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We describe a procedure for predicting the tertiary folds of
�-helical proteins from their primary sequences. The central com-
ponent of the procedure is a method for predicting interhelical
contacts that is based on a helix-packing model. Instead of pre-
dicting the individual contacts, our method attempts to identify
the entire patch of contacts that involve residues regularly spaced
in the sequences. We use this component to glue together two
powerful existing methods: a secondary structure prediction pro-
gram, whose output serves as the input to the contact prediction
algorithm, and the tortion angle dynamics program, which uses the
predicted tertiary contacts and secondary structural states to
assemble three-dimensional structures. In the final step, the pro-
cedure uses the initial set of simulated structures to refine the
predicted contacts for a new round of structure calculation. When
tested against 24 small to medium-sized proteins representing a
wide range of helical folds, the completely automated procedure
is able to generate native-like models within a limited number of
trials consistently.

Prediction of protein structure based on sequence information
is of great value for the interpretation of protein sequence

data. The development of such methods will significantly reduce
the number of protein structures that must be determined
experimentally to obtain a structural complement for an organ-
ism (1). The main obstacles for ab initio protein structure
prediction come from the immense number of possible confor-
mations accessible to a polypeptide chain and the complex
details of interatomic interactions. One way to partially over-
come these difficulties is to introduce restraints into the struc-
ture calculation. In the most general form, such restraints may
be expressed as Euclidean distances between spatially proximate
atoms in a protein. Building structures consistent with distance
restraints is a well-developed technique that has been used
extensively in the construction of structural models based on
NMR data (2). Torsion angle dynamics (TAD) (3, 4), the most
recent addition to the inventory of distance-based methods,
provides at present the most efficient way to calculate NMR
structures of biomolecules (2).

Without experimental distance information, distance re-
straints have to be derived from prediction. Secondary structure
prediction can be considered equivalent to the prediction of local
or short-range residue–residue distances (i.e., distances between
residues close in the sequence). Although the knowledge of
secondary structural preferences alone does not entirely elimi-
nate competing answers, it greatly reduces the number of tertiary
restraints required to specify a unique fold. Currently, the most
popular approach for predicting nonlocal contacts (i.e., contacts
between residues distant in the sequence) in a protein is the
correlated mutation analysis of multiply aligned sequences (5–
10). Although correlated mutations have some predictive power,
the results are not yet sufficient for the tertiary structure
prediction (9, 10).

In this study we explore an alternative approach to contact
prediction that is based directly on the amino acid types of the
residues and their secondary structural environments. Different
pairs of amino acids show differing propensities to be close in a
folded protein; in the literature, such propensities often are

represented by knowledge-based pair potentials (11). The main
drawback of using pair preferences to predict contacts is that a
particular pair of amino acids, regardless of its sequence or
structural context, is always predicted with the same outcome
(12). One possible way to overcome this problem is to combine
residue pair specific effects with predicted local structural
environments. Because secondary structure prediction is most
accurate for �-helices, we focus on the prediction of tertiary
contacts in helical proteins. The idea put to test here is based on
the observation that helix packing interfaces in globular proteins
consist of patches of contacts that involve residues regularly
spaced in the sequence. Instead of predicting the individual
contacts we attempt to identify the contact patches directly by
using a scoring scheme that takes into account the contributions
of all residue–residue contacts in a patch.

The feasibility of using the predicted contacts to assemble the
globular fold of helical proteins was tested on a set of 24 proteins
representing a wide range of small to medium-sized helical folds.
For each protein, 500 independent TAD runs were carried out
with the program DYANA (3) and the predicted restraints, and the
results were compared with the crystallographic or NMR struc-
tures. We found that for a majority of the targets native-like folds
were among the 500 models thus generated. Models within a rms
deviation (rmsd) of 4.5 Å were obtained for all nine small helical
proteins (50–80 residues long), and structures within 6.5 Å rmsd
were obtained for 14 of the 15 medium-sized proteins (80–100
residues long). The results were further improved by using a
bootstrapping strategy that used half of the predicted contacts,
based on the frequencies of their co-occurrences in the 500
models, to produce a new set of models. The bootstrapping
strategy enriched the population of native-like models and
enabled us to generate at least one native-like model for all
proteins in the test set.

