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Monte Carlo Simulation of Lipid Mixtures: Finding Phase Separation

Juyang Huang and Gerald W. Feigenson
Section of Biochemistry, Molecular and Cell Biology, Biotechnology Building, Cornell University, Ithaca, New York 14853 USA

ABSTRACT The nonideal mixing of phosphatidylserine (PS) and phosphatidylcholine (PC) binary lipid mixtures was studied
by computer simulation based on a model wherein the excess energy of mixing is divided between an electrostatic term and
one adjustable term AEm that includes all other nonideal interactions. The lateral distribution of the lipids and the energy of the
mixtures were obtained by using Kawasaki relaxation in a canonical ensemble. The Gibbs free energies were calculated by
Kirkwood's coupling parameter method. The simulation results are strongly dependent on simulation size for sizes smaller than
about 1000 lipids. Nonideal interaction between lipids can result in large scale separation of lipid phases of different composition
at reasonable AEm values as well as clustering of like lipids. In plots of total Gibbs free energy of mixing versus PS mole fraction
in PS/PC, the boundaries of the two phase region could be accurately determined. The electrostatic interaction influences cluster
size and shape, and also the composition of phases in the two-phase region.

INTRODUCTION

Nonrandom mixing of biomembrane components has im-
portant implications in cell biology (Sweet and Schroeder,
1988; Thompson et al., 1992). In both simple model sys-
tems and in real biomembranes, descriptions of nonrandom
mixing range over enormous and difficult-to-define scales
of size and time (Wolf, 1992; Edidin, 1990; Kinnunen,
1991). Purely thermodynamic approaches enable the de-
scription of nonideal (i.e., nonrandom) mixing without ex-
plicit dependence on the size of clusters or "domains"
(Tenchov, 1985; Lee, 1977). In contrast, computer sim-
ulations of biomembrane models enable a clear pictorial
representation of the nonrandom mixing (Sperotto and
Mouritsen, 1991; Lookman, 1982).

In a recent paper (Huang et al., 1993), we showed that the
nonideal mixing of the negatively charged lipid PS and the
zwitterionic lipid PC could be explored by comparing ex-
perimentally determined activity coefficients, )yexp (Feigen-
son, 1989; Swanson and Feigenson, 1990), with activity co-
efficients, Ycalc, that were calculated from a computer
simulation. The simulation is based upon a model wherein
the excess energy of mixing is divided between an electro-
static term, U(, and one adjustable term, AEm, that includes
all other nonideal interactions. After this earlier study, in
order to compare mixing with and without electrostatic in-
teraction, we performed a set of computer simulations on
systems without, as well as with, electrostatic interaction.
Our further work proves that the simulation actually does
take the system to equilibrium, no matter what were the ini-
tial conditions. We also find that the equilibrium properties
of the system strongly depend upon the size of the simulation.
A key result from the earlier study was that reasonable values
of AEm should result in lateral separation of fluid bilayer
phases that differ in PS/PC ratio. In the present study, we
describe the calculated phase diagram for PS/PC mixtures
and the simulation size effects on the phase diagram. We also
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explore the behavior of the computer simulation procedure
as a one-phase region becomes more and more nonideal, and
finally splits into two phases.

COMPUTER SIMULATION METHOD

Model for lipid mixing

Binary lipid mixtures are modeled as a two-dimensional tri-
angular lattice. Each lattice site is occupied by a single lipid.
The area of each site is 62 A2 (Nagle and Weiner, 1988). The
total number of lipids (N), the number of PS (Nps), and the
number of PC (Npc), are fixed for each simulation.
The total energy of a PS/PC mixture is given by (Huang

et al., 1993):

UT ZNp UPS-PS + ZNpc Upc-pc
2 2

+ NpspACEm + Uel(XPs), (1)
where Ups-Ps and Upc-pc are the interaction energies for the
designated lipid contacts, Nps-pcis the total number ofPS/PC
contacts in the lattice, Z is the number of nearest neighbors
to a lattice site, which is 6 for a triangular lattice, Uel(XPs)
is the long-range electrostatic repulsion energy between PS
molecules at PS mole fraction XPs, and AEm is the nonelec-
trostatic excess mixing energy of a PS/PC pair, which is the
only adjustable parameter used in our simulation.
The first two terms of U' in Eq. 1 are independent of lipid

distribution. Therefore they do not contribute to the nonideal
mixing. The third term accounts for all nonelectrostatic con-
tributions as nearest-neighbor interactions between PS and
PC. The last term in Eq. 1 is the electrostatic energy of PS
molecules. The detailed calculation of this term can be found
in our earlier paper (Huang et al., 1993). Briefly, it utilizes
a discrete charge theory for membranes developed by Sauve
and Ohki (Sauve and Ohki, 1979) to account for the elec-
trostatic repulsion between PS molecules. With their theory,
the local electrostatic potential produced by an arbitrary ar-
rangement of charged lipid can be calculated.
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In order to compare lipid mixtures with or without elec-
trostatic charge, we also did a set of simulations with no
electrostatic interaction. In this case, PS has no electrostatic
charge, the last term in Eq. 1 is removed, and only the
nearest-neighbor interaction is included in simulations.

