitor 2 (CI2), ovomucoid third do-
main (OMTKY3), ribonuclease A, and ribonuclease T1. The
ionic strengths (I) at which calculations were made are 50, 200,
10, 30, and 30 mM, respectively, for the five proteins.

The model-compound pKa values used were the same as in
Elcock’s work (11). These values are: Asp, 4.0; Glu, 4.4; His, 6.3;
Cys, 8.3; Tyr, 9.6; Lys, 10.4; Arg, 12.0; N-terminal, 7.5; and C
terminal, 3.8.

Comparison with Experiment and Other Models. Following Elcock
(11), we use the total charge Qu calculated by Eq. 10, along with
the experimentally determined total charge Qf for the folded
state, to predict pH dependence of the unfolding free energy.
Experimental Qf results were obtained either from measured
pKa values of all ionizable residues or from pH titration of the
folded state (details were given by Elcock). The predicted pH
dependence of the unfolding free energy is then compared with
experiment. Comparison is also made with the published results
of Elcock’s native-like model (11) and the ‘‘idealized’’ model in
which Qu is calculated from Eq. 3 with model-compound values
for pKi,u.

Results
Predicted pH dependence of the unfolding free energy, using the
total protein charge Qu in the unfolded state calculated with the
Gaussian-chain model, agrees very well with experiment for all
of the five proteins studied. As noted by Elcock (11), the
idealized model (using Qu calculated with model-compound pKa
values) predicts poorly the pH dependence of �Gunfold in all
cases, indicating significant residual charge–charge interactions
in the unfolded state. The native-like model of Elcock leads
to significant improvement in predicting pH dependence of
�Gunfold. However, it does at times overestimate pKa shifts in the
unfolded state, indicating the need to sample more than just one
conformation.

Barnase. In Fig. 1 we compare the pH dependence of �Gunfold
predicted by the Gaussian-chain, native-like, and idealized mod-
els for barnase with previous experiments (3). Both the Gaus-
sian-chain and the native-like models make good predictions.
However, differences appear when the calculated pKa values for
individual groups are compared. As Table 1 shows, the pKa shifts
calculated with the Gaussian-chain model range from �0.14 to
�0.51. pKi,u � pKi,0 calculated with the native-like model
exhibits much wider variations, ranging from �0.05 to �0.88.
The mean shifts of the two models, however, are nearly the same
and are in agreement with the uniform shift in pKi,u used by
Oliveberg et al. (3) to simulate their experimental data. Pace
et al. (15) have additional data for �Gunfold above pH 7, but
comparisons with these data are prevented by apparent lack of
experimental data on Qf.

CI2. Fig. 2 displays the results of the three models for CI2 along
with the experimental data (4). The Gaussian-chain model shows
excellent agreement with experiment, whereas the native-like
and idealized models underestimate and overestimate, respec-
tively, �Gunfold by 2 kcal/mol at pH 7. As noted by Elcock (11),
the underestimate of the native-like model can be traced to an
‘‘excessively low’’ pKa calculated for Asp-45. In his words, ‘‘a
downward shift of 1.1 units in what ought to be an unstructured
state seems unrealistically large’’ (11). Rather than inheriting
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from the folded structure the salt bridge with Arg-46 and close
distances with Arg-43 and Arg-48 (as in the native-like model),
the Gaussian-chain model allows Asp-45 in unfolded CI2 to
sample a range of distances with the positively charged residues.
This sampling of distances leads to a moderate downward shift
of 0.24 unit in the pKa shift of Asp-45.

OMTKY3. The calculated and experimental (2) results for
OMTKY3 are shown in Fig. 3. There are significant residual
charge–charge interactions in the unfolded state, which are
predicted well by both the Gaussian-chain and the native-like
models.

Ribonulease A. In Fig. 4, the pH dependence of �Gunfold predicted
by the three models for ribonuclease A is compared with a
previous experiment (16). The Gaussian-chain model performs
remarkably well in reproducing the experimental results over a
wide pH range of 2–10. The results of the native-like model show
significant deviations from experiment. Elcock (11) attributed
these partly to an ‘‘excessively low’’ pKa (2.39) calculated for

Fig. 1. Predicted and experimental (ref. 3) pH dependence of �Gunfold for
barnase at I � 50 mM.

Table 1. pKa shifts from model-compound values calculated with
the Gaussian-chain and native-like models for barnase at I �
50 mM

Group

Shift, pH unit

Gaussian-chain model* Native-like model

Asp-8 �0.14 �0.11
Asp-12 �0.16 �0.27
Asp-22 �0.29 �0.42
Glu-29 �0.27 �0.15
Asp-44 �0.28 �0.42
Asp-54 �0.31 �0.43
Glu-60 �0.51 �0.48
Glu-73 �0.42 �0.05
Asp-75 �0.33 �0.11
Asp-86 �0.44 �0.88
Asp-93 �0.28 �0.38
Asp-101 �0.43 �0.34
C-terminal �0.41 �0.64
Mean pKi,u � pKi,0 �0.33 �0.35

*The Hill coefficients (see Eq. 11) range from 0.91 to 0.97.

Fig. 2. Predicted and experimental (ref. 4) pH dependence of �Gunfold for CI2
at I � 200 mM.