Methods
The proposed structure calculation procedure contains four
stages: secondary structure prediction, interhelical contact pre-
diction, tertiary structure assembly, and bootstrapping. The
information flow among the four stages is summarized in Fig. 1.

Secondary Structure Prediction. The secondary structural states of
each protein were predicted by using David Jone’s PSIPRED
program (13). This program uses multiple sequence information
and takes the position-specific scoring matrices generated by
PSI-BLAST (14) as input. To prepare for these matrices, we
performed a PSI-BLAST search for each target protein against the
National Center for Biotechnology Information nonredundant
sequence database (ftp:��ncbi.nlm.nih.gov�blast�db�). The de-
fault E-value cutoff (0.001) was used, and the maximum number
of iterations was set to five.

Abbreviations: KIT, knobs-into-triangles; TAD, torsion angle dynamics; rmsd, rms deviation.
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Interhelical Contacts. The surface of a helix can be described as a
tessellation of two types of triangles: triangles formed by residues
i, i�1, and i�4, and triangles formed by residues i, i�3, and i�4
(Fig. 2). When two helices pack against each other, a side chain
from one of the helices can contact a triangular element (i.e.,
three side chains) from the second helix. This ‘‘knobs into
triangles’’ (KIT) model differs from the popular ‘‘knobs into
holes’’ model (15) in that the latter has one side chain from one
helix interacting with four side chains (i, i�3, i�4, and i�7) from
the other. Although the knobs into holes model elegantly
describes the helix packing in ideal coiled–coil structures, it is
too restricted to describe the helix packing in globular proteins
where the knobs and holes frequently drift away from their ideal
positions in the helix lattice (16). We consider two residues are
in contact if the distance between the centroids of their side
chains (C� in the case of Gly) is less than 7 Å. An analysis of the
670 pairs of helices taken from a set of representative protein
structures indicated that more than 85% of the interhelical
residue–reside contacts could be described by the KIT model,
whereas only 40% obeyed the knobs into holes rule.

A single knob-triangle pair only partially restrains the config-
uration of two helices; the two helices can still rotate relative to
each other, adopting different packing angles. We examine
whether the combination of two spatially adjacent knob-triangle
pairs provides sufficient restraints to both the translational and
rotational degrees of freedom. Residues (or knobs) separated by
three or four residues in the sequence are adjacent on the surface
of a helix. Similarly, two triangles on a helix separated by three
or four residues are also adjacent (Fig. 2). Considering that there
are two types of triangles and that two helices can interact in two
opposite orientations, there are 16 distinct ways to pack two
adjacent knobs from one helix against two adjacent triangles
from the other (Table 1). For convenience, we call the patches
of contacts thus formed KIT patches. By definition, each KIT
patch consists of two knob-triangle pairs making six residue–
residue contacts.

Using the database of 670 helix pairs, we calculated the mean
and SD of helix packing angle (�) for each of the 16 KIT-patch
types. The results (Table 1) show that the residual variation in �
(i.e., the SD) is relatively small once a KIT-patch type is
specified. Thus, if a KIT patch could be predicted, the main
features of the helix packing would have been obtained.

For each pair of helices in the protein whose fold is to be
predicted, we identified all possible KIT patches based on the 16
contact patterns listed in Table 1. The interaction energy of each
patch was calculated as the sum over contributions from all six
residue–residue contacts, with individual contribution estimated
by using the Miyazawa–Jernigan contact energy table (17). For
each pair of helices, the three KIT patches with the lowest
interaction energies were selected. These patches were used as
distance restraints only when all three had energies lower than
a predefined cutoff that corresponded to �1 SD unit from the
mean interaction energy of all possible KIT patches between
every pair of helices in the protein. If this condition was not met,
no distance restraints were assigned between the two helices.