Simulation of lipid lateral distribution

All simulations were caffied out on a two-dimensional 100
X 100 triangular lattice, except for those aimed to study the
finite size effect. A standard periodic boundary condition
was used. For each simulation, N, Xps, AEm, and Twere held
constant (i.e., a canonical ensemble). The Kawasaki relax-
ation method (Kawasaki, 1972; Jan et al., 1984) was used to
bring the system to equilibrium: a lipid can interchange its
position with that of a nearest neighbor with a probability of
minimum (1, exp(-Au)), where Au is the energy difference
of the system due to the interchange ("lipid move").
Each simulation gives an energy of the mixture and a noni-

deality parameter v (defined as v = Nps_pc(observed)/
NPS-pc(ideal)). We first allow a mixture to relax to equilib-
rium, then the ensemble average of the energy of the mixture
is obtained in 2,000-30,000 Monte Carlo steps, depending on
how nonideal is the mixture. Typically, more Monte Carlo
steps are needed as the system approaches a two-phase re-
gion. Each simulation was repeated independently at least
eight times, and the average value of these replicates was
used to calculate the Gibbs free energy.

Calculation of Gibbs free energy
Kirkwood's coupling parameter method (Kirkwood, 1935;
1936; Haile, 1986) was used to calculate the excess Gibbs
free energy of the lipid mixtures (Huang et al., 1993),

AGEX

-No[ (Uel(xps))d XPS-Ue(XPS = 1) N

XAE = 0

rAEm

+ (Nps-pc)/N dAE (2)

IA= 1~J-2
where AE and Al, are coupling parameters, ( ) represents en-
semble averages, andNo is Avogadro' s number. For mixtures
with no electrostatic charge, only the second integral is used.
The total Gibbs free energy of mixing is then

AG'ia = AGE + RT(Xpsln XPs + Xpsln XPs) (3)

and Mouritsen, 1991; Zhang et al., 1992, 1993). The general
effect of finite size on the simulation is well understood
(Privman, 1990). However, finite size effects on each par-
ticular system must be examined. Therefore, we performed
a series of simulations with various lattice sizes. The total
number of lipids in the simulation, N, ranged from 100 to
10,000. We chose two neutral lipid mixtures of equal lipid
fractions with AEm = 0.4 or 0.5 kT. Both mixtures are in the
one-phase region, but the latter is very close to the two-phase
boundary. Fig. 1 shows the normalized energies of mixtures
obtained from simulations as a function of 1/N. We see that
despite using periodical boundary conditions, strong size de-
pendence was found for simulations with size smaller than
about 1000 lipids. That is, the energy of a mixture increases
as simulation size decreases.
The simulation lattice size limits the cluster size of like

lipids. When the lattice size used is similar to or smaller than
the largest cluster size, the energy and the lipid distribution
obtained from simulation will be strongly dependent on the
lattice size. Small simulation lattice size prevents big clusters
from forming, and the extra interfacial regions due to small
clusters result in an overestimate ofenergy. The mixture with
AEm = 0.5 kT is closer to the phase boundary and has larger
cluster size, so it should show stronger dependence on simu-
lation size than the mixture with AEm = 0.4 kT. Fig. 1 shows
that this indeed is the case. As the system crosses a phase
boundary and the number of phases increases, any finite size
simulation will eventually fail, because the size of new
phases becomes infinite.
The Kawasaki relaxation method was used to bring the

system to equilibrium. A meaningful ensemble average of a
thermodynamic quantity can only be obtained after the sys-
tem reaches equilibrium. This requirement becomes increas-
ingly problematic as the mixture approaches a two-phase
region, where simulations become inefficient (i.e., the num-
ber of Monte Carlo steps needed for each simulation in-
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RESULTS AND DISCUSSION
Size effects and equilibrium test

A two-dimensional triangular lattice is often used in com-
puter simulation to model lipid membranes (Mouritsen et al.,
1983; Mouritsen, 1991; Ipsen and Mouritsen, 1988; Sperotto

