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Solutions for Transients in Arbitrarily Branching Cables:
Ill. Voltage Clamp Problems

Guy Major
University Laboratory of Physiology, Oxford, OX1 3PT, United Kingdom

ABSTRACT Branched cable voltage recording and voltage clamp analytical solutions derived in two previous papers are used
to explore practical issues concerning voltage clamp. Single exponentials can be fitted reasonably well to the decay phase of
clamped synaptic currents, although they contain many underlying components. The effective time constant depends on the
fit interval. The smoothing effects on synaptic clamp currents of dendritic cables and series resistance are explored with a single
cylinder + soma model, for inputs with different time courses. "Soma" and "cable" charging currents cannot be separated easily
when the soma is much smaller than the dendrites. Subtractive soma capacitance compensation and series resistance com-

pensation are discussed. In a hippocampal CAl pyramidal neurone model, voltage control at most dendritic sites is extremely
poor. Parameter dependencies are illustrated. The effects of series resistance compound those of dendritic cables and depend
on the "effective capacitance" of the cell. Plausible combinations of parameters can cause order-of-magnitude distortions to
clamp current waveform measures of simulated Schaeffer collateral inputs. These voltage clamp problems are unlikely to be
solved by the use of switch clamp methods.

INTRODUCTION

Analytical solutions for voltage transients in branched cable
structures have been presented in Paper I (1) and Paper 11 (2)
of this series. In this paper, the solutions are used to explore
some practical problems of space clamp and imperfect volt-
age clamp. A number of important biological points will be
made using two example models: (i) a single cylinder +
soma model based on the "basal" half of the layer III cortical
pyramidal cell from Paper I, and (ii) the hippocampal CAl
pyramidal cell from Paper I. As in Paper II, two basic voltage
clamp scenarios are considered: Case I, synaptic inputs and
clamp to zero; and Case II, voltage commands in the absence
of synaptic inputs.
The simple geometry of Example 1 will be used to illus-

trate general points first, before more specific details are
considered using the complex geometry ofExample 2. Build-
ing on the examples in Paper II, further explorations are
carried out of: (a) the effects of dendritic cables and series
resistance on the rise times, peak currents and apparent decay
time constants of synaptic clamp currents, (b) some results
presented recently by Jackson (3), (c) the degree of voltage
clamp control of subsynaptic voltage swings, (d) parameter
dependence, and (e) propagation of voltage commands down
dendritic trees.
The examples are intended primarily to be illustrative, and

the explorations are by no means exhaustive. Nevertheless
some of the conclusions are likely to be robust, in particular
the demonstrations of the inadequacy of voltage clamp for
many purposes. For Lists of Symbols, see Papers I and II.
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EXAMPLE 1: SINGLE CYLINDER + SOMA MODEL

Two different aspects of voltage clamp, a and b above, are
investigated in this section, using a single cylinder + soma
model.

The model

The model has the following "raw" morphological and elec-
trical parameters: length 1 = 1000 ,um, diameter d = 10 ,um,
soma diameter ds = 20 ,um, specific membrane capacitance
Cm = 1 ,uFcm-2, specific membrane resistance Rm = 50,000
fkm2, cytoplasmic resistivity Ri = 250 fQcm, gshunt = 0 nS.
With these parameters, the electrotonic length L = 0.4472,
the soma membrane resistance Rsm = 3.98 Gfl and the soma
capacitance c, = 12.57 pF. The dimensions of the cylinder
are the same as those of the "basal" part (i.e., basal + apical
oblique dendrites collapsed together) of the two-cylinder +
soma model used in Papers I and II (based on a typical rat
layer III visual cortical pyramidal cell). The electrical pa-
rameters are also well within the biological range of interest
(e.g., Refs. 4 and 5).

Case 1: Distortion of synaptic currents by the
dendritic cable and series resistance

Both dendritic cables and series resistance can slow and at-
tenuate synaptic currents measured using voltage clamp
(e.g., Paper II, Example 2). Rall and Segev (6) and Johnston
and Brown (7) concluded that space clamp problems become
worse the faster the input time course and that it is therefore
important to consider the frequency-dependent electrical
geometry of the cell as well as the steady-state electrotonic
distance of the input site from the clamp point (see also Ref.
8). It is important to re-emphasize these conclusions given
mounting evidence that some synaptic conductances may be
extremely rapid. Rise times of the order of a few hundred
microseconds have been reported (e.g., Refs. 9-15).
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Waveform measures

A number of waveform measures are commonly used to char-
acterize experimental synaptic clamp currents, for example:
peak current, rise time (20-80% or 10-90%), half-width,
decay time constant, and half decay time. In general, 20-80%
rise times are about 2/3 as long as 10-90% rise times and are
probably easier to measure when the waveforms are noisy.
Examples of both are given below.
The clamp current waveforms produced by the analytical

solution contain a number of exponential components in their
decay phases, particularly when the neuronal geometry is
complex (e.g., Paper II, Table 2). Included in these are com-
ponents with time constants associated with the inputs (see
Paper I, Responses to Other Inputs section). Despite this,
when only one receptor type is activated, the decay phases
of both experimental and simulated synaptic clamp currents
are often reasonably well fitted by single exponentials (e.g.,
Refs. 15-18, Ref. 5 (Chapters 5 and 6); also see next section).

Spruston et al. (8), by contrast, found that single expo-
nentials are often inadequate and prefer to use half decay
times instead. Decisions about the acceptability of single ex-
ponential fits are very dependent on the criteria used. The
presence of noise in experimental traces may obscure the
presence of multiple time constants. Fits that appear accept-
able using a linear voltage axis are often revealed to be in-
adequate when a logarithmic voltage axis is used: see the
discussion on "slow bends" in the Paper I, which applies
equally well to clamp currents. Apparent time constants
slower than To can result when fitting starts too soon after the
peak, particularly in the case of distal inputs. These caveats
apply equally well to compartmental model simulations us-
ing synaptic conductances as opposed to currents, particu-
larly when the conductance is relatively small compared with
the input conductance of the cell, and when it is brief com-
pared with To.
Few studies appear to use statistical criteria in the assess-

ment of fits, but see Refs. 5 and 19 for discussions of
"fit standard deviations" (fit S.D.s), defined below, and
"goodness-of-fit" (G.O.F.) scores between target and fit
waveforms; also see Ref. 5 for a method based on confidence
intervals around waveforms. Many studies do not specify the
fit intervals used, or whether the time constants vary sig-
nificantly with changes in interval.

Using the analytical solution waveform generator pro-
grams, single exponential currents with total charge 1 pC and
various decay time constants Tsy were injected into the single
cylinder + soma model at various locations. The soma was
clamped to zero (rest) via various series resistances Rser, and
the clamp currents were recorded. Peak currents and 20-80%
rise times (t2080) were measured.

Given that experimenters do regularly quote decay time
constants, some compromises are necessary in order to gain
modelling insights into this waveform measure. Apparent
(effective) decay time constants Teff were estimated follow-
ing the standardized procedure in Ref. 15: each clamp current
waveform was fitted with a single exponential between
tpeak + 0.7 and tpeak + 20 ms, using peeling (20), and two

fitting programs, one based on the Levenberg-Marquardt and
the other on the simplex algorithm (Ref. 21, Chapter 10).
These fit intervals are somewhat arbitrary, but seemed to
work reasonably well for this model, the CAl pyramidal cell
model described in the next section, and for a CA3 pyramidal
cell model (Refs. 5 (Chapter 6) and 15). Obviously the in-
tervals would have to be adjusted in cases where the mem-
brane time constants were much slower or faster than the 50
ms used here. In the future, to allow easier comparison be-
tween studies, it may be helpful if experimenters and mod-
ellers estimate T7525 (the effective time constant over the
interval t75 to t25) or t7327 (t27 - t73), as discussed in Paper
II. The warnings in Paper I are repeated here: the time con-
stants obtained can be very sensitive to the exact interval
chosen!
The fit S.D. is calculated as

i2 1/2

S.D. = Y(Di- Fj)2 In 1)

\i=il
(1)

where iI and i2 are the indices of the first and last points in
the fit interval, n = i2 - il + 1, Di is the ith data value, and
Fi is the value of the ith point in the fit waveform. The fit
with the smallest S.D. from the target was selected (in most
cases all three methods gave very similar results). Here, fits
with an S.D. > 0.003 appeared unacceptable by eye, and
were rejected. Fits with an S.D. < 0.0003 appeared very good
by eye. It must be emphasized that these criteria apply only
to this situation: changes in the input or the model, or the
addition of noise, could make a quantitative difference. For
the current waveforms produced by the single cylinder +
soma model, most of the optimal single exponential S.D.
values were around 0.001-0.003, i.e., the fits were far from
perfect, but were plausible when inspected using a linear
current axis. When the current was inverted and a logarithmic
current axis was used, however, it was obvious in many cases
(particularly for the more distal inputs) that the interval
spanned an upwardly convex portion of the waveform: the
apparent time constant was slower than T. Many of the more
proximal inputs showed the opposite behavior: the apparent
time constant was faster than To, because the fit interval oc-
curred during an upwardly concave part of the waveform, or
slow bend (see Paper I). In all cases Teff was slower than sy.

These points are illustrated in Fig. 1. The top two panels
show waveforms plotted with linear current axes, the lower
two show the same transients using logarithmic current axes.
In the left-hand panels, a single exponential current with a
decay time constant Tsy of 2 ms and a total charge Q of 1 pC
is injected into the model at one of four locations (the soma,
and z = 100, 200, and 1000 ,um). The soma is perfectly
clamped to zero. The resulting clamp current waveforms in
Fig. 1 A (dotted lines) demonstrate the filtering effect of the
dendritic cable: the clamp current becomes progressively
more smoothed, and its peak becomes more attenuated as the
input site is moved away from the soma. The solid lines are
the optimal single exponential fits to each response: although
the fits are not perfect, it is easy to imagine that with the

470 Biophysical Journal



Analytical Solutions: Voltage Clamp Problems

Voltage Clamp of Synaptic Inputs

Dendritic Location:
A: Linear Plots

Q = 1 pC
IT = 2ms

perfect clamp to 0

Series Resistance:
C: Linear Plots
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FIGURE 1 Single cylinder + soma model, I = 1000, d = 10, d, = 20 ,um, Cm =1 .LFcm-2, Rm = 50,000 f1cm2, R, = 250 Qlcm, gshunt = 0. Synaptic
clamp currents in response to single exponential inputs, with decay time constant Try = 2 ms and total charge Q = 1 pC. Top panels, linear current axis;
bottom panels, -I x current plotted with logarithmic current axis. Dotted lines, model responses; solid lines, optimal fits, plotted only for duration of fit
interval or until current < 0.5 pA. In lower panels, fit S.D. values (sd) and effective time constants Teff (in milliseconds) are written alongside the corresponding
waveforms. (A and B) effect of distance from soma z: four input sites at 0, 100, 200, and 1000 ,um from soma. Soma perfectly clamped to zero. (C and
D) effects of series resistance (Rser) on the somatic input. Clamp to zero via four values of Rser (0, 2, 10, and 50 Mfl), indicated alongside relevant response.
Increasing both z and series resistance causes smoothing of the responses, decreasing the peak current and increasing the rise time and Teff.

addition of some noise they would appear acceptable. In Fig.
1 B, the use of a logarithmic current axis gives a worse im-
pression of the fits, but it is important to remember that any
noise would also be more evident at the tails of the plots: the
graphs span 3 log units (a factor of 1000). The fit S.D. values
are written alongside each waveform, together with the ap-
parent time constant Teff. It can be seen that Teff increases as
the injection site is moved away from the soma.

