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Simulations of Three-dimensional Ciliary Beats and Cilia Interactions

Shay Gueron* and Nadav Liron
Department of Mathematics, Technion, Israel Institute of Technology, Haifa 32000, Israel

ABSTRACT A new set of equations describing the time evolution of torsion and curvature for an inextensible curve is de-
veloped. Combined with our recently developed Slender Body Theory approach to such problems, these equations were applied
to simulate three-dimensional ciliary beats, while allowing for cilia interactions.
The computer animation technique, which was originally designed to display two-dimensional beats, has been enhanced to

accommodate the new three-dimensional results.

INTRODUCTION

The simulations of ciliary and flagellar beats have attracted
a great deal of research efforts, and considerable advance has
been achieved in modeling procedures (1-5, 7, 27-29, and
others). Due to typical dimensions, the motion of cilia and
flagella in the (highly viscous and incompressible) surround-
ing fluid is governed by the Stokes equations. Additionally,
no-slip boundary conditions on the surfaces (i.e., the velocity
of the fluid on a cilium's surface, must match the velocity of
the surface), and the condition of vanishing fluid disturbance
at infinity must also be satisfied. The slenderness of cilia and
flagella, and the properties of Stokes flows enabled a sim-
plifying approximation, known as the Resistive Force The-
ory. This approach, pioneered by Gray and Hancock (10) has
been used in many of the researches on the subject, with
various resistance coefficients. Finer hydrodynamic analyses
such as the Slender Body Theory and the Boundary Element
Method have since been developed and applied to different
problems involving flagellar motion with and without an at-
tached cell body (e.g., refs. 9, 12-14, 21, 24-26). A refined
approach to the modeling of ciliary motion was suggested in
a recent paper by Gueron and Liron (11) (G-L henceforth).
This enabled us to accurately simulate beats as dynamic
problems, and to extend the applicability to multicilia con-
figurations. This approach is used in this paper as well.

In nature, cilia, more often than not, beat in three-
dimensional patterns. Nevertheless, none of the above men-
tioned works on the subject offered a three-dimensional
(3-D) dynamic model. Some works on the 3-D mechanics of
cilia and flagella were published by Hines and Blum (18-20)
who dealt only with static problems, ignoring hydrodynamic
effects. Other publications, as mentioned above, dealt with
simulations of helical motions of flagella. Such motions are
of a very specific and limited form of 3-D motions, and from
a kinematic point of view, they are actually planar. Even in
G-L, simulations were two-dimensional (2-D), although the
main theorem used there is suitable for 3-D motions. The
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reason for modeling only 2-D beats was that the geometric
equations for the propagation of 3-D curves were not avail-
able.
A planar curve can be determined by means of one pa-

rameter (its curvature for example). In many cases it is con-
venient to parameterize a 2-D curve by using the angle be-
tween its tangent and the horizontal axis (the derivative of
which is the curvature). Indeed, this is the way (2-D) curves
were parameterized in most of the previous models. One
advantage of this parameterization is that the inextensibility
condition (i.e., that the cilium maintains a constant length),
which is required for ciliary motion simulations (18), is sat-
isfied automatically. In three space dimensions, two (local)
parameters are needed to describe a curve. In contrast to the
two-dimensional case (15), the inextensibility condition
cannot be satisfied automatically.
The dynamics of 3-D curves have been investigated in

other contexts as well. Samuels and Donnelli (30) reported
on the numerical propagation of 3-D vortex lines. Their
straightforward approach suffered from stability problems.
As a result they had to resort to extremely small time steps,
and consequently, to the use of a supercomputer.
The problem of simulating 3-D ciliary motions, in rea-

sonable time, is addressed in this paper. In the Preliminaries
section we introduce several useful notations and quote the
force-velocity relations that were developed in G-L. In the
Modeling section, all the necessary equations for 3-D motion
are developed. These equations enable the propagation (in
time) of the curvature and the torsion along a 3-D curve,
given its velocity distribution. This approach decreases the
number of equations to be propagated from three, for the
straightforward method, to two. In addition, its numerical
implementation proves to be stable for relatively large time
steps. In the Modeling section we also show how to satisfy
the inextensibility condition. As in the 2-D models, the com-
ponents of the internal force developed by the cilia are not
independent of each other. The appropriate relation between
these components (which is a generalization of the analogous
relation for 2-D motion (Hines and Blum (15) (H-B hence-
forth) and G-L) is derived in the Modeling section below.