FIGURE 1 Normalized energy of lipid mixtures as a function of the in-
verse of simulation size N. N ranges from 100 to 10,000 lipids. Energies are
normalized with that from the simulation of N = 10,000. The simulations
were performed on binary mixtures of equal lipid fraction with nonideal
interaction energy AEm = 0.4 kT (0); 0.5 kT (A).
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FIGURE 2 Equilibrium test for binary mixtures of
equal lipid fractions with nonideal interaction energy
AEm = 0.4 kT. Electrostatic interaction of lipids was not
included. (a) Nonideality parameter as a function of
Monte Carlo Steps. Simulation starts from completely
random mixing of two lipids (L); near equilibrium (X);
from big clusters of lipids (0). (b-d) Lipid lateral dis-
tribution of initial states and final states. (b) The ran-
domly mixed initial state; (c) the big-cluster initial state;
(d) the fmal equilibrium state.
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of Monte Carlo steps we used ranged from 400 to 4000,
depending on how nonideal a particular mixture is.

Phase behavior of lipid mixtures

The total Gibbs free energy was calculated for a given mix-
ture composition and nonideal interaction energy AEm ac-

cording to Eqs. 2 and 3. Fig. 3 a and Fig. 4 show AGT vs.

XPs for lipid mixtures with and without electrostatic inter-
action, respectively. Fig. 3, b-d, shows snapshots of the lat-
eral distribution of lipids at several different values of AEm.
At low AEm, mixing of two lipids is very favorable.
AG' vs. XPs is concave upwards. The lateral distribution of

1

creases enormously when phase separation occurs). How-
ever, simple but crucial tests are sometimes neglected, and
nonequilibrium results get into the literature. To see how
many initial Monte Carlo steps were needed to relax a mix-
ture to equilibrium (i.e., before taking the ensemble average),
we ran the same simulation several times with very different
initial states: (i) random mixing oftwo lipids; (ii) big clusters
of the same lipid type; and (iii) a state near equilibrium. For
the particular mixture shown in Fig. 2, we see that the
Kawasaki method is able to quickly relax systems from the
different initial states within about 100 Monte Carlo steps.
However, the history of the initial state is not completely
erased until about 500 Monte Carlo steps. The initial number

0.2

two-phase
region

04

FIGURE 3 Phase behavior of lipid mixtures with
electrostatic interaction. (a) The total Gibbs free en-

ergy of mixing, AG', as a function of PS fraction,
Xps, and nonideal interaction energy, AEm. The dotted
area represents the two-phase region; (b-d) snapshot
pictures of the lateral distribution of lipid mixtures
with Xps = 0.5 for various assumed PS-PC interac-
tions. (b) AEm = 0 kT, lipids distribute uniformly; (c)
AEm = 0.5 kT, PS and PC form clusters; (d) AEm =

0.6 kT, phase separation occurs: the mixture splits up

into two phases with Xps = 0.15 and Xps = 0.75,
respectively. PS (-); PC (0).
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_______________________a the double tangent method (i.e., aAGT.jX = a)/aX

mAGix(X = b)/aX, where a and b are phase boundaries),
0 AEM=0.6 kT ~~~~~~~~andthe amount of material in each phase is given by the lever

0 ~~~~~~~~~~~~~rule(Moore, 1962).
Fig. 3 c shows the lateral distribution of a lipid mixture

-0.1 ~ ~ ~~ 04 Twith Xps = 0.5 and AEm = 0.5 kT. In this case, PS molecules

-0.2 ~ ~~~~~~~~~~~~formclusters despite the electrostatic repulsion. We note that
R~~~~ -0.2 ~~~~~~~~the distribution shown in Fig. 3 c represents the maximum

possible nonideality (maximum clustering for this one-phase
-0.3 mixture. Based on our determination of the activity coeffi-

cients obtained from Ca21-PS binding experiments (Feigen-
-0.4 -son, 1989; Swanson and Feigenson, 1990), and our earlier

computer simulation work (Huang et al., 1993), we believe
-0.5 -that this calculated distribution is a good representation of the

mixing behavior of (16:0, 18:1)PS/(l16:0, 18:1)PC and (16:0,
-0.6 -18:1)PS/(14:1, 14:1)PC binary systems. The fact that these

0 kT mixtures are so close to the two-phase region implies that
-0.7 II phase separation can occur in real membranes composed of

0 0.2 0.4 0.6 0.8 1 nonideally mixed lipids.
X The nonelectrostatic excess mixing energy of a PS/PC

pair, AEm, in Figs. 3 and 4 is in units of kT. In order to view

b ~~~~~~thephase behavior in the normal T vs. X phase diagram, we
0 ..> L.~ ..1..! .-r... 2...i.. J.*. need to choose a mixture with fixed &EM value. For example,

two-phas...................... let AEm = 0.55 kT at 293 K, i.e., AEm = 2.22 X 10-21 J. A
region ................. ~~~phase diagram is then constructed, using the data in Figs. 3

a and 4 b for this particular mixture. Fig. 5 shows the phase
boundaries of such mixtures with and without electrostatic

~~interaction. The regions under the boundaries are two-phase
regions, and above are one-phase.