Fold Assembly. We used the DYANA program (3) to generate
three-dimensional structures consistent with the predicted re-
straints. DYANA uses a fast recursive implementation of TAD
that was originally developed for spacecraft dynamics and ro-
botics (18). The input to DYANA consisted of a set of dihedral
angle restraints to enforce the predicted helical secondary
structures and a set of distance restraints derived from the
predicted tertiary contacts. To improve the computational effi-
ciency, we converted all residues except for glycine and proline
to alanine. The � and � angles of the predicted helical residues
were restrained to be between �58° and �56° and between �48°
and �46°, respectively. The relative weight of the restraint (W)
was taken as a function of the PSIPRED prediction accuracy (c):
W(c) � 2c�3. Thus, a residue predicted with a confidence of 3 was
assigned with the default weight of 1, and a residue with
confidence 9 had the maximum weight of 64. Such a scheme
maintains the overall rigidity of the helix but allows for more
flexibility at lower confidence regions. An upper distance bound
of 8 Å was specified between each pair of contact residues in a
predicted KIT patch. With the exception of glycine, all distance
restraints were placed on the C� atoms; C� was used as the
representative atom for glycine. All distance restraints were
weighted equally. No explicit lower bounds were assigned to the
distance restraints; the DYANA’s internal van der Waals force
field was used to remove unphysical clashes between atoms.

For structure calculation, we used the standard simulated
annealing protocol of DYANA, which consisted of 4,000 TAD
steps. One-fifth of these were performed at an initial high
temperature, followed by slow cooling during the rest of the
schedule. An ensemble of 500 structures were calculated for each
protein target, all starting from random conformations.

Fig. 1. Schematic overview of the structure prediction procedure for
�-helical proteins.

Fig. 2. Triangle elements on the surface of a helix represented on a helix
lattice. The helix lattice is created by projecting a regular helix cylindrically
onto a plane (15). The two vectors, labeled 3n and 4n, correspond to the base
vectors for the lattice where sequence separations are three and four, respec-
tively. There are two types of triangles, one formed by residues i, i�1, and i�4
(Left), the other formed by residues i, i�3, and i�4 (Right). When two helices
interact, two neighboring triangles on the first helix pack against two neigh-
boring residues on a base vector of the second helix. Each triangle has four
neighbors, represented here by the four shaded triangles surrounding the
central triangle; these neighbors can be obtained by repeating the central
triangle along the two base vectors in two opposite directions.
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Bootstrapping. Because the KIT patches were independently
predicted, some of the predicted contacts may not be compatible
with one another in three dimensions. We examined the possi-
bilities of using the modeled structures to detect such incom-
patibility, thereby, to remove some of the falsely predicted
contacts. If two predicted contacts were present in a modeled
structure, we considered that the two contacts were coexpressed
in that model. For a given contact, we counted the number of
instances of its coexpressions with other predicted contacts in
the 500 structures and used this number as a measure of the
compatibility of the contact. The predicted contacts were or-
dered by compatibility, from the highest to the lowest. Contacts
at the high compatibility end are retained in a new round of
structure calculation that follows the same protocol described
above. As we show later, this bootstrapping technique, which
relies on the information that is already available in the struc-
tural models, does lead to a noticeable improvement in the
performance.

Protein Targets. To select a set of nonhomologous helical proteins
(or protein domains) as targets, we started with the protein
domain set provided by the SCOP (19) database (version 1.48),
which contained a representative for each sequence family, and
selected all single chain protein domains in the all-� structural
class. From this list, we removed protein domains that fell into
any of the following seven categories: (i) those with fewer than
50 residues or more than 100 residues, (ii) those made of a single
helix or a helix hairpin, (iii) those missing coordinates for more
than four consecutive residues, (iv) those containing a significant
number of residues in the � conformation, (v) those with a
nonglobular fold, (vi) those with the N and C termini restrained
by another part of the protein, and (vii) those having a large
buried surface in the intact protein. Of the remaining protein
domains, a single representative was randomly selected from
each SCOP fold. The final list contains 24 targets (Table 2),
including nine small helical proteins (50–80 residues long) and
15 medium-sized helical proteins (80–100 residues long).

