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ABSTRACT The patrtial specific adiabatic compressibilities of myosin subfragment-1 (S1) and heavy meromyosin (HMM) of
skeletal muscle in solution were determined by measuring the density and the sound velocity of the solution. The partial specific
volumes of S1 and HMM were 0.713 and 0.711 cm?®/g, respectively. The partial specific adiabatic compressibilities of S1 and
HMM were 4.2 X 10-'2 and 2.9 X 10-'2 cm?/dyn, respectively. These values are in the same range as the most of globular
proteins so far studied. The result indicates that the flexibility of S1 region almost equals to that of HMM. After binding to
ADP-orthovanadate, S1 and HMM became softer than their complexes with ADP. The bulk moduli of S1 and HMM were of the
order of (4—6) X 10'° dyn/cm?, which are very comparable with the bulk modulus of muscle fiber.

INTRODUCTION

It is well known that the essential molecular processes in
generation of tensile force for muscle contraction results
from the interaction between the thick (myosin-containing)
filaments and the thin (actin-containing) filaments. The mu-
tual sliding between two filaments is caused by a cyclic in-
teraction of the cross-bridges extending from the thick fila-
ments to the thin filaments. The cross-bridge is fueled
by ATP hydrolysis upon its surface (Huxley, H. E., 1969;
Huxley, A. F., 1974) and consists of the globular part of
myosin where both the active site for ATPase and actin bind-
ing site reside. With the isolated cross-bridge (myosin) in
solution, several conformational states have been revealed in
the course of ATP hydrolysis (Trentham et al., 1976; Morita,
1977; Eisenberg and Greene, 1980; Eisenberg and Hill,
1985). Among the conformational states, there are four mo-
lecular states depending on the chemical species of bound
nucleotide, i.e., ATP, ADP-P;, ADP, and no nucleotide.
There is a body of evidence for the structural change of myo-
sin in the solution depending on the bound nucleotide
(Goodno and Taylor, 1982; Craig et al., 1985; Applegate and
Flicker, 1987; Huston et al., 1988; Cooke, 1989; Katayama,
1989; Aguirre et al., 1989; Highsmith and Eden, 1990).
The adiabatic compressibility is defined as the ratio of the
compression of solute volumes in the presence of hydrostatic
pressure and its absence. In aqueous solution of protein, wa-
ter molecules bind to the surface of the protein and are com-
pressed (hydration). Therefore, the adiabatic compressibility
is composed of two components; the compactness of protein
itself and the hydration of protein (Gekko and Noguchi,
1979). The adiabatic compressibility is experimentally de-
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termined from the combination of measurements of 1) the
partial specific volume of solute and of 2) the concentration
dependence of sound velocity in solution (Sarvazyan, 1979;
Gekko and Noguchi, 1979). So far the method is applied to
thermodynamic studies of several proteins; for examples, the
conformational change of myoglobin was traced by the com-
pressibility measurement (Leung et al., 1986) and a large
adiabatic compressibility change of cytochrome ¢ was found
upon conversion from ferri to ferro form (Eden et al., 1982).

In the present work, we studied the adiabatic compress-
ibilities of myosin subfragment-1 (S1) and heavy meromyo-
sin (HMM) to explore conformational difference due to bind-
ing of ADP and ADP plus orthovanadate (ADP-V;). The
transition of cross-bridges from the ADP-P; bound state
(weak binding state) to ADP bound state (strong binding
state) is essential for tensile force generation in muscle
(Eisenberg and Hill, 1985; Brenner, 1987). A large-scale
structural difference is expected to exist between the weak
and the strong binding states of myosin head (Brenner, 1987).
Therefore, it is interesting to compare the adiabatic com-
pressibility of S1 and HMM obtained in the solution with the
elasticity of muscle fiber which being determined in me-
chanical studies (Truong, 1974; Ford et al., 1977; Jung et al.,
1988) and in ultrasonic waves (Tamura et al., 1982; Hatta
et al., 1988).

