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Pattern Formation in Icosahedral Virus Capsids:
The Papova Viruses and Nudaurelia Capensis B Virus

Christopher J. Marzec and Loren A. Day
Public Health Research Institute, New York, New York 10016 USA

ABSTRACT The capsids of the spherical viruses all show underlying icosahedral symmetry, yet they differ markedly in cap-
somere shape and in capsomere position and orientation. The capsid patterns presented by the capsomere shapes, positions,
and orientations of three viruses (papilloma, SV40, and NBV) have been generated dynamically through a bottom-up procedure
which provides a basis for understanding the patterns. A capsomere shape is represented in two-dimensional cross-section by
a mass or charge density on the surface of a sphere, given by an expansion in spherical harmonics, and referred to herein as
a morphological unit (MU). A capsid pattern is represented by an icosahedrally symmetrical superposition of such densities,
determined by the positions and orientations of its MUs on the spherical surface. The fitness of an arrangement of MUs is
measured by an interaction integral through which all capsid elements interact with each other via an arbitrary function of
distance. A capsid pattern is generated by allowing the correct number of appropriately shaped MUs to move dynamically on
the sphere, positioning themselves until an extremum of the fitness function is attained. The resulting patterns are largely
independent of the details of both the capsomere representation and the interaction function; thus the patterns produced are
generic. The simplest useful fitness function is 32, the average square of the mass (or charge) density, a minimum of which
corresponds to a “uniformly spaced” MU distribution; to good approximation, the electrostatic free energy of charged capso-
meres, calculated from the linearized Poisson-Boltzmann equation, is proportional to 32. With disks as MUs, the model generates
the coordinated lattices familiar from the quasi-equivalence theory, indexed by triangulation numbers. Using fivefold MUs, the
model generates the patterns observed at different radii within the T = 7 capsid of papilloma and at the surface of SV40; threefold
MUs give the T = 4 pattern of Nudaurelia capensis B virus. In all cases examined so far, the MU orientations are correctly found.

INTRODUCTION

Determinations of the capsid structures of the spherical vi-
ruses have revealed a great variety of patterns, virtually al-
ways following an underlying icosahedral symmetry. A cap-
sid “pattern” is given by the shapes, positions, and
orientations of its capsomeres, which are capsid structural
units typically composed of one to six individual protein
subunit monomers; the centers of the capsomeres lie on a
“lattice,” a more limited notion which excludes anything to
do with capsomere shape. The well-known triangulation
numbers 7, used to index these lattices, have been assigned
for many viruses, and for several viruses the structures are
known either to atomic resolution or to sufficient resolution
to reveal details of the capsid pattern, on a nanometer dis-
tance scale. Some viruses contain only a single type of capsid
protein subunit, organized into either a single type of cap-
somere or into two types (pentamers and hexamers), whereas
other capsids are composed of two or more major coat protein
subunits and several minor proteins, such as spike proteins
that extend well beyond the outer capsid layers or proteins
that extend inwardly from the capsid. The individual major
protein subunits range in copy number from 60 to several
thousand, and in molecular weights from ~10,000 to more
than 100,000. Some capsomeres with fivefold symmetry are
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almost round at some radii, yet pentagonal and star-like at
other radii, such as in the papovaviruses (polyoma, SV40,
and papilloma) (Rayment et al., 1982; Rayment, 1985; Baker
etal., 1988, 1989, 1991; Liddington et al., 1991). Nudaurelia
capensis 3 virus (NBV) has a capsomere with threefold sym-
metry, with about two-thirds of its mass in an open trefoil
“Y” shape at an outer radius and the remaining one-third of
its mass at an inner radius, with a rounded triangular shape
(Olson et al., 1990). Likewise, the hexon capsomere of ad-
enovirus, made of three subunits, is a triangular tower at outer
radii and a hexagonal cone at inner radii (Burnett, 1985). This
paper argues that such capsid patterns can be understood as
packing arrangements induced by the shapes of the capso-
meres; the connection is demonstrated explicitly for the
papovaviruses and for NgGV.

The classical paper by Crick and Watson (1956), which
first discussed the general requirement for high symmetry in
virus structures, and the papers of Horne and Wildy (1961)
and Caspar and Klug (1962) all observed that the capsids are
made of many identical copies of proteins that are the prod-
ucts of either one or a small number of genes. Horne and
Wildy considered the symmetrical capsomere to be the pri-
mary structural unit of the capsids of the spherical viruses,
situating the capsomeres at the vertices of lattices which can
be enumerated by requiring consistency with the fundamen-
tal icosahedral symmetry. The same lattices appear in the
quasi-equivalence theory of Caspar and Klug (1962), built
around relations among the protein subunits. Quasi-
equivalence confronts the geometrical constraint that, except
for the virus particles with true T = 1 symmetry and 60
subunits (Liljas et al., 1982), there is no way to cover a closed
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surface with many copies of one protein subunit so that all
subunits have an identical physical-chemical environment.
Given this geometrical mandate for differences, the funda-
mental, mechanistic assumption of quasi-equivalence was
about how to reconcile them, with minimum energy cost.