Fig. 3. Predicted and experimental (ref. 2) pH dependence of �Gunfold for
OMTKY3 at I � 10 mM.
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Asp-38. According to him, ‘‘the magnitude of this shift (from a
model-compound value of 4.0) is almost certainly overestimat-
ed.’’ In Elcock’s native-like unfolded conformation, Asp-38 has
distances of 5, 6, and 7.5 Å from Arg-39, Lys-41, and Lys-37,
respectively. The pKa value of Asp-38 calculated with the
Gaussian-chain model is 3.09.

Ribonuclease T1. The calculated and experimental (16) results
for ribonuclease T1 are displayed in Fig. 5. The Gaussian-chain
and native-like models both do well in reproducing the exper-
imental results between pH 4 and 10. The steeper decreasing
slope in the pH dependence of �Gunfold around pH 7 obtained
with the Gaussian-chain model is in better agreement with
experiment.

Discussion
I have shown that residual charge–charge interactions in the
unfolded state of five proteins are predicted very well by the
Gaussian-chain model. This model captures an essential feature
of the unfolded state, i.e., the protein chain samples many
different conformations. As such, it avoids the unrealistically
excessive pKa shifts produced by the native-like model of Elcock.
The simplicity of the model, with the interaction energy between
two charged residues given by an analytical expression (Eq. 7),
allows it to be easily used to treat electrostatic effects for any
unfolded protein.

It is not suggested that an unfolded protein actually samples
conformations expected of a Gaussian chain. Rather, as a
polymer chain, the unfolded protein is expected to have mean
residue–residue distances that increase with sequence separa-
tion, and the Gaussian chain is the simplest model to account for
this increase.

The value of the effective bond length b of the Gaussian-
chain model, 7.5 Å, used in this study is within the range
calculated from hydrodynamic data for unfolded proteins (13).
Electrostatic effects for five proteins over wide pH ranges are
reasonably predicted without adjusting this value (or the 5-Å

value of the shift distance s). This observation suggests that the
model as is should have wide applicability. It should be noted
that the Gaussian-chain model is used for describing the
conformations sampled in the unfolded state with the residual
charge–charge interactions present (rather than in a hypo-
thetical state in which the charges are completely removed
from the chain). Of course solvent conditions (e.g., pH) are
expected to have some inf luence on the dimensions of un-
folded proteins (7, 16). This inf luence perhaps partly explains
the deviations of prediction from experiment at extremes of
pH (i.e., pH � 1.5 for barnase and CI2; pH � 9 for RNase A;
and pH � 4 for RNase T1).

That significant residual charge–charge interactions exist in
the unfolded state now appears to be well established. This
knowledge directly impacts our understanding of electrostatic
contributions to protein stability. In particular, to account for the
effect of a charge reversal mutation on �Gunfold, one must
include the change in the residual interaction energy, �Gu

int,
caused by the mutation. In the Gaussian-chain model, when the
mth ionizable group is mutated, we have

�Gu
int � �G�u � �G�u [12a]

where � and � refer to the wild type and mutant, respectively, and

exp��Gu
p�kBT� � �exp��xm � xm,0

p �
�

i � m

Wmi�xi � xi,0��kBT	
p

, where p is � or �.

[12b]

The average is over a Boltzmann distribution of the protonation
states (compare Eqs. 8 and 9).

Fig. 4. Predicted and experimental (ref. 16) pH dependence of �Gunfold for
ribonuclease A at I � 30 mM.

Fig. 5. Predicted and experimental (ref. 16) pH dependence of �Gunfold for
ribonuclease T1 at I � 30 mM.
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In previous studies (17–19), residual charge–charge interac-
tions in the unfolded state have been ignored. For the charge
mutations on barnase studied by Vijayakumar and Zhou (19),
the contributions of �Gu

int as calculated from Eq. 12 are relatively
small (see Table 2). The inclusion of �Gu

int does bring the
calculated results for the mutational effects on the unfolding free
energy into closer agreement with experiment (20). Table 2
shows that, for T4 lysozyme, ribonucleases T1 and Sa, and
myoglobin, the magnitude of �Gu

int quite often exceeds the
magnitude of the experimental result for the overall unfolding
free energy. As in the case for barnase, inclusion of �Gu

int brings
calculation into closer agreement with experiment for T4 ly-
sozyme and ribonucleases T1 and Sa. In particular, the lysozyme
mutation K147E is found to stabilize the unfolded state even
more than the folded state (1.39 vs. 0.46 kcal/mol), leading to the
experimentally observed result that the mutation is net-
destabilizing for folding (21). The strong stabilization of the

unfolded state by K147E reflects the fact that the five nearest
ionizable groups (K135, R137, R145, R148, and R154) along the
sequence are all positively charged. We expect residual charge–
charge interactions to be very important for thermophilic
proteins, which usually have prominent clusters of charged
residues (17).

Residual charge–charge interactions should be part of the
energy landscape for protein folding. It is now well known that
denatured proteins have persistent structural elements (7, 23,
24). The residual charge–charge interactions perhaps may help
stabilizing these structural elements or otherwise help the
folding process by biasing the energy landscape toward the native
state (19, 25).
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