MATERIALS AND METHODS

Chemicals and samples

ATP, ADP, and a-chymotrypsin were purchased from Boehringer Mann-
heim Biochemicals, Oriental Yeast, and Sigma Chemical Co. Ltd, respec-
tively. Bovine serum albumin (BSA) used for a control measurement was
purchased from Sigma (lot A4378). All other chemicals were of reagent
grade.

Myosin was prepared from rabbit skeletal muscle by the method of Perry
(1955) with a slight modification described by Holtzer and Lowey (1959).
Myosin was dissolved in a solution (0.5 M KCl, 25 mM potassium phosphate
buffer, and 1 mM dithiothreitol (DTT) at pH 7.0) keynoting glycerol to 50%
(V/V) and stored at -20°C. Stocked myosin was used within 3 months.
S1 and HMM were prepared by a-chymotryptic digestion of myosin as
described by Weeds and Taylor (1975). S1 was purified by gel filtration
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(Pharmacia ACA34) in 100 mM KCl, 20 mM Tris-HCl, and 5 mM
2-mercaptoethanol at pH 8.0. Purified S1 contained two isoenzymes, S1
(A1) and S1 (A2), containing alkali 1 light chain (A1) and alkali 2 light chain
(A2), respectively. HMM was purified on an anion-exchange column
(Whatman DES52) equilibrated in 50 mM Tris-HCI and 1 mM DTT (eluted
with a 0-0.5, M KCl linear gradient) according to the method described by
Margossian and Lowey (1982). S1 and HMM were used within a week after
digestion.

Sample proteins were diluted to protein concentrations of 1.5, 3.0, 4.5,
and 6.0 mg/ml with a buffer solution (100 mM KCl, 5 mM MgCl,, 0.1 mM
CaCl,, 10 mM Tris-HCI (pH 8.0), 3 mM NaNj, and 1 mM 2-mercapto-
ethanol) and dialyzed twice against the same buffer solution at 0°C. The total
time for dialysis was more than 36 h. The protein concentrations were de-
termined spectrometrically by using A% = 6.0 cm™' for HMM, A}% = 7.4
cm™! for S1 (Margossian and Lowey, 1978) and A}, = 6.6 cm™' for BSA
before the density and the sound velocity measurements. The final con-
centrations of the sample were calculated from the total amount of solution
after ADP and V; were added. Sample was out-gassed with an aspirator for
10 min, centrifuged at 90 Xg for 3 min to press out small air bubbles trapped
in the solution, and introduced carefully into the measurement cell of density
and sound velocity. Samples and the solvent containing ADP were prepared
by addition of 175 ul of 50 mM ADP into 2 ml of sample and solvent before
being out-gassed. Samples and the solvent containing ADP plus orthovana-
date (V;) were prepared by addition of 80 ul of 50 mM ADP and 40 ul of
100 mM V; into 2 ml of sample and solvent before being out-gassed. The
V; solution was extracted from V,Os according to the method of Goodno
(1982).

Density measurements and partial specific
volume

Densities of the solvent and the protein solutions were measured with a
precision density meter, DMA-02C (Anton Paar, Graz, Austria). The mea-
surement of temperature was carried out with a Pt>* -resistance at the outside
of the sample cell and maintained at 18 * 0.003°C. The sample temperature
was controlled to better than +0.001°C, because the sample was within a
glass cell in an air bath. Room temperature was controlled 25 * 0.5°C to
keep the instrumental condition. To eliminate systematic error, reference
measurements with distilled water were achieved before and after each mea-
surement of the protein solution. The accuracy of the measurement was *1
X 107, The instrument constant was determined by calibration with NaCl
solutions of known density (International Critical Tables).

The partial specific volume of a protein, v, (Gekko and Noguchi, 1979),
is defined as

vo=lim(l -T) /¢ 1)

c—0

where

T'=(p— c)p, 2

T, the apparent volume fraction of the solvent in solution; c, the protein
concentration in grams per milliliter of solution; p, the density of solution
and, po, the density of solvent.