Results
The target proteins contained from three to seven helices and
represented a variety of topologies. Table 2 shows the accuracy
of the secondary structure prediction for these proteins. For a
majority of the targets, the positions of the native helical
segments were correctly predicted by PSIPRED. The three state
accuracy (Q3) of the prediction as compared with the secondary
structure assignment of the native structure by DSSP (20) ranged
from 68.7% to 97.7%, with an overall accuracy of 86.9%. There
were eight targets for which the number of predicted helices did
not match the number of actual helices. In four cases, the
disagreement was caused either by the omission of a small helix
(1b0nA1–68 and 1unkA) or by the overprediction of a small helix

(1a6s and 1qc7A). In three cases (1ctj, 1bmtA651�741, and 1rzl),
two adjacent helices separated by one residue were replaced by
a single continuous helix. The most significant discrepancy
between DSSP and the PSIPRED prediction occurred in 1bxm. The
native structure contains six �-helices, but the PSIPRED predic-
tion merges the third and fourth helices and misses entirely the
second helix.

An ensemble of 500 structural models was generated for each
target by using TAD and the predicted secondary structures and
tertiary contacts (see Methods). Table 2 shows the C� rmsd of the
most native-like model of the 500 trials. Note that because our
primary goal was to predict the helix packing in a protein, loop
regions in the native structure were omitted from the rmsd
calculation. To describe the frequency with which native-like
models were generated, Table 2 also shows the number of models
with less than 4.5 Å and the number of models with less than 6.5
Å rmsd from the native structure. Overall, the rate of success
correlated with the size of the protein. Structure models within
4.5 Å rmsd from the native structure were readily obtained for
the nine small helical proteins. The helix packing in the native
structure was closely imitated by the simulated structures (see
Fig. 3 for two examples).

In contrast, models with low rmsd from the native structures
were relatively rare for medium-sized targets; only three targets
(1lre, 1lbu1�83, and 1ffh2�88) had such good models. As protein
size increases, the probability of obtaining models within a given
rmsd decreases exponentially. Reva et al. (21) have suggested an
rmsd of 6 Å as a reasonable upper limit for assessing the
structural similarity between 60–80 residue proteins in the
context of structure prediction. Here, we relax this cutoff slightly
and consider a model within an rmsd of 6.5 Å (excluding loops)
from the native structure to be quite successful for a medium-
sized protein (�80 residues). Judged by this criterion, reasonable
models were obtained for 14 of the 15 medium-sized targets
(Table 2), including seven proteins that contained five or more
helices.

We applied a bootstrapping technique described in Methods to
select, among the predicted contacts, those with high compati-
bilities with other contacts, and used the selected contacts to
generate new models. For each target, the threshold for selection
was set such that half of the initially predicted contacts were
used. The results for individual proteins are listed in Table 2.
Note that in a majority of the cases, the population density of the
near native (rmsd �4.5) and native-like (rmsd �6.5 Å) models
increased. The improvement was especially noticeable for me-
dium-sized proteins. All 15 proteins had native-like models,
including five that had near native models.

Previous ab initio folding simulations seldom used proteins
with more than four helices (10, 22–24). With structural possi-
bilities multiplied, such proteins are considerably more challeng-
ing for structure prediction. The consistent generation of native-

Table 1. KIT patches and helix packing angles

k�3 k�3 k�4 k�4

N � N � N � N �

(i, i � 1, i � 4)3 42 �66.7 (25.1) 41 111.2 (22.2) 98 �151.4 (19.4) 23 27.5 (19.3)
(i, i � 3, i � 4)3 33 �77.8 (29.3) 35 115.2 (22.2) 100 �154.8 (15.5) 25 23.7 (23.2)
(i, i � 1, i � 4)4 88 �165.0 (18.0) 33 8.7 (34.9) 94 132.6 (18.5) 92 �50.2 (14.2)
(i, i � 3, i � 4)4 115 �163.4 (18.9) 34 4.7 (25.9) 121 136.0 (17.8) 152 �43.5 (14.7)