Comparing systems with and without electrostatic inter-
............................action (Fig. 5), an interesting similarity is that in both cases

-0 06the two phase regions melt at temperatures above about 315
-91 ~ ~ :i:iiiK (equivalent to AEm < 0.5 kTin Figs. 3 a and 4 b). The clear

6 'kY ~~differences between the two systems are the shapes and po-

-0.09 ~~~~~~~~~~~~sitionsof the phase boundaries. The phase boundary is sym-
-0.09 ~~~~~~~~~~~~~~metricalabout X= 0.5 without electrostatic interaction. With

0.45 kT 350
-0.12

0 0.2 0.4 0.6 0.8 1 _
X 330

FIGURE 4 Phase behavior of lipid mixtures without electrostatic inter- (D
action. (a) The total Gibbs free energy of mixing, AGI., as a function of 3
lipid fraction, Xps, and nonideal interaction energy, AEm. (b) Enlarged to Ca
show phase boundaries. The dotted area represents the two-phase region. CD)

E
(D 290

lipids is uniform over the entire lattice at all Xps (Fig. 3 b). H
As AEm increases, interactions between lipids cause clus-
tering of like lipids, but the mixture stays as one homoge- 270
neous phase (Fig. 3 c). When AEm is high enough, phase 0 0.2 0.4 0.6 0.8 1
separation occurs: the mixture splits up into two phases with X
different lipid composition (Fig. 3 d). The dotted area in
Fig. 3 a represents this two-phase region. Geometrically, FIGURE 5 Phase diagram of a hypothetical lipid mixture with AEM

when AG.becoms convx upwars at ay lipidcompo- 2.22 Xl1021 J. The areas under curves are two-phase regions. Phase bound-whnmibcmscovxuwrsaxaylpdcmo aries were calculated from simulations with size N = 10,000 and electro-
sition (i.e., AG 0), p)hase sep)aration occurs. The sttcitrcin()wihN=1,0adwtoueltottcitrcin
positions of the phase boundaries can be determined by (A); and with N =10adwtout electrostatic interaction (0).
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electrostatic interaction the boundary shifts to lower PS con-
centration and lower temperature, and also the two-phase
region is considerably narrower. This is a direct result of
electrostatic repulsion between PS molecules. When phase
separation occurs in a system with electrostatic charge, for-
mation of a phase containing high concentration of charged-
lipid is unfavorable.
We note that AGL plotted in Figs. 3 and 4 as well as Eq.

3 does not include the (unknown) free energy difference of
the two pure lipid states. However, that energy term is a linear
function of the lipid composition. The positions of the phase
boundaries will not change when a linear function is super-
imposed on AG'mX

Finite size effect on phase behavior

Due to the finite size effect, in a two-phase region the ca-
nonical ensemble simulation cannot give a correct descrip-
tion of lipid lateral distribution and always overestimates the
energy of such mixtures. Thus, we see in Figs. 3 a and 4 that
the Gibbs free energy in the two-phase region is higher than
that at the phase boundaries with the same AEm value. This
effect is more severe in systems with electrostatic charge
(Fig. 3 a), since the electrostatic repulsion creates smaller
clusters and more interfacial regions. For the same reason,
the lateral distribution shown in Fig. 3 d was not obtained
from a single simulation within a two-phase region. Instead,
it was pieced together from two simulations, performed at
each phase boundary.

In order to understand how the phase diagram depends on
simulation size, we also performed the Gibbs free energy
calculation with simulation size N = 100. Fig. 6 shows

0.03

0

p -0.03

C -0.06

-0.09

-0.12

AG', vs. X for the same systems shown in Fig. 4 b but
calculated withN = 100. Comparing Figs. 4 b and 6, we see
that, for the smaller simulation size, (i) the values of
AG[. are always higher; (ii) the free energy barriers between
two minima of AG'. are higher; and (iii) some phase sepa-
rations are predicted (e.g., AEm = 0.5 kT) that disappear in
larger size simulations. Fig. 5 shows the phase boundaries
generated fromN = 100 simulations as well as those for the
N = 10,000 simulations for the mixture discussed earlier,
which has AEm = 2.22 X 10-21 J. We see that N = 100
simulations predict higher transition temperatures than those
fromN = 10,000 simulations. For example, at X = 0.5, the
transition temperature is about 24 K higher.