In the right-hand panels of Fig. 1 are shown the effects of
four different series resistances upon the somatic input's
clamp current. It can be seen that increasing Rser also smooths
the waveforms and attenuates the peaks (C, dotted lines). The
single exponential fits (solid lines) also appear adequate,
although when re-examined with a semi-log plot (D), it is
obvious that more than one exponential component makes a

significant contribution during the fit interval (except for the
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perfect clamp case). The imperfect clamp responses dem-
onstrate clear slow bends analogous to those seen in Paper
I, Example 2. Again, Teff grows with Rser
Compared with the single cylinder + soma model, the

more complicated geometry of the CAl pyramidal all in the
next example produced a larger number of exponential com-
ponents making significant contributions to a given response
waveform over the fit interval. The larger number of time
constants produced smoother and slower changes in the over-
all effective time constant, allowing better single exponential
fits. This phenomenon, coupled with noise, may explain why
single exponential fits of experimental "clamped" synaptic
currents (resulting from activation of one receptor type) are
so frequently found to be acceptable. It is still urged, how-
ever, that these time constants should be termed "apparent"
or "effective" time constants, because of the large number of
"real" time constants underlying them.

Systematic explorations of synaptic location, Rser and Tsy
The results of many single cylinder + soma model simula-
tions are summarized in Figs. 2 and 3. These figures are
intended to convey the effects of varying three model pa-
rameters: input location z, series resistance Rser, and synaptic
time constant sy. The morphology and electrical parameters
are held constant throughout.

In Fig. 2, sy is fixed at 2 ms. Instead of three-dimensional
plots of each waveform measure versus Rser and z, the same
data are plotted twice, once versus z for several values of Rser
(A-C on the left) and again versus Rser for several values of
z (D-F on the right).

In Fig. 2 A it can be seen that the peak current "efficacy,"
i.e., the peak measured current (peak iciamp) divided by the
peak actual input current (peak i,yn) falls off with z. Most of
the decrease is over the proximal part of the dendrite. There
is little change in efficacy over the distal half of the cylinder
(a so-called "end effect"). Increasing the series resistance
decreases the efficacy at all locations, but also reduces the
proximal-to-distal fall-off. The same data is replotted against
Rser in Fig. 2 D; increasing Rser strongly filters the peakier
proximal inputs but has less effect on the more distal inputs
which are already appreciably smoothed by the cable.
The 20-80% rise times increase with z, at first approxi-

mately linearly, then more steeply, and finally, near the distal
end (800-1000 ,gm), they level off (Fig. 2, B and E). The
"correct" value of 0 ms (for an instantly rising single expo-
nential input) is shown by the arrow. Increasing series re-
sistance causes further slowing. The effect is slightly more
pronounced for the more distal inputs and diminishes with
increasing Rser.

Similarly, effective decay time constants appear to in-
crease approximately linearly over the initial part of the ca-
ble, and then level off for most of the distal half (Fig. 2 C).
The Teff values increase approximately linearly with Rser up
to about 50 Mfl (Fig. 2 F). The rate of increase is slightly
greater for distal than for proximal inputs (the lines diverge

slightly). These straight line relationships are discussed in
Paper II (Parameter Dependence of Imperfect Clamp Im-
pulse Response section). The correct synaptic current time
constant of 2 ms is indicated by an arrow.
The effects on the peak current of the series resistance and

the distance z of the input from the soma are less than ad-
ditive. To a good approximation however, the effects of z and
Rserare additive for the t2080 and Teff values. An increase in
Rser produces a nearly constant vertical offset in the plots
against z (Fig. 2, B and C). The magnitude of the offset
decreases for larger Rser values. Likewise, increases in z pro-
duce nearly constant vertical offsets in the plots against Rser
(Fig. 2, E and F). The additional changes diminish as z nears
1000 ,um.
The effects of changing the input current decay time con-

stant are explored in Fig. 3. A range of Ty values are tested,
from 0 (i.e., an impulse or 6 function) to 10 ms. In the left-
hand panels, the waveform measures are plotted against lo-
cation for a model with Rser = 0, for a number of different
Tsr values. The right-hand panels illustrate the combined ef-
fects of z, Ty, and RSer on the Teff values.
As shown in a number of studies (e.g., Refs. 6-8), the

fall-off in peak current efficacy becomes steeper as the input
becomes faster (Fig. 3 A). All the plots show end effects. The
decrement with z for a constant current input is also shown
for reference. Because of the reciprocity relations discussed
in Paper II, these plots are the same as the decrement with
x, the recording position, of equivalent voltage commands at
the clamp point (also see Ref. 6). The clamp current in
response to a constant input at the distal end of the cable
(L = 0.447) is about 91% of the actual input current. With
-sy =1Ims, however, the peak clamp current is only 14% of
the peak input current, underlining how misleading electro-
tonic distance alone is as a guide to the effects of cables on
transients.

Fig. 3 B shows that rise times increase with sy, and this
increase is more pronounced for the more distal inputs. End
effects like those in Fig. 2 B can also be seen.

In Fig. 3 C it can be seen that effective decay time con-
stants increase with sy. The different lines are separated by
almost constant offsets. The end effects become more pro-
nounced for slower inputs. Replotting the same data against
Tsy (Fig. 3 D), shows that (except for very fast distal inputs),
Teff is approximately linearly dependent on T,y A number of
points on these two plots are missing: the corresponding fits
appeared unacceptable and had S.D. values > 0.003. The
fractional errors in Teff are smaller for the slower inputs: for
example, for the tip inputs (z = 1000), Teff/Tsy is 4.08 when
Tsy =1Ims, but only 1.3 when sy = 10 ms.
The additional influence of series resistance is illustrated

in Fig. 3 E. The lines for the soma and tip (z = 1000) inputs
from the previous panel (R,er = 0) are shown, together with
equivalent data from models with Rser = 20 and 50 MQ.
Increasing series resistance increases both the initial offset
and the rate of increase of Teff with T,y. The rate of increase
is steepened more for the somatic than for the tip input. For
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ICt= 2 msSy
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FIGURE 2 Single cylinder + soma
model: clamp current waveform meas-
ures from responses to a single exponen-
tial input with a decay time constant Ty
of 2 ms. Other parameters as before.
"Correct" values (i.e., those of synaptic
input itself) are indicated by arrows. Pan-
els on left (A-C), measures versus syn-
aptic location z. Different lines are la-
beled with the Rser used. Panels on right
(D-F), measures versus Rser. Different
lines are marked with the input location
used (symbols given in key in D). (A and
D) peak current efficacy, i.e., measured
peak clamp current (iclamp) real peak
synaptic current (isyn). (B and E) 20-80%
rise times (t2080 values). (C and F) ef-
fective decay time constants Teff: optimal
fits from peak + 0.7 ms to peak + 20 ms.
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Rser> 0, the somatic and tip effective decay time constants
converge for the slower inputs. This convergence is more
rapid the higher Rser, because filtering by the series resistance
begins to dominate filtering by the dendritic cable. The in-
fluence of Tsy on the increases in Teff with series resistance
are shown in Fig. 3 F. The proximal-distal differences shrink
with large Rser and Ty (since the cable is relatively less im-
portant). The initial intercepts increase with Ty as would be
predicted from Fig. 3 D. The rates of increase with R,e, also
steepen as Ty grows. The fractional errors in Teff, however,

are smaller for the slower inputs. For example, for the so-
matic input and Rser = 50 Mf, Teff/Tsy is 5.1 whenT,sy = 2
ms, and only 2.9 when sy = 10 ms.

In summary, this simple model shows that serious errors
in all three clamp current waveform measures can occur be-
cause of filtering by the dendritic cable and by the series
resistance. For a single exponential input, the fractional er-
rors in peak measured current and apparent synaptic decay
time constant Treff become smaller as the input time constant
Tsy is slowed. The Teff values are approximately linearly de-

.
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Effects of changing t,y
A: Peak Currents vs. Input Site
I100 It--- (Rier = 0)

FIGURE 3 Single cylinder + soma
model: clamp current waveform meas-
ures from responses to single expo-
nential inputs with different decay
time constants Tsy Other parameters
as before. Panels on left (A-C), meas-
ures versus synaptic location z, Rser =
0. Different lines are labeled with the
Tr,,y used. 8 = instantaneous charge
impulse (i.e., Try = 0). (C-F), effec-
tive decay time constants T4ff: optimal
single exponential fits from peak +
0.7 ms to peak + 20 ms. Points cor-
responding to unacceptable fits are
omitted in C-E. (A) peak current ef-
ficacy, i.e., measured peak clamp cur-
rent (icjamp) - real peak synaptic cur-
rent (isyn). D.C. steady-state response
also shown. (B), 20-80% rise times
versus location. (C), T4ff values versus
location. (D) Teff values versus TY,
Rse, = 0. Lines labeled with synaptic
locations. Note that the lines for z =
600 to 1000 ,um superimpose almost
exactly, and the 400 ,um line con-
verges with them when Ty is large. (E)
Teff values versus Ty, for three values
of Rser (indicated on right). Data for
two input locations, soma and tip
(1000 ,um), are plotted at each Rser.
The lower pair of lines correspond to
the outermost lines in D. (F) Teff val-
ues versus Rser, for three values of Ty
(indicated on right). Data for soma
and tip inputs are plotted at each Rser
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pendent on both T,,y and Rser, and their dependence on z is
roughly linear for proximal inputs, flattening off as the tip is
approached.

Although the errors will depend on the precise morpho-
logical and electrical parameters of the model, the broad
trends illustrated here will hold for a wide range of models.
A similar analysis is performed as part of the next example,
with additional explorations of the effects of changing the
electrical parameters.

Case II: Voltage steps-exploration of Jackson's
results

In a recent paper on cable analysis with the whole cell patch
clamp technique (3), Jackson presented an approximate
separation of variables solution for the clamp current into a
single cylinder + soma model with a voltage step imposed
via a series resistance. This study established a number of
results of considerable practical importance to experimenters
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attempting to voltage clamp neurones. In all cases it was
assumed that R = Rsm/Rser> 100 (i.e., the series resistance
was less than 1% of the soma membrane resistance Rsm). An
exploration of these results provides an interesting oppor-
tunity to illustrate the single-cylinder + soma special cases
of the analytical solutions presented in Paper II, (11.33) and
(II.48).

Particular results considered

The results in Ref. 3 included:
1) One waveform component in the solution, with a =

aR, has a time constant TR: RserCs, the charging time con-
stant, via the series resistance, of the soma with the dendrites
stripped away.

2) The other time constants, associated with "cable charg-
ing," should be virtually insensitive to Rser. Only aR (and TR)
should vary with Rser.

3) If the ratio of the two slowest time constants exceeds
9, this is evidence that no equivalent cylinder can account for
the observed transient.

4) The amplitude of the TR ("soma charging") term is
much larger than the other amplitudes of the other compo-
nents. The soma charging and cable charging currents can
therefore be distinguished on a practical basis.

5) The soma capacitance can be compensated by "bal-
ancing out" the "fast" part of the current transient in the
"routine" way for amplifiers such as the EPC-7 (List), using
the G-series and C-slow dials (or their equivalent). Following
this, the clamp current can be "sharpened-up" by means of
series resistance compensation.

Likely values of p.

Jackson noted that his approximations generally become
poorer for larger p0. = googsm (ratio of input conductance of
infinitely extended cylinder to soma membrane conduc-
tance). Note that his definition of p0. does not include any
somatic shunt gshunt. When his solution was tested using a
model with a soma that was very large compared to the den-
drite (ds = 20 ,um, d = 1.08 ,um, 1 = 385.6 ,um, "raw"9
electrical parameters as in the section titled "The Model"
above), the approximation was found to be a good one (not
illustrated). However, p0. for this model was only 2.