Combining the 3-D version of G-L's force-velocity rela-
tion with the new geometric equations yields a 3-D dynamic
model, which is suitable for simulating the motion of either
an isolated cilium or several interacting cilia.
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As a result of extending the model to three spatial dimen-
sions, a third (binormal) component of the shear force is
introduced into the equations describing the internal mech-
anism (in addition to the normal and the tangential ones). The
existence of this component enables the driving of the cilium
out of the plane, thus producing the 3-D motion. Appropriate
consideration is given to the way the elastic properties of the
cilium are reflected in the 3-D motion. The chosen "engine"
(internal mechanism) produced beat patterns that resemble
actual beats. Following G-L, the model and its numerical
implementation are organized in a modular way, in order to
allow easy application with different internal mechanisms.
The precise choice of the parameters used for the simu-

lations and a brief description of the numerical methods are
also detailed in the Modeling section. In the Results section
we present results of modeling a single cilium and several
interacting cilia and conclude with a short discussion.

PRELIMINARIES
In order to make our paper shorter and clearer we adopt several notations
and conventions that will be used henceforth. These notations are consistent
with those used in G-L, which makes the 2-D and 3-D cases convenient to
compare.

Us(r,ro,40) = the velocity, induced at r, by a Stokeslet with in-
tensity 4), located at ro (in infinite medium). US(r,ro,4)) = the
velocity, induced at r, by a Stokeslet located at ro, with intensity
4), and by its image system (i.e., this is a basic solution satisfying
no-slip conditions at X3 = 0). Ud(r,ro,4)) = the velocity, induced
at r, by a Doublet with intensity 4), located at ro (in infinite me-
dium). Udi(r,ro,4p) = the velocity, induced at r, by a Doublet,
located at ro, with intensity 4), and by its image system (i.e., this
is a basic solution satisfying no-slip conditions at X3 = 0). Vs
(r,ro,o) = Usl(r,ro,o) - US(r,ro,o) (i.e., the velocity induced by
the image system only). VSL(r,ro,4) = Udi(r,ro,o) - Ud(r,ro,O)
(No-slip conditions imply here vanishing velocities on the plane X3 = 0.)

Let q = O(a/\,E) and q < so < L -q (see Fig. 1 b). If V(so,t) is
the velocity of the cross section so then:

V(s0,t) = -(1/CT)OT(sO,t)T - (W/CO)ON(sOjt)N (l/CB)4B(so,t)B

+ US[r(s,t),r(so,t), - 4(s,t)] ds
Is-s.1 >q

+ A {VS'[r(s,t),r(s.,t), - 4(s)]

+ Vdi[r(s,t),r(so,t), - (a2/4Atk)(s,t)]} ds

+ Vext(so9t) + 0 (E) (1)

where

Methods

The cilium is modeled as an inextensible (i.e., maintaining constant length)
cylindrical filament of length L. The centerline of the filament is a curve,
parameterized by its arclength parameter s (O < s < L: s = 0 at the "anchor"
where the cilium is attached to a surface, and s = L at the distal free end).
We define the three axes as xi, x2, and X3 in Fig. 1 a and set X3 = 0 at

the cilium's anchor. Whenever dealing with a single cilium, its anchor is
located at the origin. The location of the anchors for multicilia configurations
will be specified in the examples.

At each point on the cilium (curve) we refer to two sets of coordinates.
The first one represents the (global) location (x,,x2,x3) (with respect to some
fixed origin), and the other is the local Frenet Trihedron [T(s,t),N(s,t),
B(s,t)] (tangential, normal, and binormal unit vectors, respectively).

The subscripts T, N, and B denote the tangential, normal, and binormal
components of vectors, respectively, and the subscripts s and t denote partial
differentiation with respect to s and to the time, t, respectively. We denote
by xi, x2, and X3 the three unit vectors in the direction of xI, x2, and X3,
respectively.