Sound velocity measurements

The velocity of ultrasound in protein solution was measured by a “sing-
around pulse method” developed by Greenspan and Tschiegg (1956). A
schematic diagram of the measurement system made with integrated circuits
is shown in Fig. 1 a. The relative time sequence of the pulse trains at various
points of the circuitry is also shown in Fig. 1 b. Recording of the sound
velocity is achieved as follows. Brief trains of sinusoidal waves (A) are
generated by a function generator (model 193, Waveteck, San Diego, CA)
to transmit ultrasonic waves in protein solution through the ceramic trans-
ducer. The frequency of ultrasonic waves was S MHz and the width of the
transmitted wave trains was about 1 us. Absorption was not observed on
the screen of the oscilloscope (model COS5041, Kikusui, Tokyo, Japan) in
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FIGURE 1 (a)Experimental arrangement of the parts for recording sound
velocity. A1, preamplifier; C1, comparator; M1, monostable multivibrator.
(b) Diagram illustrating the method for measuring sound velocity. Signals
A-E correspond to A-E in the circuit shown in a. (A) the original wave train
and (B) the corresponding propagated wave train. The propagated wave
train (B) is amplified (C) and comparated (D) to get a rectangular pulse (E).
The pulse (E) is fed to the function generator to transmit original wave (A').
Frequency from A to A’ is detected by a counter to determine the sound
velocity.

the protein solutions compared with the solvent. The generated ultrasonic
waves travel through the protein solution and are received by the other
transducer. The transmitted wave signals (B) are fed to a voltage comparator
(C1) after amplification with a preamplifier (A7) with a bandwidth capacity
of DC to 40 MHz. The output of the comparator (D) is further fed to a
monostable multivibrator (M) to get a single rectangular pulse (E). The
pulse (E) triggers the function generator which generates the brief trains of
sinusoidal waves (A’). The above process from A to A’ is successively
repeated after the ultrasonic waves (A') are generated. The frequency of the
period from A to A’ (about 8 us) is obtained by a counter (TR5822, Takeda,
Tokyo, Japan) averaging for about 8 s to determine the trip time of ultrasonic
waves precisely. The path length for sound was 1.2 cm (outside) of an optical
cuvette (inside, 1 cm) being used as a sample cell which needs a sample of
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~1 cm?3. Then, the sound velocity is obtained as an amount of the path length
divided by the trip time. To eliminate systematic error due to circuit prop-
erties, reference measurements with distilled water were achieved before
and after each measurement of the protein solution to limit the error of the
sound velocity being within *1 cm/s. Temperature of the measurement cell
was recorded by using a Pt?>*-resistance with a digital multi-meter (HP-
3478A, Hewlett-Packard, Loveland, CO) and kept at 18 * 0.003°C with a
thermobath (RTE-110, Neslab, Newington, NH).

Adiabatic compressibility

The adiabatic compressibility, B, is related to the sound velocity, «, and the
density of solution, p, by the Laplace equation.

B = 1/(pu?) ©)]

The partial specific adiabatic compressibility of the solute, B, was calcu-
lated with the following equation as a first approximation (Sarvazyan, 1979;
Gekko and Hasegawa, 1986)