The theoretical construction of quasi-equivalence is ob-
tained in two steps. First, one considers a Platonic solid, with
its surface “coordinated” in the manner first used by Gold-
berg (Goldberg, 1937), i.e., covered by a regular, trigonal
lattice parametrized by two integers, m and n, related to the
triangulation number:

T=m?+ mn+ n 1)

Caspar and Klug noted that T is the number of facets of the
trigonal lattice per face; a facet can extend across an icosa-
hedron edge to lie on two of its faces, but each face contains
an integral number of facets, when the complete and frac-
tional facets are added up (Caspar and Klug, 1962; see also
Casjens, 1985). Second, into each facet triangle of this lattice
one sets three subunits, each of which bonds chemically to
its immediate neighbors. The majority of the vertices are
hexavalent, surrounded by six subunits, but the vertices of the
Platonic solid are surrounded by a smaller number of sub-
units. Thus the tetrahedron has 4 trivalent vertices, the oc-
tahedron has 6 tetravalent vertices, and the icosahedron has
12 pentavalent vertices. Quasi-equivalence postulates that
the best capsid structure is one arranged so that the necessary
deviations from some one optimal bonding pattern cost mini-
mum energy; this is the assumption of quasi-equivalent
bonding. Tarnai and Gaspar (1987), referring to the quasi-
equivalence theory, mention its “local extrema arrange-
ments.” Because the nearest neighbor interactions of hexava-
lent subunits are more similar (quasi-equivalent) to nearest
neighbor interactions of pentavalent subunits than they
would be to those of tetravalent or trivalent subunits, the
constraint of quasi-equivalent bonding selects the icosahe-
dron. The icosahedron possesses 20 faces, and its symmetry
axes pass through 12 fivefold centers (the pentavalent ver-
tices), 20 threefold centers, and 30 twofold centers; the co-
ordinated icosahedron has 10T + 2 vertices altogether. The
quasi-equivalent bonding pattern required by this reasoning
leads inexorably to hexamers positioned at 10(7 — 1) vertices
of the coordination lattice, which are the local “quasi sixfold”
symmetry centers, and pentamers at the 12 fivefold vertices.
This is equivalent to the prediction that the capsid must
contain 3 (subunits per facet) X T (facets per face) X 20
(faces) = 60T subunits altogether.

Some virus capsids are numerically consistent with quasi-
equivalence: the T = 3 plant viruses, with the predicted 180
copies of identical subunits (Harrison et al., 1978; Olson
et al., 1983; Rossmann and Erickson, 1985; Rossmann and
Johnson, 1989); the T = 4 viruses Nudaurelia capensis 8
virus (Olson et al., 1990) and bacteriophage P4 (Dokland
et al., 1992), with 240 subunits; the T = 7 bacteriophages,
including P2, related to P4 (Dokland et al., 1992), P22
(Casjens, 1979; Prevelige et al., 1988), A (Katsura, 1983),
and HK97 (R.W. Hendrix, University of Pittsburgh, personal
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communication), all with the predicted 420 copies of their
major capsid protein save the few replaced by portal proteins
of the tail assembly; and cauliflower mosaic virus, which has
420 identical subunits (Cheng et al., 1992). However, scru-
tiny of structures for which high-resolution data are available
shows that the degree and type of bond-deformation posited
by quasi-equivalence does not occur, and that the different
types of bonding required by subunit positions on the lattice
are satisfied by different, non-quasi-equivalent bonds (Olson
et al., 1983; Burnett, 1985; Rossmann and Erickson, 1985;
Olson et al., 1990).

Furthermore, it is now generally recognized that the T =
7 virus polyoma (Rayment et al., 1982; Rayment, 1985), and
the related viruses SV40 (Baker et al., 1988; Baker et al.,
1989; Liddington et al., 1991) and papilloma (Baker et al.,
1991) provide counterexamples to the numerical predictions
of quasi-equivalence. They contain pentamers at all 107 +
2 = 72 vertices, for a total of 360 subunits; quasi-equivalence
predicts hexamers at each of the 10(7 — 1) = 60 local sixfold
centers and 60 subunits at the vertices, for a total of 420
subunits. Further, in the T = 25 adenovirus, the 240 cap-
someres at the local sixfold centers are trimers of subunits,
not hexamers, and the 12 fivefold centers are occupied by a
different protein altogether (Burnett, 1985).

An important aspect of the counterexamples to quasi-
equivalence is that the 60 unexpected pentamers in the pa-
povaviruses are at the 60 positions on the standard T = 7
lattice predicted for hexamers, and likewise the 240 trimers
in adenovirus are at capsomere positions on the standard T =
25 lattice, namely the hexavalent positions of these lattices.
We are left with the paradox that the large-scale taxonomic
part of quasi-equivalence, the appearance of coordination
lattices indexed with T values, appears valid universally, yet
neither the small-scale taxonomy of subunit numerology nor
the theoretical rationalization in terms of quasi-equivalent
bonding holds.

We believe that the resolution to the paradox is in the
unsung core of the Caspar-Klug theory, beneath the chem-
istry of bonding patterns. This is the assumption that the
correct structures show a minimum in the distortion of an
optimum pattern, given the global constraint of covering a
more-or-less spherical surface. Quasi-equivalence implicitly
acknowledges that the coordinated surface lattices must
somehow engender a minimum of some major component of
the capsid free energy. Subsequent data has shown that the
choice to minimize bond deformation energy was incorrect.
Accordingly, we replace bond deformation energy with a
more general measure of the global capsid self-interaction,
which we will denote by Ejn, discussed below.

In this paper, we take the icosahedral symmetry as a given
and focus on understanding the patterns observed within that
symmetry. The patterns are two-dimensional, existing on the
roughly spherical surface of an icosahedral virus or on a
spherical section through a capsid. Therefore, our model rep-
resents the cross-sections of the capsomeres which contribute
to the pattern as two-dimensional objects and allows them to
wander on the spherical surface. They position themselves as
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an autonomous, dynamic system, i.e., without any nudges
from the programmer, to seek out a local minimum (or ex-
tremum) in Eqnr. Thus our model avoids putting in the capsid
positions by hand, as done by Horne and Wildy (1961) and
by Caspar and Klug (1962). Furthermore, in the two cases
which we have examined so far in which the capsomere
cross-section is distinctly nonround (papovaviruses and
NBV), we have found that the orientations of the capsomeres
are also correctly generated.