E = alL, the ratio of the radius of the cilium (a) to its length (L), is defined
as the slenderness parameter. It is assumed that e << 1.
We use F(s,t) (=F) to denote the shear force developed by the internal

mechanism of the cilium, and s4(s,t) (= 4) for the force per unit of length
(i.e., drag force) exerted on the cilium by the surrounding fluid in which the
cilia beat. V(s,t) (=V) is the velocity of the cross section s, and ,u is the
viscosity of the surrounding fluid. K and T denote the curvature and the
torsion of the cilium, respectively.

The theoretical basis for modeling the motion of a cilium is the theorem
connecting the drag force and the velocity stated and proved in G-L. We
quote this theorem here again as follows.

C =-T -2 + 4 ln(2q/a) CN = CB 1 + ln(2q/a) (2)

The term Vext(so) represents the external flow field that is induced (at so)
by sources other than moving segments of the cilium (neighboring cilia for
example). It is assumed that Vext(so) does not change significantly on the
scale of a.

To present the relation (Eq. 1) as an integral equation for the drag force,
define

G(so,t) - US[r(s,t),r(sO,t), - 40(s,t)] ds
s-s,I >q

+ A {Vs'[r(s,t),r(sO,t), - +(s)]
+ Vd[r(s,t),r(sO,t), - (a2/4jx)4P(s,t)]} ds

+ 1
---

U [r(s,t),r(sO,t), - 4p(s,t)] ds
neighboring cilia

(3)

and gN = CNGN, gT = CTGT, gB = CBGB-
Here, G(so,t) represents the velocity induced at so by the "far" segments,

while g(so,t) represents the induced drag force per unit of length.
Note that the interactions with the neighboring cilia is included in the last

term of Eq. 3.
The force-velocity relation becomes:

(N = CNVN + gN. T' CTVT + gT.

1B -CBVB + gB- (4)

Theorem 1

Let r(s,t) be the location of the centerline of a cilium (O < s < L) of radius
a, attached to a flat surface at X3 = 0. We use the following notations for
any two location vectors r and ro and intensity vector 4 (see G-L for explicit
expressions):

In order to make our equations non-dimensional we introduce the nor-
malized variables s* = sIL, t* = wt, S* = S/SO, where c is a typical frequency,
L is the length of the cilium, and SO is a typical magnitude of shear force.
All of the following equations in the paper appear in their non-dimensional
form and the asterisks are dropped. The specific choices for X, L, and SO are
discussed in the following section.
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MODELING: THE EQUATIONS OF MOTION, THE
INTERNAL MECHANISM, THE INITIAL AND
BOUNDARY CONDITIONS, AND THE NUMERIC)
METHODS

In this section we describe the modeling of the cilium's internal mechar
and the equations needed to simulate its 3-D motion.

Geometric equations relating the curvature, the
torsion, and the velocity

We present here a system of equations relating the components of the 1l
velocity to the geometric variables that describe the curve (i.e., the ciliL
The need for these equations precluded until now simulations of 3-D be
The cilium is described by using its arclength parameter. The local curva
and torsion (both expressed as functions of the arclength) define the (

terline of the cilium uniquely. This is achieved by integrating the Fr
equations (32) with respect to s, combined with the orientation and
location at s = 0 (serving as boundary conditions) as follows.

Ts = KN, Bs -TN, Ns TB-KT.

An analogous parameterization was used in the 2-D case. The differe
is that to describe a planar curve a single parameter (e.g., a = KS) is
ficient.

The motion, in time, of an inextensible curve can be described using
following theorem.

Theorem 2

Let VT(s), VN(s), and VB(s) be the (local) velocity components of each p
along an inextensible curve. The equations describing the evolution of
curvature and the torsion in time are:

Kt = VNSS + VT KS - 2TVBS - TSVB + (K - T2)VN,

Tt =35 + K(VBS + TVN),

where (3 is defined by

j3K = VBSS+ 2VNST + VNTS + VTKT 2VBT

components. An equation for the third component, namely the binormal
shear force (FB), must be introduced to the model. However, we still model
the normal component (FN) the same way as in G-L (with only slight mod-
ifications). We first show that the inextensibility constraint and the force
balance (see Eqs. B2-B5) determine the tangential force FT as a function
of FN and FB. This is the generalization of the analogous equation in G-L
(where the normal component FT is expressed as a function of FN).