In the no-shunt case (i.e., gser finite but gshunt = 0), p. can
be written

d3/2
p= 2Nd Rm/Ri. (2)2s

It can be seen that p. is the product of two terms, one purely
morphological (d312/2d2), the other purely electrical
\IR7m7). This "root resistivity ratio" or "morphoelectric fac-
tor" was introduced in Ref. 22. With a d3/2 of 22 tLm3/2, based
on the average of the initial values for rat visual cortical layer
II/III and layerV pyramidal cells (22, Fig. 2), and a d, of 18.5
,um (the mean soma (height + width + width)/3 over all

three classes of cell in Table I of Ref. 23, d312/2d2 = 32.1
m-12. Since, for these cells, Rm is unlikely to be below
10,000 flcm2 and Rj may be as high as 400 flcm (see Refs.
4, 5, and 24), the morphoelectric factor is probably larger
than 0.5 Min2. When dendritic spines, which account for
about half the surface area of the cells, are included using a
"folding factor" F (see Paper I, Fig. 2 legend), where

area including spines
Fa=

area without spines (3)

(22), d3/2 must be multiplied by another factor of F112 which
is approximately \/2 here. Thus the minimum value for p0.
is 32.1 X \/_ X 0.5 = 22.7. A more likely value for the
morphoelectric factor is 1.414 m112 (parameters above: Rm =
50,000 flcm2, Ri = 250 Qlcm; see Ref. 5 for justification)
giving a p0. of 64.2. For comparison, the mean dendritic area
(including spines) + soma area over all three classes of py-
ramidal cell was 31.9 (from figures in Table 2 of Ref. 22).
The single cylinder + soma model introduced in the pre-

vious section has a p0. of 55.9, probably not atypical for
cortical pyramidal cells. This figure is an order of magnitude
higher than the values tested in Ref. 3. It is interesting to see
how well Jackson's assertions perform for this model, which
has, arguably, a more "realistic" p0. than those he considered.

Testing results 1-4 with the high p0. model

Using the analytical solutions in the previous two papers, and
the model described above (The Model section), a 1-mV step
command was imposed on the soma via various series re-
sistances, and the time constants and clamp current ampli-
tudes and waveforms were generated. In all cases the wave-
forms agreed extremely closely with those obtained from
equivalent compartmental model simulations. With the pa-
rameters specified above, the electrotonic length L = 0.4472,
the soma membrane resistance Rsm = 3.98 Gfl, and the soma
capacitance c5 = 12.57 pF. The discussion in this section is
limited to models with Rser < 40 MQl (i.e., R 2 100). It should
be noted that Jackson quotes a stricter criterion for his ap-
proximations to hold: R > 121/L2, in this case R > 605, i.e.,
Rser < 6.6 Mfl.

Selected time constants and amplitudes from the model are
plotted against series resistance in Fig. 4. The time constants
are shown in Fig. 4 A. The hypothetical soma-alone charging
time constant RserCs is also plotted against Rser: it can be seen
that, within the range of series resistances on the graph, it
crosses the lines for all of the time constants with an index
greater than 1. By choosing an appropriate Rser, it is possible
to obtain an Rsercs approximately midway between any pair
of neighboring time constants with n > 1 (e.g., when Rser =
2, 30, and 40 Mfl: see Table 2). This finding weakens Result
1, although RserCs is never "far" from one of the T values.

It can be seen from Fig. 4 A that T0 increases almost lin-
early with Rser: the solid line is the value of T predicted by
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FIGURE 4 Single cylinder + soma model: imperfect voltage clamp.
Clamp current for a 1 mV step command to the soma via various series
resistances Rser. (A) changes in the time constants TO, T1, T2, and T10 with
series resistance (dotted lines). All the time constants increase with RS,r, but
the faster ones level off more quickly. T0 increases linearly with series re-
sistances up to 40 Mfl. The solid line is the increase predicted by Eq. II.58.
The "soma alone" charging time constant RserCs is also plotted (long dashed
line), for reference. (B) changes in the clamp current amplitude terms with
increasing Rer. Points joined by dotted lines correspond to amplitudes with
the same index (written alongside). All except n = 0 show an initial increase,
then decrease with Rser.

the linear approximation (II.58),1 the filled circles are the
actual values calculated from the analytical solution. A sim-
ilar linear approximation, with 3i replacing ff, (except for
one of the ir values in the slope numerator) holds for Tr for

' Notation for equations used in this series of three accompanying papers
(1, 2). "II.58" refers to Eq. 58 of Paper II.

Rser < 15 MQl (error < 10%). Equivalent approximations for
the faster time constants break down at progressively smaller
values of Rser.
The slower time constants show large fractional changes

with Rser, although the changes decrease as the time constants
become faster. The ratios of the values of the time constants
with Rser = 40 to their values under perfect clamp are:
To: 3.3, T1: 2.08, T2: 1.62, T*io: 1.16. For Rser < 40, T, and
T, are never the time constants closest to RserCs, and yet they
show dramatic changes with Rser; therefore for this model,
Result 2 is clearly incorrect.

In Table 1, the two slowest time constants To and T, and
their ratio R. are listed for models with a number of different
Rser values, along with approximate values of R = Rsm/Rser,
It can be seen that two of the models with R > 100 result in
To/l > 9. However, these models do not satisfy the stricter
criterion R > 121/L2, so Result 3 appears to hold for this
model. (Note the indexing convention: n starts from 0 here,
and from 1 in Ref. 3.) The value ofL for the model, estimated
from Eq. 8 in Ref. 3 is in error by more than 20% for Rser
' 10 Mfl, but by "only" 11% for the Rser = 5 MQl case which
satisfies the stricter criterion. The equation gives meaning-
less answers for Rser above about 20 Mfl, for this model.
The amplitude terms show a complicated dependence on

Rser' illustrated in Fig. 4 B. The 0th amplitude appears to
decrease with Rser for all the cases examined. However, all
the other amplitudes show an initial increase followed by a
decrease as Rser grows. The peak amplitude is both larger and
occurs at a smaller value of Rser as n, the index of the com-
ponent, increases.

For each model, the Tn closest to Rsercs is denoted as TR.
This model time constant TR, according to Result 4, should
have a much larger associated clamp current amplitude (de-
noted as AR here) than both its flanking neighbors TR- 1 and
TR+,1 Examination of Table 2 shows that this is clearly not
the case. For example, with Rser = 5 Mfl (satisfies Jackson's
stricter criterion), subscript R = 4, A3 = 0.023 nA, A4 =

0.015 nA, and A5 = 0.010 nA. To reinforce this point, in Fig.
5 each amplitude is plotted against its corresponding time
constant using log-log axes, for eight values of Rser. The large

TABLE 1 Single cylinder + soma model: Time constant ratios

Rser R* TO T1 To/Ti Lestt
MQl ms ms

0 00 3.749 0.446 8.41 0.447
0.5 8000 3.859 0.461 8.37 0.456
1 4000 3.970 0.475 8.36 0.464
2 2000 4.195 0.505 8.31 0.484
5 800 4.891 0.591 8.28 0.496

10 400 6.069 0.703 8.63 0.343§
20 200 8.349 0.825 10.121 complex§
30 133 10.45 0.888 11.771 complex§
40 100 12.37 0.926 13.36 complex§

* RsmIRser; should be > 605 by Jackson's strict criterion (R > 121/L2). The
lower four models fail this test.
t L estimated from L = (ir/2)\/(j9- RT)/(RT- 15), where RT = To/Ti.
§ in error by more than 20% from true value of 0.447 space constants.
¶ Ratios exceeding 9 where R > 100.
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TABLE 2 Single cylinder + soma model: Amplitudes of soma charging and adjacent components

Rser Rser Cs it TR- I R- TR
R

TR+I AR+ I

MQ ms ms nA ms nA ms nA
1 0.013 9 T80.016 A8 0.086 T90.013 A9 0.074 T100.010 A10 0.058
2 0.025 6 T5 0.039 A5 0.050 T6 0.028 A6 0.041 T7 0.021 A8 0.031
5 0.063 4 T3 0.106 A3 0.023 T4 0.063 A4 0.015 T5 0.042 A5 0.010

10 0.126 3 T20.235 A20.013 T30.113 A30.007 T40.066 A40.004
20 0.251 2 T1 0.825 Ai 0.010 T2 0.252 A2 0.004 T3 0.117 A3 0.002
30 0.377 2? T1 0.888 A1 0.005 T20.258 A20.002 T30.118 A3 0.001
40 0.503 1? TO 12.37 AO0.015 T1 0.926 A1 0.003 T20.262 A2 0.001
* Subscript R, index n of time constant T, closest to RserCs, the "soma-alone" charging time constant. Not to be confused with R = Rsm/Rser. (? indicates
>40% error between TR and RserCs).
t AR Corresponding clamp current amplitude term (in response to a 1-mV somatic voltage command). First three models satisfy Jackson's "strict" criterion
R > 121/L.

solid triangles are AR plotted against Rsercs. The Rser value
corresponding to each of these is the same as that of the
nearest dotted line. It can be seen that in every case shown,
rather than standing clearly above its neighbors, as suggested
by Jackson's results, AR actually falls between AR- and
AR+1. During an experiment it would be hard to distinguish
the soma charging component of the response of a cell like
the one modelled. Because the soma is much smaller than the
dendrites in this case, perhaps this problem is not as serious
as it may at first seem. A more thorough assessment should
involve fits to noisy waveforms from similar models.
The clamp current waveforms corresponding to the com-

ponents plotted in Fig. 5 A are shown in Fig. 5 B. These
transients were obtained by summing the first 34 components
(down to Trn < 1 pts) and the steady-state current given in
(II.48). The waveforms with Rser s 2 Mfl superimpose well.
However, as Rser increases much above 5 Mfl, the early parts
of the transients become visibly reduced. The series resis-
tance at which the current begins to deviate substantially
from the perfect clamp case is about the same as the 6.6 Mfl
predicted by Jackson's stricter criterion (R > 121/L2) for the
break-down in his approximation.

Slow capacitance compensation

It is also suggested (Result 5) that slow capacitance com-
pensation and series resistance compensation can be per-
formed in the "routine" way for amplifiers such as the EPC-7
(List, Darmstadt, Germany). For the purposes of the ensuing
discussion, it is assumed that any pipette capacitance is neg-
ligible or has been accurately compensated. The slow ca-
pacitance compensation circuitry of EPC-7-like amplifiers
(e.g., Ref. 25, Fig. 1.14)) is designed to cancel the current
charging the lumped membrane capacitance of an isopoten-
tial cell. For a step voltage command, this is an exponentially
decaying current with amplitude Vstep/Rser and time constant
RserCcell, where Ccell is the cell capacitance. By adding an
amplified, single RC low-pass filtered version of the com-
mand voltage, via a capacitor, to the current injected into the
pipette, such circuitry effectively subtracts a single expo-
nentially decaying component from the clamp current, when
the voltage command is a step. The amplitude of the sub-
tracted current is VstepGseries, where Gsenies is the setting of

the G-series dial on the amplifier. The time constant of the
subtracted current is Cs1ow/Gseries. where Cslow is the setting
of the C-slow dial (Ref. 26, pp. 45-46).

According to Ref. 26, the fast transient cancellation pro-
cedure is:

(i) Starting with C-slow set at a non-zero value, increase
the G-series dial until there is no "jump" between the baseline
and the initial current. This ensures that Gseries = gser-

(ii) Adjust C-slow "to reduce the overall size of the tran-
sient" (presumably avoiding "undershoot").

(iii) Turn up the %-COMPensation control, possibly fine
tuning the C-slow and G-series settings.