Our goal in this paper is not to present an assembly model,
but to rationalize observed capsid patterns. We believe that
this can be achieved by appealing to features which a com-
plete model must have, even though a complete model is not
available. The work of Salunke et al. (1989) on the poly-
morphism of polyoma VP, subunit assemblies offers a physi-
cal picture from which to begin. They showed that electro-
static effects switch assembly into icosahedrally symmetrical
shells with N = 72 capsomeres, into smaller octahedrally
symmetrical shells with N = 24, into still smaller icosahe-
drally symmetrical shells with N = 12, or into cylindrical
sheets. They conjectured that solvent conditions which in-
crease the negative charge on the capsomere surfaces cause
the radius of the assembling shell to decrease, because the
greater angular separation of capsomeres, due to smaller N,
results in greater separation of the repelling charges. Implicit
in their argument is a radial balance between the repelling
electrostatic force and an unspecified, but necessary, attrac-
tive force; because of the shell curvature, all forces between
capsomeres possess radial components. Their argument also
requires that the negative charges are located near the outer
portion of the capsomere; otherwise, if the charges were lo-
cated at the nominal shell radius, where the capsomeres are
packed shoulder to shoulder, changes in the radius would not
alter the distance between the repelling charges. Thus, the
radial component of the repelling force balances the radial
attractive force, but its tangential component causes a
distance-dependent mutual capsomere repulsion, a pressure,
in the outer portions of the capsid. So we can ask what pat-
terns are formed by the outer layers of the capsid as they
arrange themselves to minimize the capsid average of this
repulsive potential energy. To render this question tractable,
we reduce the capsomere to its two-dimensional cross-
section at a radius R and consider how N such cross-sections
can space themselves while moving on the surface of a sphere
of this radius. The attractive force is present in the modeling
as the mechanism which constrains the motion to the surface
of the sphere. We proceed on the assumption that these con-
siderations are general and will apply with appropriate modi-
fication to many or most capsids; the repelling force can be
due to hydration; the attractive force can be hydrophobic or
electrostatic, involving condensation around the nucleic acid.

OPTIMAL COVERINGS OF THE SPHERE FROM
NONSPECIFIC INTERACTIONS

The mathematical problem of distributing objects on the
sphere has had many incarnations, and it confers much in-
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sight into our biological question of pattern formation vis-
a-vis capsomere interaction. The Tammes “packing” prob-
lem (Tammes, 1930) is to find the closest packing of N
hard spheres on a spherical surface, and it can be re-
phrased as how to distribute N points on the sphere so as
to maximize the smallest distance between them (Tarnai
and Gaspar, 1987). Goldberg (1967) first stated the con-
nection between virus structure and the Tammes problem.
Melnyk et al. (1977) noted that the Tammes problem is
equivalent to minimizing the field energy of N points on
the sphere, interacting through an inverse power law (V =
r~") potential, as the power becomes arbitrarily large, thus
penalizing most severely the closest points. Clare and Kep-
ert (1986) also spaced points on a sphere using an inverse
power potential in the large n limit. It is found in general
that for most values of N, the best packing arrangements
have little or no apparent symmetry, but that for some N
values, the best packing shows the symmetry of the Pla-
tonic solids with the spheres or points near the vertices of
a coordination lattice (Tarnai and Gaspar, 1987). For ex-
ample, Clare and Kepert (1986) found that the optimum
packing for 32 hard spheres is very close to icosahedral.
Tarnai and Gaspar (1987) have extended the range of N for
which optimum packings of hard spheres are known, bas-
ing their approach on triangulations of underlying Platonic
solids. These studies of the Tammes problem offer a clue
about the nature of the global interaction measured by
Eynr; both long-range interactions like the potential fields
with moderate n values, and short-range interactions, like
the packing of hard, impenetrable spheres, serve to con-
struct essentially the same patterns.

The Tammes packing problem and its mathematically
precise relatives do not map directly onto the problem of
virus capsid structure. Tarnai (1991) notes that the related
Tammes “covering” problem seems empirically to be of
more relevance to capsid structures. The covering problem
asks how to arrange N overlapping disks of the smallest
possible diameter, so as to completely cover a sphere. Bio-
logical structures have soft edges blurred by thermal mo-
tion and typically interact through solvent-mediated
mechanisms; biological structures simply do not look
much like systems of hard spheres, or of points interacting
through a field. The overlapping disks used by the
Tammes covering problem afford a closer match to the
biological problem than do the hard disks of the packing
problem, and this is built into the formalism developed be-
low for representing the capsomeres. But despite their
great differences, the Tammes problems and the capsid
pattern morphogenesis problem spawn similar patterns.
This fact is telling, suggesting that in both systems the pat-
terns are created by nonspecific interactions.

The polymorphism of structures assembled from polyoma
VP, protein has been mentioned above; the Tammes problem
also shows polymorphism, in that different numbers of points
or disks pack on the sphere with maximum efficiency when
they show different Platonic symmetries, or, for some N, no
apparent symmetry. Liddington et al. (1991) have shown that
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each SV40 pentamer has five flexible COOH-terminal arms,
which they expect to be “flexible and unstructured on a free
pentamer,” and which bond noncovalently to arms from
neighboring pentamers, flexing to accommodate the differ-
ent local capsomere environments; they make a mechani-
cal metaphor likening the bonding arms to ropes, rather
than cement. They note that although the arms interact
with each other via “precise contacts in the target subunit,”
they must do this “without imposing strong restrictions on
symmetry.” If a specific interaction is one which fixes
structure by virtue of its specificity, then the bonding arms
of SV40 represent a new sort of nonspecific interaction,
their precise contacts notwithstanding, because the flexibil-
ity of the rope-like bonding arms serves only to fix a maxi-
mum distance between bonded pentamers, rather than to
induce a mutual orientation. The bonding arms of SV40
are visible in a cryoelectron microscropy reconstruction
made by Baker et al. (1988), and Baker et al. (1991) com-
mented extensively upon similar intercapsomere structures
in the papilloma capsid, one originating in each subunit.
Thus, even in papovaviruses SV40 and papilloma, Platonic
symmetry evidently arises from some nonspecific mecha-
nism acting between capsomeres made of VP; protein
subunits, and we find it plausible that nonspecific mecha-
nisms also determine the structures of polyoma VP,
assemblies not possessing Platonic symmetry. Accord-
ingly, as a working hypothesis, we have assumed that, like
the global capsid symmetry itself and the patterns found in
the Tammes problem studies, the capsid patterns possible
for a given capsomere are also determined by nonspecific
interactions.