Assertion

The inextensibility requirement dictates the following equation:

FTSS ' (1 + CTN)FNSK + CTNFTK2 + FNKS - CTNgNK

+ gTs CTN KTFB
(10)

where CTN = CT/CN. We leave the proof to Appendix B.
This paper serves mainly as an example for modeling 3-D motion, and

thus we are not interested in a specific internal mechanism. Consequently,
we use a rather artificial mechanism which we call a "load-dependent en-
gine." By this we mean that the engine is composed of two contributions:
one is the actual actively generated force, and the other is the passive elastic
resistance of the cilium. special consideration should be given to the proper
way the elastic resistance is introduced.

As in G-L, the normal component of the shear force, FN, is defined by

FN = Eb KS + S(s,t). (1 1)
The first term, being proportional to the curvature's gradient, represents the
resistance to bending (Eb is the non-dimensional elastic bending resistance
of the cilium). The second term, S, expresses the active (normal) shear
generated by the sliding filaments in the cilium. We chose here

Fthe S(s,t) = (r/2)CNw(L2/SO)(S2 _ I)sin[27rr( - 2t)]

X cI(t) X C2(S,t),
(6) where cl(t) and C2(S,t) are the same as in G-L:

(7)

(8)

c(t) =- {a, 0 ' t c t
1a2 tl < t 1<I,

(12)

(13)

and

We make here some short comments and leave the complete proof to
Appendix A. The proof of the theorem is straightforward. The essence is to
cross-differentiate the location vector, r(s), with respect to s and to t. Since
the curve is inextensible, each point is uniquely attributed to a specific value
of s for all t. One can therefore interchange the order of the differentiation
to obtain the following identity:

r(s,t)-t= Tt = r(s,t)t, = vs. (9)

Decomposing Eq. 9 into its components and using the fact that T = N
1 completes the proof.
We conclude about cases where K(S) = 0 at one or more points along

the curve. Equations 6-8 cannot be applied to such cases since ,B is not
determined from Eq. 8. However, this is not surprising, as a 3-D straight line
does not possess an intrinsic set of three orthogonal unit vectors T, N, and
B (due to the fact that a straight segment does not define a unique plane,
and hence no unique normal vector may be attributed to it).

1 'ss< 1, O<tst1
C2(S,t) = 1 O's a3 t1<tc l

0 a3<s'1, tI't'l.
(14)

We conclude that the phase shift appearing in Eq. 12 (compared to the
analogous equation in G-L) is planned to restrict the motion to the first octant
(i.e., x1,x2,x3 . 0).

For the binormal component we also have an expression consisting of
a passive bending resistance term and an active contribution denoted by
P(s,t):

FB = EbKT + P(S,t). (15)

EbKT represents the elastic properties of the cilium if we consider it as an
isotropic "beam" with "effective" bending stiffness. In Appendix C we prove
this claim and refer to cases which are not isotropic.

In this paper P is defined by

P(s,t) = (-7r/2)CNw(L2/SO)(S2 _ I)sin(2 7rt) C3(t).

Modeling the internal mechanism of the cilia
Three equations for the three components of the internal (shear) force de-
veloped in the cilium are to be determined in order to model its internal
mechanism. Unlike the 2-D case, we cannot simply adopt acceptable con-

cepts from other mechanisms that appear in the literature (as we did in G-L),
since they all deal with 2-D motions and therefore consist of only two

The function c3(t) determines the time periods where FB is "active" and is
defined as:

0 0st t2

c3(t)= 1 t2 t t3
10 t3 ' t c I

Here (t3 - t2) is the duration of the "nonplanar" effect.