It is also suggested that it is a good idea to observe the
transients at "high time resolution," perhaps with 10-kHz
filtering.

Simulations of the first two stages of the process are de-
picted in Fig. 6, for the model with Rser = 5 MQl. Panel A
shows the responses plotted at a reasonably fast time base,
with a sample interval of 0.1 ms (sample rate, 10 kHz). The
uncompensated model response is the dotted line labeled "0."
The other waveforms are obtained by subtracting from this
a single exponential component with amplitude 0.2 nA (cor-
rect G8 = 200 nS) and time constant RserCsiow, for a
number of values of Csiow. Cslw = 100 pF produces obvious
undershoot at early times, and is therefore clearly an over-
compensation of the soma capacitance.
As C-slow is decreased, the first waveform demonstrating

no obvious undershoot is the one with C.,,. = 40 pF. Un-
fortunately, this is approximately three times the correct
soma capacitance of 12.57 pF. Closer examination of the
Csl.w = 40 waveform reveals a kink right at the start: perhaps
grounds for rejection. If C-slow is decreased still further, the
first waveform not showing a kink is the one with Cslo =
30 pF, still too high.

These overestimates in c, are potentially serious, not least
because they will lead to underestimates of the soma resis-
tance Rsm ( = Tm/cs) and hence p, the soma-to-dendritic re-
sistance ratio. This may be one explanation for the surpris-
ingly low p of only 1.6 quoted in Fig. 3 of Ref. 3 for a
hippocampal CAl pyramidal cell. The c, quoted for this cell
was 14.9 pF, whereas that of the CAl pyramidal cell model
used below and in the two previous papers was only 6.4 pF.
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FIGURE 5 Single cylinder + soma model (impei
rameters as before: responses to 1 mV step commz

amplitude versus time constant plot (note logarithr
current amplitude term is plotted against its time
values of Rser. Points corresponding to the same wave
different Rser values are joined with solid lines (th
ponent appearing below, in small type). To guide 1

ponents from the same waveform are joined with
resistance M[Q appearing to the left (in large type).
the amplitude of the component with the time const
is plotted against Rse,c, (large black triangles), with
Mfl point, where the amplitude is set to be the averag(

RserCs appears to be mid-way between T1 and T2). Thi
each of these is the same as that of the nearest dottl
Rser cause the amplitudes of components with interr
to increase above those of the perfect clamp case.

decrease with Rser and with n. In no case is the am]
larger than the amplitudes of the flanking terms (B
forms of the same models. The transients from the
lowest Rser values superimpose extremely well. As
early parts of the waveforms diminish in size, the
clamp becoming obvious for Rser> 5 Mfl. Note tl

mV/Rser,

mplitudes Other explanations may include dendritic amputations due to
slicing, the young age of the rats (1 week), incorrect as-
sumption of cylindrical morphology (see PaperI, Fig. 2), or
problems associated with fit nonuniqueness (e.g., Refs. 4
and 5).

Over-estimating c, could have other unfortunate conse-

quences. In Fig. 6 A, the peak current with Cs,,, = 40 occurs
at 0.6 ms, whereas the peak for Cs,,, = 12.57 is earlier, at
0.2ms. Whether or not additional series resistance compen-
sation is carried out, the Csl,w = 40 peak will always be after
the Csl,0w = 12.57 peak. When attempts are made to fit model
responses or multiple exponentials to experimental data, a
decision has to be reached about when to start the fit interval.

If direct fitting of model responses to the data is being
attempted, it is necessary to start at the peak, or just after

ude of nearest ; (e.g., when the waveforms have positive early components
as judged from semi-log plots), because in response to pos-

10 itive step commands, all the amplitude terms in the clamp
current analytical solution are positive (see Paper II, com-

forms ments below Eq. 11.47). Failure to do this may result in se-
rious errors in the estimated model parameters as the fit pro-
gram attempts to "drag down" the early parts of the model
response.

At first sight it should be possible to circumvent this prob-
lem by fitting exponentials to some or all of the time course
of the transient, allowing negative amplitudes. If, however,
as with the Rser = 2 model considered above (see Table 2),
Rsercs is roughly midway between two Tn values, the slow
capacitance compensation procedure will have contributed
another distinct (negative) exponential component to the
waveform. At best, all a good exponential fitter can do is to
"uncompensate" such target waveforms: if it correctly ex-
tracts one time constant of CsiowRser (where Rse, is the re-
maining, uncompensated series resistance) and a correspond-
ing amplitude of - Vstep/IRser, then little will have been

15 20 accomplished by the slow capacitance compensation. At
worst, the fitter might misleadingly combine a number of
components which should really be distinct.

rfect clamp), same pa- For the above reasons, it seems prudent to use intervals
and. (A) clamp current after the peak with both direct and multiexponential fits. It
mnic axes). Each clamp
constant, for different follows that accidentally setting C-slow too high will lead to
-form component using later intervals than with the correct setting, and hence less
ieindex n of the com- waveform information to constrain the fit.
the reader's eye, com- It is possible that the overestimation of cs in Fig. 6 A was
dotted lines, the seriesFortea vlune oe Rseries a result of not using a fast enough time base. The bandwidth

ant 'R nearest to RserCs of the EPC-7 is 100 kHz (see Ref. 26, preliminary specifi-
the exception of the 40 cation at end). The simulations were repeated, sampling at
;eofA1 andA2 (because 200 kHz and slow capacitance compensation was carried out
e value of R,r used for as before. The first 0.2 ms of selected waveforms are plotted
eid line. Low values of
edittime. onstantesof in Fig. 6 B. At this extremely fast time base, it can be seenmediate time constants
Otherwise, amplitudes that the Cslow = 30 waveform actually does demonstrate
plitude AR of TR much undershoot after all, but the current is already positive by
clamp current wave- t = 0.04 ms. The first nonundershooting waveform now is
four models with the with Cslw = 15 pF, only a 20% overestimate of the correct
Rser increases, so the
deviation from perfect value.
hat initial current = I Providing the fastest possible time base is used, overes-

timation of csmay largely be avoidable. However, given the

-M4 --

. .

.

478 Biophysical Journal

I



Analytical Solutions: Voltage Clamp Problems

A: Sample Rate 10 kHz

series= Rser = 200 nS

o.

0.5 1.0
Time [ms]

1.5 2.0

B: Sample Rate 200 kHz

12.57 _

lo . C,LOWM 30 pF

......7 7.

existence of an exact analytical solution for this situation,
incorporating both soma capacitance and series resistance,
perhaps it would be better to adopt a different approach: that
of direct fitting without slow capacitance compensation. It
may still be advantageous, however, to perform series re-
sistance compensation. In order to do this without C-slow
compensation on an EPC-7, the G-series dial must be set
correctly, and then C-slow must be turned down as low as
possible before turning up the %COMPensation dial.

It is not surprising, on purely theoretical grounds, that the
approach advocated by Jackson should run into trouble in
some cases. As discussed in Paper II, the components of the
cell linked in parallel at the end of the series resistance can
be separated. Each component can be individually subjected
to the voltage command step. When Rser >0, the sum of their
clamp currents is not equal to the clamp current into the intact
cell. Because of this nonsumming interaction, it is not pos-
sible to compensate for one cell component (e.g., the soma
capacitance) by a purely subtractive procedure like that con-
sidered above.

Attempts to separate the soma capacitance from the prox-
imal dendritic capacitance may be inappropriate for another
reason: it is quite often difficult to define precisely where the
"soma"9 ends in many classes of neurone, for example,
"thick" layer V visual cortical pyramidal cells (23) and CA3
pyramidal cells in rats (Refs. 5 (Chapter 6) and 15). More-
over, as discussed in Paper II (Parameter Dependence of
Imperfect Clamp Impulse Response section), the distorting
effect of Rser depends on the electrical and morphological
parameters of the model, being worse when more dendritic
capacitance is electrically "close" to the soma, e.g., when Ri
is relatively low. "Effective" (soma + proximal dendritic)
capacitance blends imperceptibly into "shielded" (distal den-
dritic) capacitance in a way that depends on the model pa-
rameters, and the time course and location of the input (Ref.
5, Chapter 6).

0.00 0.05 0.10 0.15 0.20
Time [ms]

FIGURE 6 Subtractive capacitance compensation illustrated for the
single cylinder + soma model with a series resistance of 5 Mfl. The
effects of adjusting the G-series and C-slow dials on an amplifier such as

the EPC-7 are simulated, for a step command, by subtracting from the clamp
current response a single exponential, with amplitude VstepGseries and time
constant Csiow/Gseries. Each trace is marked with the Cs0ow used. The un-

compensated response is the dotted line marked "0": its initial current is
Vsiep/Rser = 0.2 nA. (A) sample rate of 10 kHz. The correct setting, with Csiow
= Cs = 12.57 pF, is the dot-dashed line. Turning C-slow up to 100 pF (lower
dotted line) causes an obvious undershoot in the response, suggesting over-

compensation. Without prior knowledge of cs it is hard to say what the
correct adjustment is: the setting which just avoids undershoot at this sample
rate (10 kHz) is 40 pF (solid line), although there is a slight kink in the rising
phase. The slight undershoot with 50 pF might be missed with a slower
sample rate. (B) Sample rate of 200 kHz. Note expanded time axis. The
C-slow setting just avoiding undershoot is now C5Iow = 15 pF (solid line).
Cslow = 20 pF shows slight undershoot (long dashed line: first sample point
only) and undershoot can now be seen clearly with C510w = 30 pF (lower
dotted line).

Other problems

The methods in Ref. 3 suffer from serious additional prob-
lems offit nonuniqueness, common to all techniques involv-
ing the matching of noisy experimental transients to a model
waveform (e.g., Ref. 5, Paper I). This fit nonuniqueness is
particularly bad with unconstrained exponential fitting, a

technique in common use in the field of passive neurone

modelling. When no additional constraints are imposed on

the values that the amplitudes and time constants can take,
a range of "acceptable" fits can be obtained with L taking
values anywhere between 0 and oo (G. Major, unpublished
observations). To some extent this problem is overcome by
imposing other constraints such as plausible limits on the
parameters (e.g., Ref. 5) or amplitude and time constant ra-

tios (see Paper II). In addition, recourse to direct fitting can

build in all the constraints inherent in a particular model,
and hence can restrict the range of acceptable parameters
considerably.
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FIGURE 7 CAl Pyramidal cell. The
camera lucida drawing from Paper I,
Fig. 2, is reproduced here, with the
seven input sites in Table 3 marked ap-
proximately (segment numbers in pa-
rentheses as follows). L, apical tuft
(110); *, apical trunk (149); *, apical
oblique (146); *, apical trunk (137);
A, apical trunk (68); E proximal basal
(16); 0 mid basal (44). Only the full
geometry was considered (with all
spines collapsed). The electrical pa-
rameters were as in Paper I: Cm = 0.7
,uFcm -2, Rm = 10,000 flcm2, Ri =
200 [cm and gshun, = 15 nS. The input
current was the same as in Paper I, Fig.
6: total charge 0.1 pC, double expo-
nential function, T;y = 0.1 ms, Tr'2 =
2 ms. To obtain each waveform, this
current was injected into the indicated
site, and the voltage at the same point
was recorded, either with somatic volt-
age recording or with the soma per-
fectly voltage clamped to zero. (A) in-
put site voltage transients at the soma
and at three positions on thin dendrites.
The early parts of the dendritic tran-
sients are virtually unaffected by
clamping. (B) the same waveforms out
to later times, with the voltage axis ex-
panded. At late times, return to base-
line is more rapid with voltage clamp.
(C) input site voltage transients at three
positions along the apical trunk (a rel-
atively thick structure) compared with
that from the apical tuft. Again, clamp-
ing hardly affects the peaks, but does
speed the return to baseline. An excep-
tion is the response in segment 68
which is only 0.019 A from the soma:
it is so close electrically that under
voltage recording, the response is vir-
tually the same as the somatic response
to a somatic input (shown in A and B).
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In summary, the procedure outlined by Jackson (3) should
be adopted with some caution, as stated by that author, when
it is suspected that p. is high. Values of the order of 50 or
more are likely to cause problems with most pyramidal cells,
although a more systematic assessment needs to be per-
formed.