THE REPRESENTATION

To avoid the rigidity of the Tammes packing problem and to
include the inherent uncertainty in capsomere position due to
thermal effects, we represent the capsomeres and their in-
teractions by continuous functions. This avoids hard sphere
capsomeres which interact only if in direct contact. We will
denote a modeled capsomere as a morphological unit, an
“MU.” An MU is to be thought of as an abstracted capsomer,
containing only the minimum information about its shape
needed to determine the capsid pattern, representing the
shape of the capsomere as seen in its capsid, notwithstanding
possible shape changes which might occur during virus as-
sembly. In accord with the discussion above relating the
forces acting on the capsid outer layers to features of a
full-assembly model, we represent the capsid as the sur-
face of a sphere, and our MUs are two-dimensional spheri-
cal caps, polygons, or more general shapes. Giving the
capsomere a nonround shape is necessary for studying a
virus such as papilloma, with capsomeres having strong
fivefold symmetry.

The MUs are conveniently written by Fourier expansion
in spherical harmonics. (This is the analogue in spherical
geometry of Fourier expansion via sines and cosines in rec-
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tilinear geometry; the trigonometric functions and the spheri-
cal harmonics are solutions of the Laplace equation, written
in rectilinear or spherical coordinate systems, respectively.)
Vogel and Provencher (1988) used spherical harmonics to
represent capsid density for reconstructing projections of dis-
ordered virions. Thus

L 1
0'mu(®, b)) = 2 2 athbn(@’ b). )

1=0 m=-1

This opy refers to an MU sitting on the north pole of a
sphere, and ® and ¢ are the usual spherical coordinates.
The Appendix shows that the surface density of the entire
icosahedrally symmetrical capsid can be written as

G(@)a d)) = 2 an,m'({Rj})al,m'Ylm(®’ ¢)

Lm,m’

=3 CinYin(0®, $),
Lm

©)

where matrix M is a function of the positions of the MUs.
As in the Appendix, we label the position of the jth MU
by R;, which represents the rotation through Euler angles
a;, Bj, vj, that takes the north pole of the sphere to the po-
sition and orientation of the jth MU. Angles a; and B; are,
respectively, the spherical ¢ and @ coordinates of the jth
MU. Angle v; is the rotation needed to orient the jth non-
round MU about its local axis; it is unnecessary if the MU
is round.

This representation has the constraint that its resolution is
limited by the number of spherical harmonics which can be
included, given by L. In practice, we can take L = 50. This
affords a stable representation for fewer than about 500 MUs
altogether, in that solutions are well-determined and do not
change substantially if we choose L = 49 or L = 51. Because
L is finite, the MU is necessarily somewhat fuzzier than the
capsomere it models. This is qualitatively in accord with the
fact that the capsomeres are not hard-edged.

To assert a general form for the interaction function, we
assume that two patches on the capsid surface interact via
the product of their masses, weighted by an arbitrary func-
tion of the distance r between them; e.g., if the interaction
were gravitational, which it certainly is not, the interaction
function would be 1/Ir; — r,l. The total interaction is
found by summing over all pairs of patches. Because the
arc length between two points on a sphere of radius R equals
R®, where ® is the angle between them, the interaction
function can be written as f(®). Expanding in Legendre
polynomials gives

f(®) = X gPi(cos D). @

=0
The interaction function is now completely characterized
by the numbers g, and by choosing them appropriately,
any function of distance on the sphere can be constructed.
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The Appendix shows that the form of Eqnr, given the as-
sumptions above, is

M=

1
Enr = > WiClC s )
m=-1

=0 -

where w; = 4mR%g)/(2] + 1).

Once the a;,, (MU shape) and the w, (interaction function)
are specified, a solution to the MU spacing problem is a set
of angles R; which give positions of the MUs that correspond
to a local minimum of Epny. Because of the assumed ico-
sahedral symmetry, only a small number of MUs are dy-
namically independent, the majority being symmetry pro-
jections of these. A steepest descent algorithm adjusts the
startup set of the R; to obtain progressively lower values of
Enr until the angular derivatives of Epyy are sufficiently
small. At that point, to hasten convergence, the minimum is
found by Newton-Raphson linearization of the solution equa-
tions 0E1Nt/08; = 0, where 8 represents all of the Euler
angles. Found via this last equation, a solution set of Euler
angles gives an extremum of Eynr, which in general could be
a maximum, minimum, or a saddle point. The kind of ex-
tremum is determined from the eigenvalues of the matrix
0°Exnr/38;08;; solutions with all positive eigenvalues are
stable, and the appearance of a negative eigenvalue indicates
an unstable, saddle point solution. The stable solutions, cor-
responding to local minima and not in need of external sta-
bilization, seem most easily applicable to capsid architecture.
However, we discuss below the case of SV40, in which
saddle point solutions do seem relevant.