(17)

(16)
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FIGURE 1 (a) Local, and global 3-D coordinate systems. (b) The near field, and the far field for a given cross section of the cilium (see Theorem 1).
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Initial and boundary conditions, parameter
values, and numerical procedures
Since the choice of the the initial and boundary conditions is similar to what
has been done in G-L, we just mention the self-evident points briefly. All
simulations start with an erect cilium (i.e., one whose centerline is aligned
with the X3 axis), for which the torsion and curvature are zero. At the anchor,
the cilium points in the direction of the X3 axis. As already concluded,
whenever the curvature becomes zero, the time evolution equations for the
3-D curve are not well defined. This calls for a special treatment which will
be explained later on. The boundary conditions are

K=T0= at s0=, (18)

to maintain the initial (erect) orientation, and to keep the cilium planar and
straight at the anchor and at the distal end

K, = T, = 0 at s = 0 andat s = 1. (19)

Other implied conditions are

V = 6 = 0 at s = 0, (20)

F=0 at s=0 and s= 1 (21)

and(note that these last two equations are vectorial equations).
The equations that are used in the model are Eqs. B2-B5, 6-8, and 10-21.

A straightforward approach to a numerical-computing procedure, which is
the easiest to follow, is the explicit one. Starting with the values of K and
T at a certain time, the normal and binormal components of the shear force
(FN, FB) can be obtained from Eqs. 11-17. Eq. l0 is then applied to calculate
FT. With the three components of F known, 4N, 4.r, and 4B are computed
by using the force balance equation (Eq. B2), and its derivatives (Eqs. B3-
B5). Theorem 1, Eqs. 3 and 4, relating the drag force to the velocity, yields
a vectorial integral equation with the unknown variables VT, VN, and VB. As
in the 2-D case, it can be solved iteratively. Knowing the velocity compo-
nents, we can use the geometric propagation Eqs. 6-8. These equations form
a system of coupled nonlinear differential equations.

The above explicit approach turns out to be inadequate. It yields stability
problems (as indicated in H-B for example) and thus necessitates the use of
an unreasonably small time step. There are many alternative methods for
solving such nonlinear PDE systems. Generally, the instability problems can
be avoided by using implicit schemes, which then allow for larger time steps.
Mixed strategies, where explicit schemes are used for some of the terms, and
implicit schemes for the more problematical terms (e.g., Ref. 6) can also be
applied. We opted to use the Crank-Nicolson algorithm, combined with an
iterative approach, in order to overcome these numerical difficulties (the
same way as for the 2-D model, see G-L and H-B). The difference from the
2-D case is that here a nonlinear system of equations (propagating the cur-
vature and the torsion) must be solved at each step (instead of the single
equation, propagating only the curvature in the 2-D model). After discret-
ization, this system, becomes a coupled system ofnonlinear algebraic equa-
tions, to which Newton-Raphson's method was applied. However, despite
the resemblance between the 2-D and the 3-D models, the latter requires
much greater computational efforts. The reason is that, in order to assure the
convergence of Newton's iterative method, the time step must be decreased
to a much smaller value than what was sufficient for the 2-D case.

The instances where the cilium became straight (i.e., K = 0 at one or more
points on the cilium, and thus the equations become singular) had to be
treated differently. In practice, it occurred only at the beginning of the beat
cycles, where the cilium returned to its initial erect position, thus its tangent
at this position was X3 (a unit vector in the direction of the X3 axis). Since
in such events there is no "intrinsic" normal, we assigned xi (a unit vector
in the direction of the xi axis) as one. The curve was treated as planar
(in the xl-x3 plane) for several time steps and the curvature could then be
propagated by using Eq. 6, with the torsion equal to zero. This was enough
to "fold" the cilium back to a position where the set of Eqs. 6-8 became
applicable again.

To conclude, we list the values of the parameters as follows: L = 10 ,um,
a = 0.1 ,Ium (chosen to fit typical cilia dimensions); SO = 10-12 newton (a
typical force magnitude, see H-B); Eb = 25 10-24 newton m2 (as in H-B);

w = 25 Hz (a typical beat frequency). Modeling the engine, the following
parameters were used: a, = 2, a2 = 2, a3 = 1, t, = 1, t2 = 0.25, t3 = 0.25.
Finally, the spatial and time steps for the numerical schemes were: dt =
0.002, i.e., 500 time steps/one beat cycle. ds = 1/50, i.e., 51 discretization
points on each cilium. (It was verified that decreasing ds and dt does not
give significantly different results.)