EXAMPLE 2: HIPPOCAMPAL CAl PYRAMIDAL
CELL

In this section, the hippocampal CAl pyramidal cell intro-
duced in Paper I is modelled using the voltage clamp and
voltage recording waveform generator programs, to explore
further the following issues: (a) voltage clamp control of
subsynaptic voltage swings, (b) cable and series resistance
effects on synaptic clamp currents, (c) parameter depen-
dence, and (d) propagation of voltage commands.

The morphology of the cell is shown in Paper I, Figs. 2
(full model) and 4 (cartoon representation). The default elec-
trical parameters are (as before): Cm = 0.7 guFcm-2, Rm =

100, 000 flcm2, Ri = 200 [1cm, 9shunt = 15 nS (loosely based
on fitting the model to the real cell's short pulse response: see
Paper I).

Case 1: Clamping synaptic inputs

Causes for concern

Because of the interest in long-term potentiation, a large
number of voltage "clamp" studies have been undertaken on
the Schaeffer collateral inputs onto hippocampal CAI py-
ramidal cells (for example, see Refs. 17, 27-32). Preliminary
simulations of mossy fiber synaptic conductances onto a
CA3 pyramidal cell from a 19-day-old rat (Refs. 5 (Chapter
6) and 15) have shown that even these relatively proximal
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TABLE 3 CAI pyramid Input sites

Full model Cartoon

x (Am) x (Jim)
Location Segment (no spines*) (spinest) X1 (A) Segment x (gm)

Proximal basal ([1) 16 14.9 30 0.092 2 65
Mid-basal (0) 44 109.5 200 0.247 3 214
Apical trunk (A) 68 16.6 20 0.019 ND§
Apical trunk (-) 137 5.9 10 0.113 ND§
Apical trunk (*) 149 80.3 127 0.230 ND§
Apical oblique (0) 146 78.5 158 0.30011 26 0
Apical tuft (A) 110 116.9 200 0.648 19 81
* Actual measured physical distance from proximal end of segment in real neurone.
: Distance along segment in model after spine collapse procedure, i.e., measured distance X F2'3, where for a given segment, F is the area with spines divided
by area without spines.
¶ Total electrotonic distance from soma.

§ ND, not done.
11 0.285 in cartoon.

inputs may suffer considerable attenuation and smoothing
due to dendritic cables. Moreover, because of the large size
of these cells, even quite low series resistances can produce
serious additional distortions. CAl pyramids and CA3 pyr-
amids are similar in many respects, both in their morphology
and their electrophysiology. The majority of Schaeffer col-
lateral synapses onto CA 1 cells occur at locations more distal
than the mossy fiber zone in CA3. One would therefore ex-

pect voltage clamp to be even worse for Schaeffer collateral
inputs than for mossy fiber inputs.

Subsynaptic voltage transients

Seven dendritic input sites, marked on the camera lucida
drawing in Fig. 7, were selected (see legend and Table 3 for
details). The same double exponential current as used in Pa-
per I was injected into each site in turn, directly into the
dendritic shaft (not into a spine). The current parameters
were: total charge 0.1 pC, Tsyr 0.1Ims, T'y2 2 ms. In Paper I,

Fig. 6, it was shown that this input, when injected into the
apical oblique site (0), gave rise to an 120 ,gV peak synaptic
potential at the soma. This is comparable to the typical quan-
tal amplitude of Schaeffer collateral excitatory post synaptic
potentials (EPSPs) recorded with sharp electrodes (33).

Local voltage transients were recorded at the injection
("subsynaptic") sites, under two conditions: (i) voltage re-

cording at the soma, with a shunt (as in Paper I), and (ii)
perfect voltage clamp to zero at the soma.

In this model, (i) is also equivalent to imperfect voltage
clamp to zero via an Rser of 66.6 MQl, since gshunt= 15 nS.
See Paper II (Comparison to Voltage Recording with a Shunt
section) for an explanation.

It is interesting to compare the waveforms: at early times,
except in the case of very proximal inputs (into the soma and
into segment 68 on the apical trunk), there is virtually no

difference between the transients produced under the two
conditions. Removing the shunt also has virtually no effect
on the peaks (not shown). Considering the imperfect clamp
interpretation of (i), it can also be seen that series resistance

compensation (i.e., reducing Rser from 66.6 Mfl to zero) will
have a negligible effect on peak subsynaptic voltages.

Inputs of 0.1 pC into thin segments (Fig. 7 A) produce
large transients ofbetween 5 and 25 mV at the input site. (The
diameters, with spines collapsed, were: proximal basal (seg-
ment 16) and apical oblique (segment 146) = 0.78 ,gm, apical
tuft (segment 110) = 0.60 ,um). (If input spines had been
included explicitly in the model, the spine head transients
would have been even larger than these shaft voltage swings.)
Compared with proximal inputs, distal inputs produce tran-
sients that are both bigger and peak later: the "escape route"
for charge redistribution is both longer and narrower; more
charge is bottled up for more time. At late times ( > 20 ms),
voltage clamp does cause a more rapid decay to baseline (Fig.
7 B) than that experienced under voltage recording. If the
shunt is removed, the final decay is even slower (not shown).

If the cartoon or any other simplified representation is used
to model subsynaptic voltage transients, the input segment
must not be collapsed together with any others. If it is, the
local voltage swing will be too small, because of the reduced
local input resistance. Moreover, the clamp will appear to be
more effective, because the attenuation of the voltage en
route to the soma is less than in the full model, resulting in
more effective voltage feedback between the clamp amplifier
and the input site. Fortunately, however, the clamp current
from the cartoon representation provides a good approxi-
mation to that from the full model (see below). In fact, if
Rall's 3/2 rule applies, the clamp current from the branched
model is identical to that from the equivalent cylinder
representation.

Fig. 7 C shows the responses at three stimulation sites
along the apical trunk, a wide structure (diameters with
spines collapsed: segment 68 = 3.8 ,um, segments 137 and
149 = 3.2 ,um). Under voltage recording, the soma response
to a somatic input in Fig. 7 B is almost indistinguishable from
the transient recorded from segment 68 in response to an
input at the same point in segment 68 (Fig. 7 C), only 0.019
space constants away from the soma. The apical tuft response
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TABLE 4 CAI pyramid waveform measures (full model only)
Input site Vpeak* Efficacy tpeak fl Vdt Efficacy tioso Half-width

,uV % ms mVms % ms ms
A. Postsynaptic potentials (somatic voltage recording with shunt)
Soma 385 100 1.0 4.80 100 0.5 5.4
Proximal basal (D) 220 96 2.9 4.62 96 1.3 13.5
Mid-basal (0) 191 50 5.6 4.50 94 2.9 16.0
Apical oblique (0) 123 32 9.6 4.15 86 4.9 26.5
Apical tuft (AL) 75 19 20.4 3.55 74 10.1 40.9

Input site ipeak Efficacy tpeak Charge: Efficacy tlo9o Half-width

pA % ms pC % ms ms
B. Voltage clamp currents
Soma 42.7 100 0.3 0.100 100 0.2 1.8
Proximal basal (O) 17.2 40 1.2 0.096 96 0.6 4.4
Mid-basal (0) 11.9 28 3.4 0.094 94 1.8 6.7
Apical oblique (0) 6.3 15 5.5 0.086 86 2.8 11.4
Apical tuft (A) 2.9 7 12.1 0.074 74 6.0 22.1

* Glossary: Vpeak, peak soma voltage; ipeak, peak clamp current; tpeak, time to peak; t1ogo, 10 to 90% rise time; half-width, width at half maximum amplitude.
t Charge transferred to soma = time integral of current waveform.

from Fig. 7 B is also included for comparison. Only segment
68 shows a marked difference in its peak response between
voltage recording and voltage clamp. The other trunk seg-
ments, although producing smaller transients than the thinner
segments in Fig. 7 A, show the same pattern: again the peak
voltage swing is virtually unaltered by the clamp, but at late
times decay to baseline is more rapid.

In order to achieve good agreement between analytical
solution and compartmental model waveforms, extremely
fine compartmentalization was required in the latter. This is
because voltage transients travelling along a cable attenuate
very steeply when one end is clamped. An intuitive expla-
nation is that the clamp condition maximizes the degree of
charge redistribution, and hence the extent to which the cable
is "experienced" by the transient.
The important conclusion to be drawn from these simu-

lations is that with fast synaptic currents, voltage clamp is
surprisingly ineffective at controlling the local membrane
potential at most input sites, except those extremely close to
the clamp point. This conclusion is robust with respect to the
electrical parameters (see below).

Synaptic potentials and "synaptic" clamp currents

In Fig. 8, the waveforms at the soma resulting from the
somatic and non-trunk inputs are compared for voltage
recording (with a shunt, see above) and perfect somatic volt-
age clamp. Along with the waveforms from the full model
are those from the cartoon, with injection sites as in Paper
I, Fig. 4, at points electrically equivalent to those in the full
model (i.e., at the same electrotonic distance from the soma,
except for the input into the uncollapsed apical oblique,
whose origin has been shifted slightly toward the soma in the
cartoon). In Fig. 8 A are shown synaptic potentials obtained
from the models under voltage recording. The corresponding
clamp currents, with the soma voltage perfectly clamped to
zero, are shown in Fig. 8 B. Notice the expanded time scale
in B: the clamp currents are appreciably faster than the syn-
aptic potentials.

It can be seen that there is close agreement between the
waveforms generated by the two models, although the car-
toon output (except the somatic EPSP) is slightly larger and
peakier, as if the inputs were a little closer in electrical terms
to the soma. The transients are virtually identical to equiv-
alent compartmental model output (with 99 compartments/
space constant). As in Paper I, the cartoon ran faster than the
full model, by a factor of over 200.

With these electrical and morphological parameters, the
dendritic trees are capable of substantial smoothing and at-
tenuation of the synaptic inputs. Table 4 lists the following
waveform measures for the different full model transients:
peak voltages and currents, time integrals (i.e., charge trans-
fer in the case of the currents), relative efficacies (these val-
ues, divided by the corresponding measure for a somatic
input), 10-90% rise times and half-widths. In the most ex-
treme case, the apical tuft input, the 10-90% rise time of the
current has been slowed from 0.2 to 6.0 ms, the peak current
is reduced to 7% of its original value at the synapse, and the
charge transferred to 74% of that of a somatic input. For the
corresponding synaptic potential in the voltage recording
case, the 10-90% rise time is slowed from 0.5 ms (somatic
input) to 10.1Ims, and the peak voltage efficacy is 19%. The
time integral relative efficacies are the same under voltage
clamp and simple voltage recording, and are identical to the
steady-state relative efficacy (e.g., see Ref. 34, pp. 779-780,
and Paper I, Appendix 3, Eq. I.111). However, the peak volt-
age efficacies with voltage recording are always greater than
the peak current efficacies under voltage clamp: as explained
above, the filtering effects of the cable are experienced more
strongly with voltage clamp than with voltage recording.