GENERICITY IN SHAPE AND INTERACTION

Before using the apparatus discussed above to create capsid
patterns, we need to choose definite values for the ay,, and
the w; of the interaction function. In this section we show that
the patterns generated do not depend significantly on the
details of our choices, as anticipated from the studies of the
Tammes problem noted above. The emergence of the coor-
dination lattices is referred to as “generic” because large
changes in the input, in this case the distributions a,,, and w,,
cause only inconsequential changes in the output. Thus, for
the purpose of understanding the origins of the patterns, it is
enough that our choices for a,, and w, give only a qualita-
tively correct picture of the MU and its interactions.

As argued above, we suppose that the outer portions of a
capsid in an equilibrium configuration can be modeled as
constrained to the surface of a sphere, wherein they expe-
rience a mutual repulsion. We consider two different situ-
ations to show how repelling forces can easily arise.

The first physical model for the repelling interaction is
presented in section II of the Appendix, which considers an
interaction between charged MUs based on the linearized
Poisson-Boltzmann equation and calculates w; for this case.
Here oy measures charge density, and the minimized func-
tion is the Helmholtz free energy, A = E - TS. We investigate
this interaction because it is often used in structure inves-
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tigations, it is mathematically tractable, and it can be tuned
to give long-, medium-, or short-range interactions. The tun-
ing is accomplished by varying the Poisson-Boltzmann
damping factor, k. Decreasing kR increases the range of the
interaction, and as kR— 0, w; approaches 27R3/(2I + 1), the
Coulomb limit wherein the interaction is mediated by an
undamped 1/17 - 7' | field. The Coulomb limit gives the
longest ranged interaction imaginable. As kR is increased, w;
approaches sz/(K\/E), independent of /. In this limit, the
MUs feel each other only through immediate contact, the
interaction mediated by a 8 function. Evaluation of the ex-
pression in the Appendix shows that for kR > =10, the func-
tion w; vs [ is essentially flat, the long interaction limit. Be-
cause the capsid radius R is very large, typically several
hundred Angstroms, the larger kR values and the short-range
interaction are physically more relevant, but we would be
hard-pressed to decide which value of kR is best on physical
grounds. The value of k depends on solvent conditions.
Our second, more qualitative, interaction picture invokes
hydration forces between capsomere surfaces. Hydration
forces have been measured for polysaccharides (Rau and
Parsegian, 1990), DNA helices (Rau and Parsegian, 1992),
and electrically neutral or charged phospholipid bilayers
(Rand and Parsegian, 1989). Rau and Parsegian (1990) note
that “hydration forces seem very probably a general and
dominating feature of the interactions between all water-
soluble surfaces at close approach.” Hydration forces, due to
structuring of water between interacting surfaces, can be ei-
ther strongly attractive or repulsive, and for the high sym-
metry geometries experimentally accessible, they typically
fall off exponentially, with a scale length of several
Angstroms (Rau and Parsegian, 1990; Rau and Parsegian,
1992). The distance integral of the repulsive hydration force
is an energy corresponding to a short-ranged interaction
function {P) between two surfaces; for the two-dimensional
model, this becomes an integral over MU perimeters. Al-
though the formalism leading to Equ. 5 entails integrating
over MU areas, not perimeters, the short range of the hy-
dration force means that elements of area in the interior of
an MU would not interact strongly with similar elements of
neighboring MUs; the double integral over MU area would
in effect sum up contributions from the perimeters. Thus, an
interaction based on the repulsion of hydrophilic surfaces
again leads to the limiting case of a short-ranged interaction.
The choice of ay,, presents similar difficulties. The most
straightforward model for a round MU is a hard-edged disk
of radius a, whose density is constant for r < a, then falls
immediately to zero for r > a. This has the disadvantage of
producing oscillations in the density distribution, “ringing,”
for r just larger than a, which is decidedly nonphysical. The
hard-edged disk also has the unattractive mathematical fea-
ture that its a,,, fall off very slowly, so the truncation for
I> L might be serious. Ringing can be avoided, and a smooth
falloff of the a,, can be assured, by modeling a round MU
by a Gaussian. However, this form is also decidedly
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nonphysical, because it would tend to exaggerate the range
of the interaction.

In practice, we find that these various choices all lead to
essentially the same solutions. Fig. 1 shows a superposition
of six T = 7 models. These are made by choosing two forms
for the interaction, applied to each of three forms for the MU.
The interaction is given by the two limiting forms, kR = 0
and kR = o, Two of the MU forms are the hard and Gaussian
disks described above; the third is a Gaussian profile pen-
tagon, used to model papilloma as discussed below. We see
that the solutions for the six models superimpose with only
very marginal differences in the MU positions. Similar re-
sults apply to other T values. We conclude that in terms of
MU shape and interaction, the models are essentially equiva-
lent. Insofar as we are interested in understanding pattern
formation and stability, we do not need to choose among the
various prescriptions for modeling the MU and interaction on
any basis but convenience. The same patterns arise because
the minimization enforced by our dynamic scheme depends
strongly on the MU positions and weakly on the details of
the minimized function.

Because the various sorts of disks yield the same lattices,
we have chosen MUs with a Gaussian radial profile, because
of its convenient smoothness. Our method for constructing
a nonround MU is simply to use a shape like the capsomeres
in the capsid pattern which we are attempting to model. For
a nonround MU situated at the north pole, the rate of falloff
with polar angle @ is a function of azimuthal angle ¢, chosen

FIGURE 1 Six superimposed (1, 2), models;
these are made with two interaction functions
(8 function and Coulomb potential), applied to
each of three kinds of MUs: two disks with
Gaussian falloff rates of 0.5 and 1.5, and a pen-
tagon (as used for papilloma and SV40).
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so that the maximum rate of falloff corresponds to a contour
level which traces out the nominal perimeter of the modeled
capsomer (see the Appendix for details). Below we use pen-
tagonal, star-shaped, and trefoil MUs.