RESULTS

This section summarizes the results of the simulations and
briefly describes the use of the animated-display technique
we used. All the results reported here, are for the periodic beat
pattern (usually obtained within five cycles).

Results for one cilium

Choosing the parameters specified in the Modeling section,
beat patterns that simulated the two distinct phases of the
cycle (the effective and recovery strokes) were obtained.
During the effective stroke the cilium is almost straight and
planar. During the recovery stroke it starts folding "side-
ways," out of the plane of the effective stroke. Next, it
straightens up, back to the initial erect position. Variations on
this basic pattern can be obtained by altering the parameters
of the internal mechanism. This demonstrates the flexibility
of our model. The beat patterns produced by the simulations,
resemble beats that are observed experimentally (31, 23). A
typical beat pattern is presented in Fig. 2, a and b. The "snap-
shots" (distinct cilia positions) were taken in time intervals
of 0.1 (i.e., 10 snapshots/cycle). Both figures show the same
beat but from different view points.

In Fig. 2, c-e, we display the results for one cilium, ex-
posed to an external shear flow: X3 X2, 1.4x3 X2 and -X3 X1,
respectively. The effect of the external shear flow is felt
through the term Vext(so,t) in Eq. 1. As seen in the figures,
the external flow drives the cilium out of the plane during the
effective stroke and generates additional bending in the ap-
propriate direction.

Multicilia configurations

In contrast to the 2-D case, we could arrange the cilia "array"
in different ways (we account for the interaction between the
cilia as explained in the Preliminaries section (e.g., Eq. 3).
For a more detailed description see G-L). We investigated
two kinds of configurations of three cilia. The first is where
the cilia were placed in a column in the direction of the
effective stroke (denoted by "column configuration"). In the
second configuration they were arranged in a row which was
perpendicular to the direction of the effective stroke (which
we denote by "row configuration"). We investigated the
changes in the original beat, resulting from the interaction
between neighboring cilia. More prominent changes are ap-
parent in the column configurations. Fig. 3, a-d, shows snap-
shots of row and column (three cilia) configurations. The
snapshots were taken during both the effective and the re-
covery strokes. The cilia were started simultaneously, with
the same initial conditions (i.e., erect position) and were
spaced at a normalized distance of 0.1 from each other.
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B

X3

RECOVERY STROKE

D

FIGURE 2 Snapshots of a beat cycle of a single cilium (10 snapshots/one beat cycle, i.e., dimensionless time intervals of 0.1). (a) Viewpoint (3,3,3), view
direction toward the origin. (b) Viewpoint (3,4,5), view direction toward the origin. (c) Exposed to an external shear flow X3 X X2 (viewpoint 3,3,3; view
direction toward the origin). (d) Exposed to an external shear flow 1.4x3 X X2 (viewpoint 3,3,3; view direction toward the origin). (e) Exposed to an external
shear flow -X3 X x1 (viewpoint 3,3,3; view direction toward the origin).

DISCUSSION

The new equations, developed in this paper, enable simula-
tions of 3-D cilia beats. Since most cilia have 3-D beat pat-
terns this model represents an improved and more useful tool
for realistic simulations of ciliary motion.
The 2-D beats for multicilia configurations in the 2-D case

involved limited bending and tangential motion, so as to
avoid cilia colliding into each other, as explained in G-L. In
the 3-D case, with the effective stroke in one plane and the
recovery stroke out of this plane, we achieved beats with
large amplitude and also considerable tangential motion.
Moreover, we had no problem in packing the cilia close to-
gether, in contrast to the 2-D case.

Our paper is chiefly aimed at the introduction of a method
for simulating 3-D beats. Therefore we settled for a rather

arbitrary model for the internal mechanism, and attributed
simple (isotropic) elastic properties to the cilia. Finer mod-
eling attempts that rely heavily on the internal structure and
the elastic properties of the cilia can easily follow.
The computation time involved with the 3-D model is

considerably larger than in the 2-D simulations. This is why
we report only on simulations with a relatively small number
of cilia (all simulations have been performed on an IBM
PS/70 computer). For this reason the results for multicilia
configurations should be considered only as a preliminary
investigation. However, as we mentioned before, solving
similar (geometric) problems required the use of supercom-
puters when other existing algorithms were used.
We conclude with a note on the enhanced displaying tech-