B, = — (1/v,)(8v,/6P),
= (By/vy) lim (B/B, — I)/c
c—0

=~ (By/vo) lim (1 — 2Aufuy, — Aplp, — T')/c

c—0

= (Bo/vo) lin")l {—[2Au/(uyc)] — [Ap/(pyc)] + vo}

= (ﬂo/vo){ —Z(Iim\u/c)(1—> - (-1—) + 2v0} @
0 Uy Po

vo, the partial specific volume of solute; P is the pressure; By [= 1/(poto?)]
is the adiabatic compressibility of the solvent; I, the apparent volume frac-
tion of the solvent in solution; c, the protein concentration in grams per
milliliter of solution; u, the sound velocity in solvent; Au = u - ug; po, the
density of solvent; and Ap = p — po. In Figs. 2 and 3, Ap are plotted against
the protein concentration, c. In Figs. 4 and 5, Au are plotted against the
protein concentration, c.
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FIGURE 2 Plots of Ap against the protein concentration, ¢, of S1. Ap
= p — po, Where p is the density of the protein solution and py is the den-
sity of the solvent. The symbols are; S1 without nucleotide (open circles
and solid line), S1:-ADP (closed circles and dashed line), and S1:-ADP-V;
(open triangles and solid line). The slopes of lines are obtained from Egs.
1 and 2.
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FIGURE 3 Plots of Ap against the protein concentration, ¢, of HMM. Ap
= p - po, Where p is the density of the protein solution and py is the density
of the solvent. The symbols are: HMM without nucleotide (open circles and
solid line), HMM-ADP (closed circles and dashed line), and HMM:-ADP-V;
(open triangles and solid line). The slopes of lines are obtained from Egs.
1 and 2.
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FIGURE 4 Plots of Au against the protein concentration, c, of S1. Au =
u - up, where u is the sound velocity of the protein solution and u, is
the sound velocity in the solvent. The symbols are: S1 without nucleotide
(open circles and solid line), S1-ADP (closed circles and dashed line),
and S1-ADP-V; (open triangles and dotted line). The slopes of lines are
lim,_, o Au/c which are determined from the concentration dependence of the
sound velocities, Au/c, as the extrapolated value to zero protein concen-
tration by means of the least-squares method.

As shown in Eq. 4, the partial specific adiabatic compressibility,
Bs, is determined from the concentration dependence of sound velocity,
lim._,o Au/c, and the partial specific volume of solute, vo. Therefore,
in particular, precise measurements of these two quantity (lim._.o Au/c
and vg) are required to get the partial specific adiabatic compressibility of
protein.

RESULTS

The densities of the protein solutions and the solvent without
protein yielded an almost linear concentration dependencies
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FIGURE 5 Plots of Au against the protein concentration, ¢, of HMM.
Au = u - uo, where u is the sound velocity in the protein solution and uo
is the sound velocity in the solvent. The symbols are: HMM without nucleo-
tide (open circles and solid line), HMM-ADP (closed circles and dashed
line), and HMM-ADP-V; (open triangles and dotted line). The slopes of
lines are lim,_, Au/c which are determined from the concentration depen-
dence of the sound velocities, Au/c, as the extrapolated value to zero protein
concentration by means of the least-squares method.

shown in Fig. 2 for S1 and Fig. 3 for HMM. The partial
specific volume of a protein, vy, was determined from Egs.
1 and 2 as the extrapolated value of the apparent specific
volume to zero protein concentration by the least-squares
method. The partial specific volumes, v,, at 18°C are pre-
sented in the third column of Table 1 with the results of BSA
at 17.5°C. The v, values of S1 and HMM were in the range
of 0.706-0.739 cm?/g, in which v, of S1-:ADP-V; and
HMM:-ADP-V; were noticeably larger than v, of others.

TABLE 1 Effect of nucleotide binding on the physical
parameters of S1 and HMM

lim .o Au/c Bs X 102

Sample (cm/s/mg/ml) (cmdlg) (cm®/dyn)
s1 270+01(03) 0713 *0.004(0.006) 4.2 + 0.6 (L0)
SI'‘ADP  30.6+06(08) 0710 = 0.006(0.008) 0.7 + 12(L6)
SI-ADP-V; 289+05(0.7) 0739 = 0008(0010) 57+ 13(L7)
HMM 282+03(05) 0711 +0004(0.006) 29+ 0.8(12)
e 303+02(04) 0706 +0.003(0.005) 0.5+ 0.4 (0.)
MMDPV,  316+09(11) 0725+ 00060008 18+ 14(L8)
BSA 256+03(05) 0723 +0003(0.005 6.6+ 0.6(L0)
BYADP)  255502004) 0723400030005 650509
BoADPV)  258+0507) 072800030005 69+ 08(12)
LMM 0.711*

Partial specific volume (v;) and partial specific adiabatic compressibility
(Bs) of S1 and HMM at 18°C.