Parameter dependencies of subsynaptic voltage and clamp
currents

The results in Paper II, (Parameter Dependence (Perfect
Clamp) section) suggest that the conclusions in the previous
two sections will depend only weakly upon the parameter
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FIGURE 8 CAl pyramidal cell, full model and cartoon compared: re-
sponses at the soma to currents injected at the soma or at the non-trunk
locations in Table 3, under voltage recording with a 15-nS shunt (A), and
perfect voltage clamp to zero (B). For the cartoon representation, the sites
of the non-trunk inputs are marked with the same symbols as in Table 3 and
Paper I, Fig. 4. Note faster time scale in B. As before, total charge = 0.1
pC, double exponential function, Ty, = 0.1 Ims, Tsy2 = 2 ms. Waveform
parameters are listed in Table 4. With the electrical parameters used (see
previous figure legend), the dendritic cables have a marked attenuating and
smoothing effect on the inputs. The clamp current transients are both briefer
than the corresponding synaptic potentials under voltage recording, and
have lower peak efficacy. Note that the clamp current transients under im-
perfect clamp with gser = 15 nS (Rser = 66.6 MQ) would be the same as
the waveforms in A multiplied by -15 nS.

to changes in Rm (see also Refs. 35 and 36 (pp. 41-42)): both
the peak subsynaptic voltage swing and the peak clamp cur-
rent are virtually unchanged. This suggests that maneuvers
intended to increase Rm to improve the efficacy of voltage
clamp are likely to be of limited success (as pointed out in
Ref. 8).

Halving Ri to a more "traditional" value of 100 flcm re-
duces the peak voltage swing and increases the peak clamp
current. Both waveforms are also appreciably faster (as ex-
pected). However, the cable still has an appreciable filtering
effect (compare the clamp current with the actual synaptic
current in Fig. 8 B, marked "soma"). Again, voltage clamp
hardly reduces the peak subsynaptic voltage swing when
compared with voltage recording (not shown). A doubling of
Cm also produces qualitatively the effects predicted from the
impulse response dependencies: reduced amplitudes and
slower waveforms.2 Changes in gshunt of course have no ef-
fect, because the soma is perfectly clamped to zero. With
voltage recording at the soma, however, changes in gshunt
alter the final decay (but not the early parts) of the subsyn-
aptic waveforms: for example, see Fig. 7, where in effect the
shunt is varied between 15 nS and infinity (perfect voltage
clamp).
The parameters selected span much of the biological range

of interest (e.g., Refs. 4, 5, and 15), and the conclusions about
the inadequacy of voltage clamp apply in every case. It is
quite possible that Ri is even higher than the 200 Qlcm used
as a default here (e.g., Refs. 4, 5, 24, and 37). A higher Ri
would lead to more cable smoothing of the clamp current and
to less effective clamping of dendritic input sites.

Effects of series resistance on measured clamp currents

As discussed in Paper II, and in Example 1 above, cable
effects and series resistance effects compound one another,
and are dependent on: (i) the detailed morphology, (ii) the
electrical parameters, (iii) the input kinetics, and (iv) the
input location (see also Ref. 5 (Chapter 6)). Because of this,
detailed models ofeach particular experimental system need
to be made in order to assess the likely errors introduced by
the combination of poor space clamp and imperfect voltage
clamp.

Rm: all of the time constants and amplitudes of the fast ex-
ponential components in the synaptic voltage swing are rel-
atively insensitive to Rm, even after inclusion of the extra
factors resulting from convolution with the input function.
The faster time constants are roughly proportional to Ri, so
although the impulse response amplitudes are independent of
Ri, the double exponential response amplitudes are not: this
is clear from inspection of Eq. 1.52.
The results of making 2-fold changes to each of the elec-

trical parameters in turn are illustrated in Fig. 9 for the apical
oblique input under perfect somatic voltage clamp. The plots
confirm that the early parts of the responses are insensitive

2 Interestingly, the first millisecond or so of the subsynaptic voltage wave-
forms from two of the models, that with Cm = 1.4 and that with R, = 100,
superimpose exactly. Both models have the same R, /Cm ratio. At very early
times, virtually no charge has reached either end of the input segment, so
it can be approximated by an infinite cable. Rearranging Eq. 3.48 of Ref.
36, which gives the charge impulse response of an infinite cable, setting
X = 0 (stimulating site = recording site) and Q = I (unit charge), we obtain

R1/2
V C 3/2d3/2r3/2t l/12 e

When t << Tm, the exponential term simplifies to 1. It can be seen that models
with the same R I/Cm ratio will give the same sub-synaptic voltage response
over these times, and this will also be true after convolution with the input
function used here.
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FIGURE 9 CAl pyramidal cell full model: illustration of the parameter
dependence of the apical oblique responses from the previous figures, under
perfect somatic voltage clamp. Four models are compared: the "default"
model (solid line) with the electrical parameters shown in A, and three other
models, each with one parameter altered by a factor of 2 from the default:
Rm halved (dotted line), R, halved (dashed line), Cm doubled (dot-dash line).
(A) voltage transients at input site (segment 146: 158 pAm). (B) clamp cur-

rents recorded at the soma. Changing Rm has virtually no effect on the
waveforms. Halving R, speeds both responses, reducing the peak voltage
swing and increasing the peak clamp current. Doubling Cm slows and at-
tenuates both responses. Interestingly, the very early parts of the Cm = 1.4
and the Ri = 100 voltage responses in A are nearly identical (see Footnote
2 for explanation).

A preliminary attempt at this has been carried out for sim-
ulated Schaeffer collateral inputs into the CAl cell model.
Two input sites were selected: a very proximal location on

the apical trunk (segment 68: Fig. 7, A), and the apical ob-
lique site in previous figures (half way along segment
146: 0). The first is closer to the soma than the vast majority
of probable Schaeffer synapses, and is intended to represent
the best plausible case for space clamping. The second is
intended to represent a typical Schaeffer collateral input.

Many other Schaeffer inputs arrive even further (electrically)
from the soma, and will consequently suffer even more cable
distortion.
The input current parameters were as above: slower cur-

rents would lead to less severe and faster currents to more
severe distortions (see Example 1). The default electrical
parameters were those used above, except that gshunt was set
to zero, instead of 15 nS, to mimic more closely the probable
situation with whole-cell recording (e.g., Refs. 5 (Chapter 6),
38-40). A range of values of series resistance between 0 and
100 Mfl were explored. In addition, a model with a more
"traditional" value of Ri of 70 flcm was tested, as well as
one with a lower Rm of 40,000 flcm2. The latter model had
a Tm of 28 ms which is consistent with those recorded
from adult guinea pig CAl neurones at rest using the nystatin
patch method (40). It can be seen from Fig. 9 B that raising
Cm from 0.7 ,uFcm -2 would lead to increased distortion of
the clamp currents with perfect clamp. In addition, the series
resistance effects would become worse (see Paper II, Pa-
rameter Dependence of Imperfect Clamp Impulse Response
section).
The results of the simulations are summarized in Fig. 10.

In Fig. 10 A the clamp current waveforms for the two input
locations with the default electrical parameters are compared
to the actual input current ("Soma" measurement) for three
sample values of series resistance: 0 (perfect clamp), 2 MfQ,
achievable with whole cell recording using the cleaning
method (e.g., Refs. 15 and 38), and 20 MQl, which can be
achieved routinely with the "blind" method (e.g., Refs. 18
and 41) or the perforated patch method with partial series
resistance compensation (based on series resistances in Refs.
32 and 40). The clamp current waveforms from both den-
dritic inputs are seriously smoothed and attenuated by the
cable alone (in agreement with the previous simulations).
Any series resistance worsens the distortions, particularly for
the less smoothed proximal input.
The other three panels of Fig. 10 summarize waveform

measures for all three models over the full range of series
resistances investigated. The relative peak current "efficacy"
(measured . actual) is shown in Fig. 10 B. The efficacy is
worse for the midoblique input than for the trunk input (14.7
vs. 72%, default model with Rser = 0, falling to 8.5 and
26.1%, respectively, with Rser = 20 MQ). The proximal to
midoblique difference is smaller for the low Ri model.
Changing Rm has virtually no effect (consistent with results
above). The fall-off with increasing series resistance is worse
for the trunk input than the oblique input. The fall-off is also
worst for the low Ri model, because more of the dendritic
capacitance is "exposed to" the clamp amplifier. These sim-
ulations suggest that the Schaeffer collateral quantal con-
ductances measured experimentally (e.g., Refs. 27-32, 42),
which typically are in the range 30-70 pS, may be serious
underestimates of the true conductances, perhaps by as much
as an order of magnitude.

Fig. 10 C shows the 20-80% rise times of the clamp cur-
rents, compared with the 0.11-ms rise time of the input cur-
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FIGURE 10 CAl pyramidal cell, full model: the combined filtering effects of the dendritic cable and the series resistance on the clamp currents recorded
in response to simulated Schaeffer collateral inputs. The current parameters and model morphology were as specified in the legend of Fig. 7. Two of the
input locations shown in Fig. 7 were selected, the proximal apical trunk site (filled triangles, segment 68, an "optimistic" position for a Schaeffer collateral
input) and the slightly distal-of-mid apical oblique site (filled circles, segment 146, half way along, a typical likely position). Three models were tested,
all with Cm = 0.7 ,uFcm -2 and gshunl = 0 nS. The default Rm and R, were 100,000 kcm2 and 200 flcm, respectively. (A) clamp current waveforms icla"mp
from the default model, compared to the actual input current isyn (marked "Soma"), for three values of series resistance 0 (solid line), 2 MQ1 (dotted line),
and 20 Mfl (dashed line). (B-D) clamp current waveform measures versus series resistance, for all three models. Default, grey symbols; Ri = 70 Qlcm,
open symbols; Rn = 40, 000 kcm2, black filled symbols. Circles correspond to the the oblique input, and triangles to the trunk input. (B) peak current
efficacy (i.e., measured clamp current/actual synaptic current): notice that the efficacies of the trunk input superimpose almost exactly for the default and
Rm = 40, 000 models. (C) 20-80% rise times. Again the default and Rm = 40, 000 models' trunk inputs superimpose. The actual t2080 of the synaptic current
is arrowed. (D) effective decay time constants, fitted between peak + 0.7 ms and peak + 20 ms. The actual decay time constant Ty2 = 2 ms of the synaptic
current is indicated by the arrow.
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of the speed of response, and the steady-state lei
the case of the apical tuft site.

ts resistance of only 2 MQl, the default model proximal input
has its t2080 slowed by a factor of 1.55, to 0.17 ms, but the
oblique input has its t2080 slowed to 2.1 ms, by a factor of
nearly 20. With a series resistance of 50 Mfl, the oblique
input's t2080 is 3.2 ms. Again, changes in Rm have little effect
on the proximal input. With small series resistances, changes

v in Rm also have little effect on the oblique input. Decreasing
Rm reduces the oblique rise times and, perhaps counterin-

model: tuitively, the proximal to midoblique separation of rise times
(despite the increase in the electrotonic distance of the input
from the soma). The reduction is more severe when Rser is
large. Decreasing Ri reduces the proximal to midoblique sep-
aration but accentuates the series resistance effects (as with
the peak currents).

full It is interesting to compare the rise times above with some
of those reported experimentally for the clamp currents of
the AMPA components of Schaeffer collateral inputs:

-
stead e.g., around 1-4 ms (Ref. 17), t1ogo values measured, which
steady state tend to be about 50% longer than t2080 values, Rser around

7 Mfl) and around 4.8 ms (Ref. 43, pipette resistances
3-8 Mfl, Rser possibly around three times as high, e.g., see20 30
Ref. 41).