nique we designed for the 3-D problem. In G-L we have

X3

A

EFFECTIVE STROKE

C

X3

EFFECTIVE STROKE

RECOVERY STROKE
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A

EFFECTIVE STROKE
B

X3

RECOVERY STROKE

EFFECTIVE STROKE

X3

RECOVERY STROKE

xi

C

xi

D

X2 Xi X2

E

xi X2

FIGURE 3 A configuration of three cilia, started with identical initial conditions. The viewpoint is 3,3,3; and the view direction is toward the origin. (a)
Column configuration. One snapshot during the effective stroke. (b) Column configuration. Two snapshots during the recovery stroke. The cilia proceed
from near the surface to upright position. (c) Row configuration. Two snapshots during the effective stroke. (d) Row configuration. Two snapshots during
the recovery stroke. The cilia proceed from near the surface to upright position.

already discussed the fact that the ciliary beats could not be
convincingly drawn. This is more the case when dealing with
3-D beats, since we cannot plot too many snapshots on the
same graph. Another important investigation tool is the abil-
ity to change the view point and the view direction. This is
helpful, for example, in order to determine the precise time
where the cilia leave the plane of the effective stroke (by

viewing them from the front). The enhanced animation pro-
gram possesses all the features of the 2-D version, reported
in G-L, namely: slow and fast motion control and frame-
by-frame advance. Additionally, it enables the selection of
view point and the view direction to be changed, thus al-
lowing the "sacnning" of the cilia from all directions and
angles. All the relevant results reported in the paper are pre-
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sented in this way, and the resulting demonstration program
is available upon request.

and since N x N, = B x B, = 0, B = 1, T * B = 0, it follows that

(3s = Tt - KTt - B = ,- KV, * B. (A13)

Differentiating Eq. A4 with respect to s, using Eq. 5 and the orthogonality
properties of the triplet T, N, and B we obtainAPPENDIX A

The proof of Theorem 2 (the Modeling section) follows.

Theorem

Let VT(S), VN(s), and VB(s) be the (local) velocity components of each point
along an inextensible curve. The equations describing the evolution of the
curvature and the torsion in time are:

K= VNSS + VTKS - 2TVBS -TSVB + (K - T2)VN, (Al)

Tt I3 + K(VBs + TVN),

where , is defined by

,BK = VBS + 2VNSJ + VNTS + VTKT - VBT2

Proof

Vs * B = VBS + TVN, (A14)

and Eq. A2 follows.
A straightforward calculation of (the vector) V.s, using Eq. A1l, yields

Eq. A3 for P3.

APPENDIX B

The derivation of the Assertion (under Modeling the Internal Mechanism of
the Cilia) follows.

(A2)

Assertion

(A3) The inextensibility requirement dictates the following equation:

FTSS = (1 + CTN)FNSK + CTNFTK + FNKS - CTNgNK
+ gT - CTNKTFB,

(B 1)

Start by presenting the velocity, V, in terms of the local coordinates:

V = VTT + VNN + VBB. (A4)

Differentiating the location vector, r(s,t), twice, with respect to s and to t
yields

Tt = Vs. (A5)

where CTN = CT/CN-

Proof
The force balance equation yields the following vectorial equation

Fs-= 4.

As explained in the Modeling section, interchanging the order of differen-
tiation is allowed only because the curve is inextensible.

After using Eq. 5 we obtain

Tt = (VTS - KVN)T + (VNS + KVT - TVB)N + (VBS + TVN)B. (A6)

Since T = 1, we have

0 = (T * T), = 2Tt * T. (A7)

Scalar multiplication of Eq. A6 by T, using Eq. A7 yields

VT, - KVN = 0. (A8)

Equation A8 is a necessary condition that must hold between the velocity
components, in order to maintain inextensibility. Clearly, Eq. A8 is the same
condition that was derived by H-B, while developing the 2-D geometric
equations. One should note that the binormal component of the velocity does
not appear in Eq. A8. The conclusion is that a binormal motion does not
affect the curve's length (for an inextensible curve), which is an interesting
observation in itself. Differentiating the left-hand side of Eq. A5 again, with
respect to s, and applying Eq. 5 to the left-hand side (obtaining the right-hand
side is straightforward) yields

Tts = (Ts)t = (KN)t = KNt + KtN. (A9)
Since N = 1, it follows that Nt1 N = 0. Multiplying Eq. A9 by N and
using Eq. A8 again, we obtain Eq. Al.