It is useful to introduce the average of the square of the
surface density of the mass, denoted 32 The Appendix
shows that 3.2 appears as a special, simple case of interaction
integral Eynt by setting w, = 1/4m, corresponding to a &
function interaction between mass patches. In the large kR
electrostatic limit discussed above the w; are constant, so the
free energy is proportional to 3,2, The hydration interaction
is also short-ranged, again giving a total interaction roughly
proportional to 32. When used to space round capsomeres,
these two cases of short-ranged interactions are both equiva-
lent to the large n (short range) limit of Clare and Kepert
(1986), and all three yield essentially the same lattices.

The square of the variance of the mass distribution is given
by 22 minus the square of the average mass density, so 32
measures what we call “uniform spacing.” This differs from
the familiar idea of close packing, which fits surfaces to-
gether as closely as possible, maximizing van der Waals in-
teractions and tending to produce locally continuous struc-
tures. But the global constraint that the close packed,
identical MUs must lie on the surface of a sphere inevitably
creates fissures or holes, an uneven distribution of mass.
Uniform spacing distributes both the mass and the fissures
as regularly as the geometry permits, sometimes leading to
structures which are actually nowhere locally close packed.
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The cryoelectron microscopy reconstructions shown below
for the papovaviruses are examples of capsids which at most
radii are clearly not close packed. By our definition, small
MUs placed on a too-large virion might still be packed uni-
formly, even though large spaces remain between them. Uni-
form spacing is much easier to assess mathematically than
close packing, which is apparent from its appearance in the
electrostatic interaction picture.

Both pictures point to the mean square of the surface den-
sity, 32, and in fact we might have started there, because 32
is the first moment of a distribution which contains infor-
mation about its shape. Solutions do not depend strongly on
the shape of the w; curve, as long as it is dominated by local
repulsion, and in no cases have we found that a pattern can
be significantly “tuned” by adjustments of the w,. These ar-
guments have led us to set w; = 1 for the bulk of our cal-
culations and to use 32, the measure of uniform spacing, as
the measure of capsid pattern fitness.

Modeled with Gaussian radial falloff instead of a hard
edge, the MU density never entirely vanishes, so our sche-
matic line drawings show overlap of the nominal edges of the
MUs. Because the nominal edge of each MU represents one
of its contour levels, any degree of overlap could be elimi-
nated by displaying higher density contours. For consistency,
except where noted, the nominal edge contours are chosen
as described in the Appendix, but because disks necessarily
cover a sphere less neatly than they tile a plane, some over-
lapping is to be expected. However, since uniform spacing
positions the MUs so as to minimize the net overlap, as meas-
ured by 32, relative degrees of overlap are significant. In
every case, solutions with lower 32 values correspond to
schematic figures with smaller overlaps, as judged by eye.

TAXONOMY OF LATTICES
Standard lattices

In practice, we will call two lattices similar if their capsid
positions differ by less than a small fraction, say 10%, of the
radius of a capsomer. Usually, but not always, we will only
need to distinguish among the various sorts of trigonal co-
ordination lattices, because most of the empirically and nu-
merically observed lattices are found to be very like one or
another of these. We will call lattices that are similar to the
coordination lattices “standard lattices.”

The simplest MU is a round Gaussian disk, the param-
eterization of which is described in the Appendix. Here we
note some salient features: the density drops off from unity
at the MU center to 1/e at its nominal radius, ¢z, measured
in radians; as a matter of convenience, ¢y is chosen so that
the MUs cover the sphere with the same efficiency that
circles cover a plane, so that a larger value of N means
smaller MUs; the Gaussian profile is tuned so that the density
falls off most rapidly at the nominal edge of the MU. As seen
in Fig. 1, solutions obtained for round, nonstandard Gaussian
MUs of differing radii and falloff rates (parameter a in the
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Appendix) are nearly the same, and this is invariably the case,
even for rather unreasonable choices for a and the radius of
the disk.

Solutions with MUs located near the vertices of a coor-
dination lattice indexed by integers m and n will be denoted
“(m, n) vertex-centered” solutions, or (m, n)y for short. Be-
cause the number of vertices of an (m, n)-coordinated ico-
sahedron is 10T + 2, an (m, n)y model uses N = (10T + 2)
MUs. In this notation, the N = 32 icosahedrally symmetrical
packing of Clare and Kepert (1986) is a (1, 1)y lattice. The
vertex-centered solutions are the most efficient ways to pack
MUs which are round or nearly round. Fig. 2 shows a raft of
vertex-centered (m, n) solutions. In this figure we have out-
lined each MU at its nominal radius, the radius at which its
density is falling off most quickly. The m and » values are
found on the abscissa and ordinate axes, respectively, and the
radii of the MUs have been chosen as indicated above. The
merit of the (m, n)y solutions in packing disks is clear from
inspection, and each (m, n)y lattice which we have examined
is dynamically stable. These structures appear to be close
packed, yet essentially the same lattices would be generated
by smaller disks, uniformly spaced and noncontiguous, but
not close packed.

A second class of standard lattices, which we will call
(m, n)y_, is obtained by removing the pentonal MU from
the vertex-centered lattices. These structures are also dy-
namically stable. They are a small variation from the
(m, n)y lattices, differing in that the space opened up at the
fivefold centers is partly filled by the interior MUs, which
simply move over slightly into the newly available space.
An (m, n)y_ lattice has a larger 32 value than does its
(m, n)y relative. However, between the cases of no pen-
tonal MU and a fully sized one, there exists a family of so-
lutions with pentonal MUs of intermediate size, and the
smallest 32 is found when midsized MUs occupy the five-
fold centers. This situation may be relevant to virions like
adenovirus, which construct the pentonal and interior MUs
from different proteins. The (m, n)y._ lattices appear in the
Tammes problem as well (Tarnai and Gaspar, 1987).