Since the calculated phase boundaries depend on the
size of the simulation, it is important to find out whether
N = 10,000 is large enough to accurately determine the
phase boundaries. We note first that Fig. 1 shows that, for
N = 10,000, any corrections are within the uncertainty of
the simulation for the one-phase region. Second, the ther-
modynamic quantities in the limit of infinite lattice size
can be estimated using finite size scaling theory (Binder,
1992; Siepmann et al., 1992; Privman, 1990). Since we
had two sets of Gibbs free energy diagrams generated with
two different simulation sizes, we could verify the phase
boundaries using the method developed by Lee and
Kosterlitz (Lee and Kosterlitz, 1990, 1991). Briefly, by
watching how the barrier height between minima in
AG' vs. X diagrams changes with simulation size N, the
true AEm values giving rise to phase separation can be de-
termined. We found perfect agreement between our detec-
tion of minima in Fig. 4 b where N = 10,000 and barrier
height comparison analysis according to Lee and Kosterlitz
of Figs. 4 b and 6, in predicting phase separation.'

Comments on the computer simulation method

We found that the Kawasaki relaxation method became in-
efficient for sampling the system phase space when large
clusters form. This inefficiency can be reduced by using a
cluster algorithm (Swendsen and Wang, 1987; Wang and
Swendsen, 1990), which we will incorporate into our future
simulation work.
Our original goal was to simulate the activity coefficients

of lipids in binary mixtures. We used Kirkwood's coupling
parameter method to calculate the Gibbs free energy of mix-
ing from computer simulation. The advantage of this method
is that the Gibbs free energy ofmixing can be mapped exactly
over the whole one-phase region, so that the activity
coefficients of lipids can be calculated (Huang et al., 1993).

1 Lee and Kosterlitz (1990, 1991) used that part of the free energy which
0 0.2 0.4 0.6 0.8 1 describes the composition dependence of the total free energy for their

X analysis. In our case, the Gibbs free energy of mixing was used. Note also
that the free energy in their papers was defined as the free energy of all

FIGURE 6 Phase behavior of lipid mixtures without electrostatic inter- particles within the simulation box, which is equivalent to the quantity
action calculated with simulation size N = 100. All the parameters are the AG' N/N0 in our notation. An application of this method for a bilayer
same as in Fig. 4 b except that the simulation size is 100 times smaller. mixture can be found in Zhang et al. (1993).
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Although this approach is often used to calculate the free
energy for lattice models, it may not to be the best method
to determine the phase diagram: (i) to construct a phase dia-
gram, we need to do many simulations to cover the whole
one-phase region; and (ii) systems with little interface, such
as in Fig. 4 b, have small barrier height, making precise
determination of the phase boundary difficult. A better way
to construct a phase diagram directly may be to use the re-
cently developed Gibbs ensemble method (Panagiotopoulos,
1987; Panagiotopoulos et al., 1988). With this method, the
interfacial region existing in a canonical or grand canonical
ensemble simulation is completely eliminated, and the phase
boundaries for a given AEm value can be determined directly
from a single simulation.

Seemingly reasonable computer simulations of mixtures
can in fact be highly misleading without knowledge of
the phase boundaries. For example, one could obtain a
lateral distribution of lipids from a simulation without real-
izing that there are two coexisting phases in that region.
The finite size effect would make that lateral distribution
meaningless.

SUMMARY

1. Computer simulation study of a model binary lipid
mixture shows that nonideal interaction between two types
of lipids can result in large scale phase separation as well as
microscopic clustering of like lipids, depending on the
strength of the interaction.

2. The Gibbs free energy of mixing can be calculated
from computer simulations for mixtures of PS and PC
using Kirkwood's coupling parameter method. The bound-
ary of the two-phase region can be recognized from
AG TX vs. X plots.

3. The finite size effect on simulation results was studied
for the lattice model we used. In the one-phase region, there
is strong size dependence for simulation size smaller than
about 1000 lipids. Within the two-phase region, canonical
ensemble simulation cannot produce the true lateral distri-
bution or energy of lipid mixtures. Phase boundaries and
AG'. can be determined accurately with simulation size of
10,000 lipids.

4. Comparison of mixtures with and without electrostatic
interaction shows a profound influence on lipid mixing: elec-
trostatic repulsion prevents formation of big clusters of PS
molecules, creating more interface when phases separate,
narrowing the two-phase region, and shifting the phase
boundary to lower PS mole fraction.

This work was supported by National Institutes of Health grant HL-18255.
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