Fig. 10 D shows the effective decay time constants (Teff

fts recording values) of the clamp currents, when a single exponential was

site: fitted (using a simplex algorithm) between tpe + 0.7 and
soma b tpeak + 20 ms, where tpeak is the time at which the peak
mid basal current occurred (following Ref. 15). Although the clamp
apical currents were actually composed of many different compo-
oblique nents with different time constants over the fit interval, in all
apical cases the optimal single exponential fit appeared acceptable~~:~~~tuft by eye, when examined with a linear current axis. Every fit
model: S.D. (see Waveform Measures section above) was less than

0.0004. As emphasized in Paper I (Example 2) and above, the
................cartoon effective time constants change with the fit interval chosen,

so it is important for experimenters to adopt a clearly spec-
ified convention.3

full It can be seen from Fig. 10 D that Teff increases approx-
imately linearly with low series resistances (less than about
20 Mfl), as was shown above for the effective time constants
of a single cylinder + soma model. The more distal the input
location, the larger the intercept at Rser = 0. The lines for the
proximal and midoblique locations run approximately par-
allel to begin with, then diverge at higher Rser values as the

60 80 100 'Teff of first the proximal, then the midoblique response begins
to increase more slowly. The slopes of these lines are in-

ltage clamp, Case II: com- creased by lowering Ri or raising Rm: both changes bring
10-mV somatic voltage step more dendritic capacitance electrically "near" to the clamp
na. Notice the slow charge point, and exacerbate the series resistance effects (see Paper
selected dendritic sites (see
-lamp is poor, both in terms I Influence of Electrical Parameters on Effect of Rser sec-
vels attained, particularly in

rent. The dendritic cable alone is capable of producing a more

than 10-fold slowing in the case of the oblique input in all
three models. Series resistances of 100 Mfl can produce a

further approximate doubling of the rise times. With a series

3The example in Paper I was for voltage transients measured in a model with
a 100-nS shunt. As discussed in Paper II (under the Comparison to Voltage
Recording with a Shunt section) the clamp currents with imperfect clamp
are an upside-down version of the soma-recorded waveforms scaled by g&,
where gseris set equal to the voltage recording gshunt.The same arguments
therefore apply to the clamp current waveforms as apply to the somatic
voltage transients.

A

1.5-

1.0-

6-

4)
0~c

.V 0.5-
u

0.0-

10-

8

6-

4-

2-

s

c

4)
0
0
4L)

1.0
S0
4)

OJ

I I

486 Biophysical Journal



Analytical Solutions: Voltage Clamp Problems

tion). Interestingly, the proximal input's slope is more sen-
sitive to Ri and the midoblique input's slope is more sensitive
to Rm, reflecting the progressive increase in importance of the
membrane resistance in shaping slower events. Again, the
proximal to midoblique separation is decreased by lowering
Ri or (perhaps counterintuitively) Rm.

With perfect clamp, the default model produced a prox-
imal Teff of 2.53 ms, an increase by a factor of only 1.26 from
the actual decay time constant of 2 ms. The midoblique input
resulted in a Teff of 9.11 ms, an increase by a factor of over
4.5 due to the cable alone. With a series resistance of 50 Mfl,
the midoblique input's Teff was 23.8 ms, an increase by over
an order of magnitude. Some experimental values of decay
time constants for comparison are: around 7.3 ms (mainly
AMPA component; shortest 3.2 ms (27)), 40 ms (AMPA
component (43)), and about 4-15 ms (AMPA component
(17)). The discrepancies between some of these figures may
well be caused by differences in fit intervals as well as by
differences in experimental conditions.

It is worth re-emphasizing that, for a given Rser) increasing
Rm: (i) has virtually no effect on the peak current attenuations
or proximal rise times, (ii) slows distal inputs' rise times, and
(iii) slows effective decay time constants.

Rather than improving the clamp of transient inputs, de-
liberately increasing Rm with channel blockers such as Cs'
will actually worsen the distortions which occur (assuming
a purely passive membrane).
Much of the plausible range of biological parameters is

covered in Fig. 10. Cm could well be higher, leading to even
greater distortions. Ri values higher than 200 flcm are pos-
sible (e.g., Refs. 4 and 5): they would lead to stronger cable
but weaker series resistance effects. To be complete, a range
of input kinetics and a larger range of electrical parameters
and input locations should be explored for more than one cell.
In addition, the results should be confirmed using compart-
mental models and conductance inputs into explicitly mod-
elled spines (e.g., Refs. 5 and 15), to allow for reductions in
driving force. This nonlinearity will further distort wave-
forms. Finally, the effects of dendritic active conductances
should be investigated. The basic conclusion, however, is
likely to stand: the majority of Schaeffer collateral inputs
onto CAl cells are extremely poorly clamped, and the re-
corded clamp currents are heavily attenuated and slowed,
by up to an order of magnitude with reasonable parameter
values.

Case II: Responses to voltage command steps

Responses to a 10 mV voltage command step at the soma are
shown in Fig. 11 for both the full model and the cartoon,
under perfect clamp. The default electrical parameters above
are used, including gshunt = 15 nS. The clamp currents are
plotted in A: notice that there is significant charge redistri-
bution occurring as late as 20 ms. As with the synaptic clamp
currents above, there is good (but not perfect) agreement
between the currents required by the two representations. The

those on the apical trunk, are shown in Fig. 11 B. Again, there
is reasonable agreement between the two representations,
except possibly at the apical tuft. All sites are remarkably
badly clamped: even the proximal basal site requires about
15 ms to approach the steady state. The apical tuft requires
over 80 ms to reach a steady-state level of about 70% of the
command step. As mentioned above, Cm and Ri values higher
than those actually used are entirely plausible: clamp per-

formance would then be even worse. A full exploration of
parameter dependencies is not included, for reasons of space,
but as with the subsynaptic voltage swings, voltage control
is poor over a wide range of plausible electrical parameters.
Naturally, any series resistance will make control even

worse, since the soma voltage no longer tracks the command
potential (see Paper II, Example 2).

DISCUSSION

Effective decay time constants

As in Paper I, it is possible to fit many transients over rea-

sonably long intervals with a single exponential, despite the
fact that they are in reality composed of many components
with different time constants. The time constant of the op-

timum fit, termed the effective or apparent time constant

Teff, depends on the interval chosen. Fits are often better when
the model has a complex geometry and generates many

closely spaced time constants Tn. Experimenters are urged to
inspect semi-log plots and to adopt clearly specified con-

ventions for fit intervals and numbers of components, when
attempting to measure the "time constant(s)" of clamp cur-

rent waveforms.

Cable effects and poor space clamp

The examples above demonstrate the difficulties of voltage
clamping neurones with significant cable properties, as

suggested by the combination of morphological and elec-
trical parameters used here and in other studies (e.g., Refs.
4, 5, and 7). In Case I, the clamp of synaptic inputs, even

fairly proximal synaptic inputs may be smoothed and atten-
uated before reaching the soma, and the recorded clamp
currents may be strongly filtered versions of the true synaptic
currents injected into the dendrites. Voltage control down
the dendrites is also likely to be extremely poor, with the
major part of the dendritic voltage swing (which is dominated
by charge redistribution) hardly being affected by voltage
clamping. If voltage-dependent conductances are present
in the dendrites (e.g., Ref. 44), somatic voltage clamping
may not be sufficient to prevent these being activated by
synaptic inputs. In Case II, dendritic responses will be se-

riously delayed and attenuated versions of the command volt-
age imposed at the soma. This will complicate the interpre-
tation of voltage clamp experiments on dendritic active
conductances, especially those with rapid kinetics and distal

voltage responses at the sites specified above, excluding
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Relative efficacies: Voltage recording versus
voltage clamp

Let Ver and iclamp,, be the voltage and clamp current, respec-
tively, recorded at r in response to an input at e. Let 1V be the
steady-state voltage. It is worth repeating a result discussed
previously (Refs. 34 and 36, pp. 187-188): for a given input
site and a given recording site, the steady-state relative ef-
ficacy Ver/Vrr is the same as the relative efficacy of the time
integrals of the corresponding transients (see above and Pa-
per I, Appendix 3). The same relationship holds for the clamp
currents. In addition, the steady-state voltage efficacy at a
dendritic location (d) of a somatic (s) voltage clamp com-
mand (Vsd/Vss) is the same as the steady-state efficacy, re-
cording at the soma, of a dendritic input (Vds/Vss) because of
the symmetry in the solution (Vsd = VdS). Furthermore, the
voltage efficacy (Vsd/VsS) at a dendritic location of a transient
somatic voltage clamp command Vcom(t) is the same as the
clamp current efficacy (Uclampd /iclampS) of a dendritic input
isyn(t) with the same location and time course because of the
reciprocity relation (see Paper II) VSd = -iclampdS (and hence
Vss = - iclamp,), when Vcom (t) = isyn(t) with appropriate
units.
Lower peak relative efficacy compared with steady-state

relative efficacy is a feature of all passive cables. This dis-
crepancy becomes more marked as the shunt at one end of
the cable is increased and charge redistribution down the
cable comes to play an increasingly important role. The lim-
iting case, where the discrepancy between peak and steady-
state efficacy is most pronounced, is voltage clamp (equiv-
alent to an infinite shunt, as discussed in Paper II). For
example, for the apical tuft input in Example 2, the steady-
state efficacy is more than a factor of 10 higher than the peak
current efficacy (clamped) but only a factor of 4 higher than
the peak voltage efficacy (under voltage recording with a
15 nS somatic shunt).
The observation that voltage clamp attenuates peak re-

sponses more than voltage recording is important for exper-
imenters interested in quantal analysis. If most of the noise
experienced is due to spontaneous synaptic potentials (e.g.,
Ref. 33), then the technique which will yield the best signal-
to-noise ratio will depend on the relative locations of the
input of interest and the "noise" inputs. If the input of interest
is very proximal (e.g., a mossy fiber input into a CA3 cell),
then voltage clamp attenuates the noise (assuming it is pre-
dominantly from basal and more distal apical inputs) more
than the "signal." If, however, the input of interest is rela-
tively distal (e.g., a distal Schaeffer collateral input into a
CAl cell), the signal might be attenuated by voltage clamp
more seriously than much of the noise (assuming this came
from more proximal inputs), and voltage recording (with as
small a shunt as possible) might well prove superior. If a
particular connection between two neurones is subserved by
a number of electrotonically dispersed synapses, differential
cable filtering of the quantal currents will be stronger under

inject the same input current, the amplitude histogram peaks
will therefore be more "smeared" with voltage clamp than
with voltage recording.

Imperfect voltage clamp
General points

When synaptic inputs are fast and close to the soma, and the
access resistance is high relative to the effective capacitance
of the cell (e.g., above about 5-10 Mfl for a typical CAl or
CA3 cell (see Example 2 and Ref. 15)), the clamp currents
may be badly distorted relative to those recorded with perfect
clamp. Moreover, voltage control at the impalement/patch
site itself may be inadequate (see Paper II, Example 2). With
smaller cells (e.g., Ref. 12), one can "get away with" higher
series resistances.

These findings should be a serious cause of concern to
experimenters who use sharp microelectrodes to perform sin-
gle electrode voltage clamp: typically these have resistances
of between 10 and 50 Mfl. The same caution should be ap-
plied to the newer techniques of whole cell recording from
neurones in slices, using the "blind" method (e.g., Rser values
10-20 MQl (41, 45) or 10-30 MQl (18)) or the perforated
patch method (e.g., Ref. 32: Rser around 40-50 MQl). The
series resistances obtained with these methods are often
higher than those possible with whole cell patching onto
"cleaned" cells (e.g., Ref. 38). Even with the cleaning
method there is no cause for complacency: incomplete patch
rupture and blocking of pipettes are frequent problems and
series resistances as high as 10 MQl are not uncommon (e.g.,
Rser 5-10 MQl (46); Rser 8-10 MQl (11); Rser 2.5-10 MQl
(15)). With large cells such as CA3 pyramids, series resis-
tances as low as 2 MQl may still cause appreciable distortions
of clamp currents (Refs. 5 (Chapter 6) and 15).