A KIT patch is defined as two knob-triangle pairs making six interhelical residue–residue contacts. The two knobs on one helix are represented by k with
a subscript indicating the sequence separation between the two knobs and their orientation relative to the two triangles. The two knobs interact with two
triangles on the second helix. There are two types of triangles, represented here by (i, i � 1, i � 4) and (i, i � 3, i � 4), respectively. Triangle pairs separated by
three and four residues are distinguished by the subscript. The combination of the different knobs and triangles give rise to 16 distinct types of KIT patches. N
is the number of times the given type of KIT patch was observed in the 670 helix pairs taken from a set of nonredundant protein structures, and � is the mean
helix packing angle averaged over the N observations (values in parentheses indicate the SDs).
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like folds for these proteins within a limited number of trials is,
therefore, a very encouraging result. For example, the best
simulated model of target 1ngr was 4.5 Å from the native

structure. As shown in Fig. 4a, the unusual Greek key topology
of the six-helix bundle structure can be clearly recognized in the
4.5-Å rmsd model, although the simulated structure appears to
be more compact than the native structure. Another interesting
example is target 1bxm for which the quality of secondary
structure prediction was poor. As illustrated in Fig. 4b, the
essential topological features of the six-helix protein were well
approximated by a four-helix model. This result suggests that the
procedure is robust enough to handle some of the errors in
secondary structure prediction.

To reduce the rate of false positives, we used a small number
of statistically most probable contacts to specify tertiary distance
restraints. With the full three-dimensional model constructed, a
complete energy evaluation that includes contributions from all
residue contacts becomes feasible. Ideally, such an energy
evaluation would pick out the most native-like structure as the
most favorable model. We tested the ability of current residue
pair potentials to distinguish native-like from non-native-like
models in the set of structures produced in this work. Three
potentials were chosen: the classic Miyazawa–Jernigan contact
energies (17), an updated pair contact potential developed by
Skolnick and coworkers (25), and the secondary structural
environment-dependent residue contact energies (ERCE) (26).
These potentials were compared by the number of targets with
at least one acceptable model (�6.5 Å rmsd from the native
structure) among the 10 most preferred structures selected by
each potential. The best result was obtained with ERCE, which
selected reasonable models for 17 targets. In comparison, the
Miyazawa–Jernigan contact energies succeeded in 12 cases, and
the Skolnick contact energies in 11. Overall, although the use of
residue pair potentials clearly increases the chance of finding

Fig. 3. The experimental (Left) and the best predicted (Right) structures of
1c5a (a) and 1nkl (b).

Table 2. Results of structure calculation for the 24 test proteins

Protein Fold NRes HDSSP HPred Q3

Initial 500 structures After bootstrapping

rmsdmin �4.5 Å �6.5 Å rmsdmin �4.5 Å �6.5 Å

Small
1gab 1.8 53 3 3 83.0 2.6 108 171 2.2 112 184
1c5a 1.52 66 4 4 90.9 3.7 13 163 2.9 31 114
1a04A150–216 1.37 67 4 4 98.5 4.3 5 47 4.0 7 83
1b0nA1–68 1.36 68 5 4 91.2 4.0 3 12 3.4 1 12
1cktA 1.22 71 3 3 88.7 4.0 6 102 4.0 5 254
1lea 1.4 72 3 3 86.1 4.2 17 147 3.8 42 257
1b0xA 1.61 72 5 5 90.3 3.7 10 150 3.4 13 95
1nkl 1.65 78 4 4 92.3 4.0 10 56 4.0 3 112
2occH 1.53 79 3 3 89.9 3.6 21 219 3.1 117 283