Next, we develop an equation for Tt. Differentiating Eq. A5 with respect
to s yields

(B2)

Applying the Frenet equations (Eq. 5), we obtain the following equations
from the components of Eq. B2:

(B3)= FTS - FN K,

ON = FNS+ FT K -TFB,

OB = FBS + TFN-

(B4)

(B5)
Finally, substituting Eqs. 4, B2, and B4 into Eq. A8 yields the desired equa-
tion (Eq. B1).

Note that for T = 0 (i.e., the case where the cilium is planar), Eq. B 1
reduces to its analogous planar equation in G-L.

APPENDIX C
In this appendix we derive the equations for the elastic moment:

FN = EbKS

FB = EbKT

(Cl)

(C2)

for the elastic (shear) forces that are developed in an elastic rod (i.e., a cilium
with no engine) in order to maintain equilibrium. These expressions are
derived under the assumptions that the rod is isotropic and is subjected to
external forces (with no external torque).

Equations Cl and C2 are obtained by differentiating the expression for
the elastic moment

M = EbKB,
(KN)t = Vs.

Define

13- (l/K)(KN)t - B = (l/K)V,, * B = Nt * B.

Differentiating 3 with respect to s we obtain

(AIO)

(All)

(3S=Nts * B + Nt * B. = (TB-KT)t *B-TNt * N, (A12)

(C3)

with respect to s. Using the Frenet equations and the equilibrium of the
forces and moments (see G-L)

Ms = TX F. (C4)

To justify Eq. C3 we follow the notations of Hines and Blum (15). We define
(at each point along the cilium) a set of three orthogonal unit vectors (named
body coordinates) x, y, z, where z is a unit vector in the direction of the
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neutral axis (the centerline) of the cilium (i.e., T). The vectors x and y are
chosen in such a way that the body coordinate system is right-handed. The
unit vectors x, y, and z change their orientation, as a function of s, in rates
that are denoted KX, KY, and KZ, respectively (that is, if the change from body
coordinates at s to body coordinates at s + ds is represented as successive
rotations by the angles Ox, Oy, and Oz about the x, y, and z axes, respectively,
then KX = dO.Ids, KY = dOy/ds, and KZ = dOzIds). Consequently, KX represents
rotation about the x axis (in the y-z plane) and KY represents the analogous
rotation about the y axis. KZ, which represents rotation about the z axis is
the twist of the cilium, and it should not be confused with its torsion (see
Eq. C8, below). Linear elastic properties can be expressed with these no-
tations by

MX = E.K., MY = EYKY, MZ = EZKZ (C5)

where EX, EY, EZ are the resistances to bending in the y-z and x-z planes,
and to twisting about the z axis, respectively (22).

It can be proven (see Ref. 18 for details) that differentiation with respect
to s, in body coordinates is determined by

XS= -K Z + KZY, Ys = KXZ CZX, Z = 0. (C6)
With Eq. C6 and the Frenet equations one can relate K and T to Kx, KY, and
Kz, and write B and N in body coordinates as follows:

K = (KX + KY)12 (C7)

T= KZ + [arctan(K/Kx)]s (C8)

B = (Ky/K)y + (KX/K)X (C9)

N = -(K,/K)y + (Ky/K)X. (C10)

The assumption that the cilium is isotropic (e.g., due to its circular cross
section and uniform material properties) implies that EX = EY, which is
denoted by Eb. Zero external torque implies that KZ vanishes. Using Eqs.
C5-CIO, Eq. C3 is now straightforward.

In the general case one would like to consider the internal structure of
the inner filaments of the cilium, rather than settle for "effective" elastic
properties. In contrast to the isotropic case, M will then have tangential and
normal components as well according to Eqs. C6-C1O. Twist (and external
torque) can also be incorporated by adding appropriate terms to Eq. C4.
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