* Data of Young et al. (1964) at 5°C in 0.5 M KCl and pH 7.0 in 50 mM
phosphate buffer. The error values in a parenthesis are further considered
with the uncertainty in the concentration of protein based upon the Al%.
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The sound velocities in the protein solutions and the sol-
vent without protein yielded concentration dependence as
shown in Fig. 4 for S1 and Fig. 5 for HMM. The velocity
measurements were carried out with the samples prepared
independently from the density measurements. The concen-
tration dependence of the sound velocity, lim. .o Au/c, was
determined from the Aw/c values as the extrapolated value to
zero protein concentration by the least-squares method. They
are shown in the second column of Table 1 with the results
of BSA. The lim,_,o Au/c values of S1 were in the range of
27.0-30.6 cm/s/mg/ml, while those of HMM were in the
range of 28.2-31.6 cm/s/mg/ml.

The values of partial specific adiabatic compressibility, 3,
calculated from Eq. 4 are listed in the fourth column of Table
1 with the results of BSA. We found that the partial specific
adiabatic compressibility, B, of S1 ranges in (0-6) X 10712
cm?/dyn, which is close to the values of several globular
proteins (Gekko and Hasegawa, 1986). We also found that
HMM with or without nucleotide has the partial specific
adiabatic compressibility of (0-3) X 1072 cm?/dyn.

DISCUSSION

Partial specific volume and adiabatic
compressibility of S1 and HMM

According to the literature (Gekko and Hasegawa, 1986), the
partial specific volumes of 25 proteins obtained in water at
25°C are in a range from 0.69 to 0.75 cm>/g and their partial
specific adiabatic compressibility distribute in a range from
-2.5 X 107210 10.9 X 1072 cm?/dyn. There is a significant
correlation between the partial specific adiabatic compress-
ibility and the partial specific volume of these proteins. For
examples, myoglobin whose partial specific adiabatic com-
pressibility of 8.98 X 10712 cm?/dyn indicates flexible struc-
ture has a partial specific volume of 0.747 cm?/g, while
ribonuclease A whose partial specific adiabatic compress-
ibility being 1.12 X 1072 cm?/dyn has a smaller partial spe-
cific volume of 0.704 cm®/g.

In this sense, the partial specific adiabatic compressibility
of 4.2 X 1072 cm?/dyn and the partial specific volume of
0.713 cm®/g of S1 suggest that S1 has a common structure
in atomic packing. On the other hand, HMM has the partial
specific adiabatic compressibility of 2.9 X 10712 cm?/dyn
and the partial specific volume of 0.711 cm>/g. The partial
specific volume of LMM at 5°C in 0.5 M KCl was 0.711
cm?/g (Young et al., 1964). Though the ionic concentration
was different, this value was almost same as our values of
S1 and HMM. Young et al. (1964) measured the apparent
specific volumes of HMM and LMM. The apparent specific
volume of HMM at 5°C in 100 mM phosphate buffer was
0.720 cm>/g and that of LMM at 5°Cin 0.5 M KCl was 0.701
cm?/g, respectively. Since these apparent specific volumes of
HMM and LMM were obtained at high protein concentration
(20-35 mg/ml) with density gradient columns, these appar-
ent specific volumes of HMM and LMM were different from
the partial specific volumes of them. The partial specific
volume of myosin measured with a pyconometer at 15°C in
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0.5 M KClI was 0.725 cm?/g (Kay, 1960) and at 26°C in 0.4
M KCl was 0.728 cm>/g (Parrish and Mommaerts, 1954).
These values are larger than that expected from a sum of the
partial specific volumes of HMM and LMM. Gekko (1991)
calculated the partial specific adiabatic compressibility of
myosin (-18 X 10~!2 cm?/dyn) at 20°C. This value was much
smaller than those of S1 and HMM, may reflecting the effect
of rod region.