A third, much smaller, class of standard solutions places
an MU in the center of each facet of the triangulation lattice,
so these are called “facet-centered,” denoted (m,n)r. A
facet-centered lattice contains N = 20T MUs. Fig. 3 shows
several of these, and it is clear that, aside from the (1, 0)
lattice, they fill space poorly. For round MUs, the facet-
centered solutions can be found as extrema for only the
smallest values of m and n, even when starting from a good
initial guess. The solutions (1, 0)g, (2, 0)x, (3, 0)g, (4, 0)f,
(1, g, and (2, 2)F (along with their mirror images, m — n
and n — m) can be found as extrema; but all except (1, 0)x
are unstable. If left to evolve, we see (1, 1)r — (1, 2)y_;
(L, 3)F = B3, 3)v-; (2, 0 = (3, 0)v; etc.

Because, except for (1, 0)f, they are dynamically unstable,
we would not expect to find round facet-centered lattices in
nature, unless they relied on an external mechanism to po-
sition and stabilize their capsomeres. The facet-centered cap-
sids which do appear in nature have solved the stabilization
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FIGURE 2 Standard vertex-centered (m, n)y
solutions for m = 1-4 (horizontal axis) and n =
04 (vertical axis). The (m, n) solution is a mir-
ror reflection of the (n, m) solution.

problem in various ways, generally by employing decidedly
nonround capsomeres. The NBV capsid, discussed below,
looks like a (2, 0)f lattice made of very nonround MU, sta-
bilized by two sorts of skew.

Nonstandard lattices

We refer to a lattice which is not readily described in terms
of a coordination lattice as “nonstandard.” Two cases arise;
the departure from coordination can be artifactual or struc-
tured. When round MUs pack in a nonstandard local mini-
mum, they invariably show a relatively large value of 3 and,
if T is large, a large number of local packing arrangements.
These patterns typically show concentric bands of badly
overlapping MUs centered around the fivefold axes, with
large empty spaces in between. Such patterns are an artifact
of calculation, not likely representations of actual virions.

The structured nonstandard solutions can occur for sub-
stantially nonround MUs. A hint of this is seen in the NGV
solution of Fig. 9 D, which shows a small skewing of its
MUs from the (2, 0)f lattice. Subsequent work will con-
sider much larger departures from the standard lattices due
to nonroundness.

APPLICATIONS TO FOUR VIRUSES
Adenovirus

To illustrate MU dynamics, Fig. 4 shows four different de-
terminations of the same stable (5, 0)y lattice, the lattice of
adenovirus. The trails begin from very similar starting con-
figurations, yet evolve very differently, showing that MU
dynamics depend critically on the details, even though the
final state does not. These two-dimensional trajectories do
not represent the three-dimensional capsid assembly process;
but they do demonstrate the stability to tangential perturba-
tions of the final pattern, which is our concern here.

Papilloma

Papilloma belongs to the A genus of the papova family of
viruses. It affords an especially interesting application, be-
cause cryoelectron microscopy reconstruction shows that the
shape of its capsomere protein varies with distance from the
virus core (Baker et al., 1991). At radii equal to or greater
than 27.0 nm, the capsomere cross-section is star-shaped; at
aradius of 25 nm, it is of indistinct symmetry, roughly round;
but at 24.1 nm, the cross-section is pentagonal. For a first
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FIGURE 3 Some facet-centered solu-
tions. (A) (1,0)r, stable; (B) (2,0)s
(©) (1, Dr; (D) (3, 0)
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approximation to papilloma, we can disregard these shapes
and treat the MU as a Gaussian disk. The resulting simple
model is the standard (1, 2)y model of Fig. 2, which positions
the MUs correctly. This shows that the fivefold symmetry of
the papilloma capsomere is not needed to position it, nor are
bonding patterns among the capsomeres needed to position
them, and that the deviation from roundness at most perturbs
the capsomere position from that of the round, standard
(1, 2)y model.

But it is of course necessary to include the capsomere
shape to model its orientation. Figs. 5 C and 6 C show the
disposition of capsomeres at 27.0 and 24.1 nm, respectively
(Baker et al., 1991). The change in the orientation of the
capsomere at these two levels has been called a “skew.” We
have treated these two levels independently, taking as MU
the capsomere cross-section at each level. Clearly this ap-
proach is feasible only if the results at different levels can
easily be reconciled into a smooth capsomere backbone tra-
jectory, and this is in fact what emerges.

Contours for the MUs that we have used to model the
star-shaped and pentagon-shaped portions of the capso-
mere are shown in Figs. 5 A and 6 A, respectively. The star
shape was made by adding a fivefold cosine modulation of
amplitude A to a circle of radius R: r = [R + A cos(5¢)].
By adjusting the amplitude A of the cosine modulation we
can make a family of fivefold figures, ranging from circles
to starfish shapes. The stars used to model papilloma have
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a gentle modulation amplitude A = 0.2. We have fixed the
pentonal MU at the fivefold center, allowing it only one
degree of freedom, its orientation angle yp. The interior
MU has an orientation angle y; and two Euler angles,
which determine its position, as degrees of freedom. Thus,
each level has four degrees of freedom and its own MU
shape.