Medium-sized
1lre 1.13 81 3 3 93.8 3.8 3 139 3.7 11 175
1kdxA 1.12 81 3 3 82.7 5.2 0 14 4.9 0 41
1lbu1–83 1.21 83 3 3 94.0 4.1 2 128 3.0 22 142
1ngr 1.76 85 6 6 88.2 4.7 0 23 4.5 1 29
2abd 1.11 86 4 4 88.4 5.7 0 10 6.3 0 3
1unkA 1.29 87 4 3 83.9 5.7 0 10 4.9 0 26
1ffh2–88 1.30 87 4 4 97.7 4.3 3 21 3.3 22 73
1a6s 1.62 87 4 5 85.1 4.8 0 10 5.2 0 27
1ctj 1.3 89 5 4 92.1 5.1 0 7 4.4 1 13
2ezyA 1.38 89 5 5 77.5 6.3 0 3 6.0 0 4
1bmtA651–740 1.49 90 5 4 91.1 5.6 0 17 5.6 0 29
1rzl 1.54 91 6 5 90.1 5.6 0 21 5.3 0 61
1aisB1108–1205 1.73 98 5 5 95.9 7.2 0 0 5.7 0 4
1bxm 1.124 99 6 4 68.7 5.8 0 2 6.1 0 6
1qc7A 1.79 100 5 6 82.2 5.1 0 29 4.1 7 43

Protein, the Protein Data Bank code followed by chain identifier (uppercase), and if applicable, domain identifier (subscript); Fold, fold assignment
according to the SCOP database (release 1.48). Nres, number of residues in the protein or protein domain. HDSSP, number of helices according to DSSP. HPred, number
of helices predicted by PSIPRED. Q3, percentage of correctly predicted secondary structure. rmsdmin, lowest rmsd in Å from the native structure. �4.5 Å, the number
of structures within 4.5 Å rmsd from the native structure. �6.5 Å, the number of structures within 6.5 Å rmsd from the native structure.
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native-like folds, the discriminatory power of these potentials
remains very modest.

Discussion
A successful prediction of contacts between amino acids in a
protein is a crucial step toward applying distance-based methods
in ab initio protein structure prediction. We have shown a way to
predict critical contacts between �-helices that focuses on
patches of contacts defined by a helix-packing model (the KIT
model). A procedure has been developed that combines the
restraints predicted by the KIT model and predicted secondary
structures to fold �-helical proteins. Despite the simplicity of this
procedure, we were able to generate native-like models for a
majority of the testing proteins within 500 trials. For small helical
proteins, many near-native folds were generated.

In our calculation, the distance restraints were deliberately
underdetermined to avoid false positives. However, the pre-

dicted contacts are approximate and noisy by nature. The
successful generation of native-like folds for a majority of the
targets depends critically on the semirigid nature of the
�-helices. The regular geometry of helices helps to resolve some
of the inconsistency in the predicted contacts. In fact, by
prescribing a fixed distance restraint to all pairs of helices, Huang
et al. (24) were able to generate native-like models for small
helical proteins. However, their procedure is clearly insufficient
in folding larger proteins with more helices and complex topol-
ogies. Methods such as the one presented here are needed to
provide more specific distance restraints.

We have shown that TAD, which is gaining increasing popu-
larity in NMR structure calculation, can be directly useful for ab
initio folding. Earlier studies (2–4) have established that TAD is
a more efficient conformational search procedure than other
distance-based methods, including metric matrix distance geom-
etry (27–30), which has been used by several authors to fold
helical proteins (23, 24). TAD profits from a 10-fold reduction
in the number of degrees of freedom and allows larger time steps
and more adequate sampling of the conformation space (31).
The complete analysis of a 100-residue protein costs less than 1 h
of computer time on a DEC alpha workstation.

There is considerable room for improvement to our current
approach. Although the procedure has yielded valid models for
a number of small and medium-sized targets, including some
with complex topologies, the success rate for medium-sized
proteins is in general lower than that for small helical proteins
(Table 2). Furthermore, the simulated models of medium-sized
proteins tended to be more compact than the native structures.
The overcompactness was caused mostly by the wrongly pre-
dicted contacts between helices that do not interact in the native
structure. In many cases, knowing whether two helices interact
is more important than knowing how they interact. The current
procedure implements only a simple strategy, i.e., no distance
restraints are assigned to any helix pairs that do not have KIT
patches with significant interaction energies. Still to be examined
are more sophisticated ways to scrutinize spurious helix–helix
contacts, including placing a limit on the maximum number of
helices with which a helix can interact. Also sought are better
ways to optimize scoring functions for better discrimination
between native-like and non-native-like structural models.
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