The partial specific volumes obtained experimentally are
smaller than the theoretical ones obtained as a sum of molar
volumes of the composite amino acid residues (Zamyatnin,
1972) using the known amino acid composition of myosin
(Maita et al., 1991); That is, 0.729 cm3/g for S1, 0.726 for
HMM, 0.720 cm?/g for S2, and 0.719 cm?/g for LMM. The
partial specific adiabatic compressibility of a protein ob-
tained experimentally comes from two contributions, the
cavity and the hydration (Gekko and Noguchi, 1979)

B, = —(1/v,)(8v,, /0P + BAv,,/5P) ©)
= B — (1/v,)(8A,/8P) (6)

where v,, is the volume of cavity for the unit mass of the
protein and Avg is the volume change of water for the unit
mass of the protein caused by solvation or hydration. The
first term on the right-hand side of Eq. 6 gives the partial
specific adiabatic compressibility of the protein itself, which
is called as the intrinsic compressibility (B,). The second
term is negative. Since the cavity and hydration effects can-
celed each other when three-dimensional protein structure
was made from amino acid sequence, the theoretical calcu-
lation gave us a probable specific volume. The calculated
specific volumes may indicate that the cavities are less in S1
and HMM molecules than expected due to close atomic pack-
ing and/or the amount of hydration is larger than expected.

Intrinsic compressibility of S1 and HMM

In order to calculate 3, from Eq. 6, we assumed that the
amount of hydrated water of S1 and HMM are in a range
between 0.30 and 0.50 g/g of the protein (Kuntz and Kauz-
mann, 1974; Teller, 1976; Gekko and Noguchi, 1979). The
hydration term of Eq. 6, (1/vg) (8Av,,/8P), could be calcu-
lated by using the amount of hydrated water and the com-
pressibility of bulk water, 45 X 1072 cm?/dyn, assuming that
the volume change of water due to hydration is -1 ml (= 17
- 18 ml) per mole of water (Gekko and Noguchi, 1979) and
that the compressibility of hydrated water is equal to that
of ice, 18 X 107'2 cm?dyn (Shiio et al., 1955). Then,
(1/vo)(8Ave,/8P) for S1 becomes 11.8 X 10712 cm?/dyn
(=(1/0.713)(45 X 1072 x 0.30 -18 X 107'2 X 0.30 X
17/18)) at atmospheric pressure, when the amount of hy-
dration is 0.30 g/g of the protein. The (1/vy)(8Av,,/8P) value
is 19.6 X 107'2 cm?/dyn, when the amount of hydration is
0.50 g/g of the protein. Therefore, the intrinsic compress-
ibility, By, of S1 is evaluated to be (16.0-23.8) X 10~'% cm?/
dyn. The intrinsic compressibility of HMM calculated in the
same way is (14.7-22.6) X 10712 cm?/dyn. According to
Gekko and Hasegawa (1986), the intrinsic compressibilities
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of six various proteins are in a range between 10 X 1072 and
20 X 107!2 cm?/dyn. The intrinsic compressibility of S1 and
HMM are comparable with those of the globular proteins.

Compressibility change induced by binding of
nucleotide and orthovanadate

A control measurement was made by using BSA at 17.5°C.
The results shown in Table 1 indicate that a noninteracting
protein such as BSA does not respond to ADP and vanadate.

The partial specific adiabatic compressibilities of S1 and
HMM decreased upon binding of ADP. Since the partial
specific volumes of S1 and HMM were almost constant with
or without ADP, the decrease of the partial specific adiabatic
compressibilities of S1 and HMM depended on the increase
in lim,_,¢ Au/c. The partial specific adiabatic compressibility
increased 5.0 X 10712 cm?/dyn in S1-ADP upon binding of
V; and 1.3 X 10712 cm?/dyn in HMM-ADP upon binding of
V. This shows that ADP-V; bound state (weak binding state)
is softer than ADP bound state (strong binding state) in com-
pressibility. The increase in the partial specific adiabatic
compressibility of ADP-V; bound state is mainly because the
partial specific volume of ADP-V; bound state is larger than
those of other states. The increase in the partial specific vol-
ume is due to decrease of hydration and/or increase in cavity.
The length of S1 is constant with or without ADP, but it
becomes shorter when ADP-V; binds to S1 (Craig et al.,
1985; Katayama, 1989; Highsmith and Eden, 1990). These
change may correspond to the changes of the partial specific
volume and the partial specific adiabatic compressibility
with or without ADP-V;.