Problems with series resistance compensation

Most clamp amplifiers have a series resistance compensation
facility, but only partial compensation, usually ' 75% (e.g.,
Ref. 46), is possible without introducing oscillations (e.g.,
Refs. 25 and 26). In order to perform series resistance com-
pensation, it is first necessary to have accurately compen-
sated the electrode capacitance (e.g., Ref. 25). As is the
case with voltage recording ("current clamp"), it is hard
to perform capacitance compensation when: (i) the elec-
trode capacitance is distributed, for example when the elec-
trode is deeply immersed in fluid (e.g., Ref. 47 (Chapter 3)),
or (ii) the cell being recorded from has fast charge redistri-
bution time constants blending into the electrode time
constant(s), and there is no clear "break-point" between the
electrode response and the cell response (e.g., Refs. 5 (Chap-
ter 3) and 48).

In practice, performing capacitance compensation just
prior to impalement or patch rupture is probably simpler than
using the phase-sensitive method (48, 49): serious errors are

voltage clamp than voltage recording. If the synapses all
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associated with impalement or patch rupture. Further prob-
lems are caused when electrodes display additional nonca-
pacitative artifacts (e.g., Refs. 5 (Chapter 3), 47, 50), al-
though some amplifiers have additional facilities for
compensating these (e.g., the Cp setting of the C-slow dial
on the EPC-7).

Contrary to previous results (3), there is often no easy way
to separate soma charging currents from cable charging cur-
rents. However, series resistance compensation can still be
performed (depending on the amplifier) by sharpening up the
clamp current resulting from a voltage step command, so-
dium currents or fast post-synaptic currents, until the point
at which oscillations just fail to occur. There is a danger,
however, of "over-sharpening" caused by undetected "ring-
ing." Better methods might be to estimate the series resis-
tance first from the initial height of the unfiltered clamp
current transient in response to a voltage step, or by the "no
jump" transient balancing method described above for the
EPC-7. In the latter case, the G-series dial should be set to
the correct gser (which may be hard if there is substantial
noise or overfiltering), the C-slow dial should be turned right
down to avoid miscompensating the soma capacitance, and
the %COMPensation dial should be turned up until just be-
fore ringing occurs.

Since, in practical situations there will always be some
residual series resistance, the results presented in the two
examples above will always apply to some degree. The prob-
lems will be compounded if the series resistance is changing
over time. For these reasons, rather than compensating series
resistance, it may be better to monitor then model it: this issue
needs to be explored more carefully.

Series resistance can also be estimated by performing
bridge balance in current clamp mode. This latter technique,
however, also suffers from the "no break-point" problem.
More accurate but time-consuming measurements of Rser
could also be performed under current clamp using the phase-
sensitive technique (48).

Problems with switch clamp

At first sight, the use of discontinuous voltage clamp (e.g.,
Ref. 50) might offer a way of by-passing series resistance
altogether. However, as discussed by Wilson and Park (48),
switch clamp in a cell with dendritic cables suffers from the
no break-point problem afflicting the continuous methods
(see above). To quote them:
"The use of switching amplifiers .., is therefore not a panacea for the prob-
lems of amplifier alignment in intracellular recording."

The optimal switching rate cannot be determined intrac-
ellularly in a nonisopotential cell, because there is no roughly
"flat portion" of the cell's voltage response (and therefore of
the headstage waveform) after the electrode artifact. Nor can
it be determined extracellularly, because of the following.

(i) Series resistances (and hence electrode time constants)
are often 2-6-fold higher than the original pipette resistances
when whole-cell recording with the "blind" (e.g., Ref. 41),
standard whole cell or perforated patch methods (51);

(ii) Rser may be unstable over time;
(iii) what counts is the electrode artifact relative to the

cell's response: it is "safe" to sample the membrane potential
once the artifact has fallen to less than 1%, say, of the cell's
response; and

(iv) there is a "nonsumming interaction" between the elec-
trode and the cell: for a given Rser, the duration of the in-
tracellular artifact is longer than that of the extracellular ar-
tifact (Ref. 5 (Chapter 3)). This is analogous to the
nonsumming interaction between different components of
the cell when Rser> 0, discussed in Paper II (Example 2).

See the Appendix for a possible (and untested) ad hoc way
out of this dilemma.
Of course, switch clamp can do nothing to alleviate cable

effects. However, with somatic inputs, low series resistances
(a few MQl) and careful capacitance compensation, it does
seem possible to record fast synaptic currents (e.g., Ref. 9).
Even so, there can be significant voltage escape at the soma
(e.g., Ref. 9 (Fig. 3)), analogous to that which would occur
with uncompensated series resistance.
A more thorough theoretical and practical exploration of

switch clamp in neurones with dendrites is required.

Combined effects of dendritic cables and series resistance

The results above suggest that the filtering effects of den-
dritic cables and series resistance compound one another
in a less than additive way for peak clamp currents, and
in a roughly additive way for rise times and apparent decay
time constants (depending on the input time constants). Both
effects are worse for faster inputs. Decreasing Ri reduces
cable effects. Increasing Rm hardly changes the cable effects.
Both manipulations worsen the smoothing caused by any
series resistance, by improving charge transfer between the
clamp amplifier and dendritic membrane capacitance. The
preliminary "realistic" simulations above of Schaeffer col-
lateral inputs into a CAl cell (Example 2) demonstrate that
with plausible combinations of parameters, all current wave-
form measures can be distorted by up to an order of mag-
nitude.
To assess quantitatively cable and series resistance effects

on recorded clamp currents, it will be necessary to make
fairly specific models of the particular experimental system
of interest, exploring the likely ranges of current kinetics,
morphologies, electrical parameters, input locations, and se-
ries resistances (e.g., see Refs. 5 and 15). Using model cells
with the inappropriate shapes or sizes, or incorrect electrical
or input parameters could lead to misleading conclusions,
particularly where those conclusions are optimistic, i.e., "the
clamp works well enough." (For example, with reference to
the clamp currents from mossy fiber inputs onto CA3 py-
ramidal cells, contrast the conclusions of Johnston and
Brown (7) with those of Jonas et al. (15). The first of these
two studies assumed slower synaptic inputs than the second
and concluded that the clamp currents were probably not
smoothed significantly. In the latter study, in the worst plau-
sible cases, significant distortions could occur.)
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Overview
The two examples above illustrate a number of important
practical problems concerning the experimental procedure of
voltage clamping neurones with extensive dendritic trees. It
is hoped that the relative ineffectiveness of voltage clamp
demonstrated for the CAI pyramidal cell model will provoke
more thorough modelling studies by other investigators and
more caution by experimenters in the interpretation of their
results.

SUMMARY AND CONCLUSIONS
1) It is possible to approximate the decay phases of noisy

synaptic clamp currents with single exponentials over inter-
vals when they are in reality composed of many exponential
components. More complex neuronal geometries, which pro-
duce more closely spaced time constants, allow better fits.
Semi-log plots should be used to inspect fits. The effective
time constant Teff varies with the fit interval, so it is important
to specify clearly the convention being adopted.

2) Synaptic clamp current waveform parameters depend
on distance from the soma z, series resistance Rser, and the
time course of the synaptic current. Peak currents decrease
with increasing z and Rser. The effects are stronger for faster
inputs. Rise times and effective decay time constants increase
with z, Rser, and Tsys the decay time constant of the synaptic
current. The Teff values increase almost linearly with both Rser
and T,,y The rates of increase of all measures slow down near
dendritic tips and with high enough series resistances.

3) Many of Jackson's approximations (3) break down (as
noted by that author) if the ratio of the dendritic (infinitely
extended) to somatic input conductance (without a shunt),
p., is high. This is demonstrated for an example with p. of
the order of 50, a plausible value for many pyramidal cells.
When a voltage step is applied, soma and cable charging
currents cannot easily be separated for such models.

4) "Subtractive" capacitance compensation techniques
may seriously overestimate the true soma capacitance if ex-
tremely fast time bases (>100 kHz sampling) are not used.
This can lead to other modelling errors. In such cases it may
be better to perform series resistance compensation without
soma capacitance compensation and to make use of the im-
perfect clamp solutions (or compartmental models) to fit the
experimental data.

5) In a CAl pyramidal cell model with biologically plau-
sible electrical parameters, imposing perfect somatic voltage
clamp hardly changes the peak voltage swings at synaptic
input sites. The transients are insensitive to changes in spe-
cific membrane resistivity Rm, except at late times.

6) Under perfect clamp, synaptic clamp currents are much
briefer than the corresponding synaptic potentials under volt-
age recording, and show more rapid fall-off in peak relative
efficacy as the input site is moved away from the clamp point.
Time integral relative efficacies for both voltage clamp and
voltage recording are the same as the corresponding steady-
state relative efficacies. With the electrical parameters used,
dendritic trees based on the morphologies of real pyramidal
cells can cause significant attenuation and smoothing of syn-

aptic inputs. Again, the early parts of the transients are in-
sensitive to Rm.

7) The effects of series resistance and dendritic cables
compound one another, less than additively for peak currents,
and roughly additively for rise times and effective decay time
constants. Plausible combinations of parameters can lead to
attenuation and smoothing of the clamp currents from
Schaeffer collateral inputs into a CAl cell model by up to an
order of magnitude.

8) With plausible parameters, dendritic voltages resulting
from a somatic voltage command step can show significant
delays (15-80 ms) before reaching steady state.

9) The space clamp and voltage clamp problems outlined
above are unlikely to be solved by the application of switch
clamp: fundamental limitations are imposed by the electrical
geometry of the cell being clamped and the properties of the
electrode used.

10) The example models presented here are intended to
illustrate the analytical solutions of the previous two papers,
to alarm experimenters attempting to voltage clamp neurones
with extensive dendritic trees, and to encourage more de-
tailed modelling of each experimental situation.

APPENDIX: OPTIMAL SWITCH CLAMP RATES
FOR NEURONES
Problems arise when attempting to determine the optimal switching rate for
discontinuous voltage clamp of neurones with nonisopotential dendrites.
Suppose all the cells of a given class have similar voltage responses to brief
current pulses (e.g., of 10-gs duration). A new electrode's extracellular ar-
tifact, with optimal capacitance compensation, following the pulse could be
compared to a "typical" cell's response (with its own electrode control sub-
tracted). The time t1 taken for the new electrode's artifact to fall to 1% of
the cell's response could be measured. There is a further complication: the
response of the combined electrode-cell system is greater than the sum of
the responses of electrode and cell alone (Ref. 5, Chapter 3). The presence
of the cell slows the capacitative artifact of the electrode by a factor of about
3, since it is no longer discharging directly to earth. (The exact factor will
depend on the electrode, the cell, and the criterion adopted for the "end" of
the artifact.) The effective artifact will therefore have a duration of about
3t,. With a 33% duty cycle, this gives a sample interval of 3/2 X 3t,, i.e., a
"safe" switch rate of 0.22/tI. If the series resistance and hence electrode time
constant increase by a factor of FR following establishment of the recording
from the cell, then the "safe" switch rate is slowed to roughly 0.22/FRti.
Voltage transients much faster than this will not be adequately clamped, and
the clamp currents will be slower than the real currents. Note that the du-
ration of the original current pulse tested should be similar to the duration
of the current injection phase of the switch cycle. Approximate series re-
sistance should be monitored periodically by one of the methods described
above, and adjustments to the switch rate should be made accordingly.
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