Comparison with the stiffness of muscle fiber

The bulk modulus is a reciprocal value of the compressibil-
ity. The bulk modulus of S1 and HMM in solution are almost
a reciprocal value of the intrinsic compressibility B, where
By is the partial specific adiabatic compressibility of protein
itself. The bulk modulus of S1 in solution at 18°C was
(4.2-6.3) X 10'° dyn/cm?, when the amount of hydration was
0.30-0.50 g/g of the protein. The bulk modulus of HMM was
(4.4-6.8) X 10'° dyn/cm?. Gekko and Hasegawa (1986) es-
timated the intrinsic compressibility of globular proteins at
25°C (lysozyme, a-chymotrypsinogen, obalbumin, bovine
serum albumin, B-lactoglobulin and a¢-casein) of which val-
ues were in the order of (10-20) X 10~'2 cm?/dyn, i.e., the
bulk moduli were in the order of (5-10) X 10'° dyn/cm?. The
bulk modulus of lysozyme, bovine serum albumin and im-
munoglobulin at 25°C were all about 4 X 10'° dyn/cm?
(Mitaku et al., 1985), though the values of partial specific
volume of the protein were not shown in their paper. Thus,
the bulk modulus of S1 and HMM was quite comparable with
that of these proteins.

The stiffness (bulk modulus) of resting muscle fiber was
measured by using ultrasonic waves of 5 MHz at 19-20°C
(Hatta et al., 1988). They were 2.480 X 10'° dyn/cm? in the
longitudinal direction of muscle fiber and was 2.437 X 10'°
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dyn/cm? in the transverse direction of muscle fiber. Since the
volume fraction of the contents within muscle is not known,
the bulk modulus of muscle fiber may be calculated as a sum
of the bulk moduli of the contents within muscle multiplied
by their weight fraction as a first approximation (Jippo et al.,
1984). The weight percent of several components in muscle
was shown by Dubuisson (1942); about 80% of water, about
10% of the proteins within the myofibrils, and about 10% of
enzymes, sarcoplasmic reticulum, mitochondria, nucleus,
and the rest. The bulk modulus of water is 2.2 X 10'° dyn/
cm? as the reciprocal value of the compressibility (45 X
10712 cm?/dyn). The bulk modulus of lipids is also 2.2 X 10'°
dyn/cm? (Jippo et al., 1984). Assuming the bulk modulus of
the protein part in myofibrils is equal to the bulk modulus of
S1 and HMM ((4-6) X 10'° dyn/cm?) and the bulk modulus
other than the proteins is equal to lipids, we obtain the bulk
modulus of muscle fiber (2.4-2.6) X 10'° dyn/cm?. Though
the approximation is rough, it fairly well agrees with the
stiffness obtained experimentally in muscle fiber.

During isometric contraction, the stiffness (bulk modulus)
of muscle fiber increased 6.5 X 108 dyn/cm? in the longi-
tudinal direction of muscle fiber and decreased —6.4 X 108
dyn/cm? in the transverse direction at 19-20°C (Hatta et al.,
1988). The amount of changes in the stiffness was two orders
smaller than that of resting muscle. The amount of increase
in the stiffness in the longitudinal direction is the almost same
as the amount of increase in Young’s modulus measured by
other investigators, (2-7) X 108 dyn/cm?, (Truong, 1974;
Shoenberg et al., 1974; Ford et al., 1977; Mason, 1978;
Hasan and Mason, 1978; Jung et al., 1988). If this change of
muscle stiffness during contraction is due to the change of
the bulk moduli of contractile proteins, the amount is about
10% of the bulk moduli of contractile proteins.
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