For an overview of what to expect from a complete so-
lution that allows the interior MU to wander freely, we first
fixed it at the nominal position determined by the standard
(1, 2)y model. This allows exploration of the orientations
alone, by calculating 32 as a function of yp and v,. Fig. 7A
shows the 32 contours calculated for the star-shaped MU of
Fig. 5 A. There are two minima and two maxima, the upper
minimum corresponding to the orientation observed for the
star-shaped MUs. Fig. 7 B shows the contours corresponding
to the pentagon-shaped MU of Fig. 6 A. Now we find only
one minimum, the other having become a shallow shelf. This
minimum corresponds to the orientation observed for the
pentagon-shaped MUs. It is clear that only one local mini-
mum exists for the pentagon-shaped MUs, but two for the
star-shaped MUs. The appearance of the second minimum
for the star-shaped MUs is reasonable, given that the star
shape has more structure than the pentagon. The maxima
occur when the vertices or lobes of the MUs run into each
other. The minima represent a policy of avoidance, and for
the stars, a sort of knobs-into-holes situation.
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FIGURE 4 Four evolutions to the adenovi-
rus lattice. The trajectories of the independent
MUs begin at very similar points but end at
different vertices of the standard (5,0)y lattice.
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FIGURE 5 Papilloma at 27.0 nm. (A) Contours of the modeled MU; (B) the local minimum solution for relaxed position of the interior MU and relaxed
orientation angles yp and vy,. For comparison with C, the contour level chosen to represent the MUs is 0.85 the level of the ,nominal edge of the MU;
(C) the cryoelectron microscopy reconstruction of the cross-section of papilloma at 27.0 nm radius (Baker et al., 1991).

Figs. 5 B and 6 B show the final solutions, obtained by
minimizing in all four degrees of freedom. The positions
have changed only slightly from the nominal (1, 2)y posi-
tions, and the phase angles are represented on the contour
plots (Fig. 7) as a star and a pentagon. (They do not lie exactly
at the local minima because their positions are not exactly the

same as the nominal one used to calculate the contour plots.)
Comparison of Fig. 5, B and C, shows that the fit between
the star-like solution and 27.0-nm cross-section is quite
close, and Fig. 6, B and C, compare reasonably well.

The MU positions are close enough in the two solutions
that there is no difficulty in supposing that the capsomere axis
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FIGURE 6 Papilloma at 24.1 nm. (A) Contours of the modeled MU; (B) the local minimum solution for relaxed position of the interior MU and relaxed
orientation angles yp and vy, For comparison with C, the contour level chosen to represent the MUs is 0.85 the level of the nominal edge of the MU;
(C) the cryoelectron microscopy reconstruction of the cross-section of papilloma at 24.1 nm radius (Baker et al., 1991).
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FIGURE 7 32 contours for papilloma and SV40, with yp on the x-axis and vy, on the y-axis. Phases are measured counterclockwise; for an MU at the
threefold center, zero phase represents a vertex or lobe pointed upward; for an interior MU, zero phase represents the line from the center of the MU through
its vertex or lobe pointed toward the threefold center; (A ) for star-shaped MUs of papilloma at 27.0 nm, two minima exist; (B) for pentagonal MUs representing
papilloma at 24.1 nm and also SV40, the upper minimum has become a broad shelf. A small star labels the 27.0-nm papilloma model of Fig. 5; a small

pentagon labels the 24.1-nm papilloma model of Fig. 6; and a small pentagon at the saddle point labels the SV40 model of Fig. 8.

drifts a bit tangentially as it moves radially. However, the fact
that the pentagons choose the lower minimum, whereas the
stars choose the upper minimum, raises the question of how
the capsomere traverses the high 32 region between the
minima in the yp — vy, plane. The answer is simply that for
radii between 24.1 and 27.0 nm, the capsomere cross-section
is essentially round, and its orientation does not matter. This
contrasts with a possible arrangement which does not occur,

wherein the star changes into a pentagon as the cross-section
radius decreases, always retaining pronounced fivefold sym-
metry, and turning through the skew angle along the way.
This case would require that the MU traverse the hill between
the minima.

The intercapsomere bonding structures, presumably bond-
ing arms much like those of SV40, appear only at the lower
radii, where the pentamers are pentagon-shaped. Hints of
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them are visible in Fig. 5 B between the pentonal pentamers
and its neighbors, but they do not appear at the larger radii,
where the capsomeres are star-like. The star-like cross-
sections orient themselves correctly in our models, without
bonding arms; in fact, they agree better with the empirical
reconstruction than do the pentameric cross-sections.

Sv40

This virus, from the B genus of the papovaviruses, is related
to papilloma of the A genus. Baker and co-workers observed
that the structural study of the papovaviruses has been
marked by “controversy and surprise” (Baker et al., 1989),
and our application of the uniform spacing model to SV40
continues in this tradition. Fig. 8, A and B, shows views down
the threefold (Baker et al., 1988) and fivefold (Baker et al.,
1989) axes of the cryoelectron microscopy reconstruction of
SV40, its T = 7 lattice, formed exclusively of pentamers,
clearly evident. The corresponding uniform spacing model,
using the same pentagonal MU employed for papilloma, is
shown in Fig. 8, C and D. The surprising feature of this model
is that it corresponds to the saddle point extremum in Fig. 7
B, not to a local minimum. (The other saddle points are un-
labeled.)

FIGURE 8 (A) View down the threefold
axis (Baker et al., 1988) and (B) view down
the fivefold axis (Baker et al., 1989) of the
cryoelectron microscopy reconstruction of
SV40; C and D show corresponding views
of the saddle point uniform spacing model of
SV40 made with the MU of Fig. 6 A.
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The saddle point extremum is an unstable equilibrium con-
figuration. At any equilibrium solution, the MUs experience
no force tending to displace them. However, unchecked dis-
placements from an unstable equilibrium configuration, in at
least one direction, will tend to grow in amplitude, ultimately
tending toward a local minimum. At this saddle point, the
instability involves only one unstable direction, the orien-
tation angle of the interior MUs, as seen in the contour map.
Our interpretation of this arrangement is that the flexible
bonding arms of SV40 (Liddington et al., 1991) provide the
necessary stabilization to prevent the interior MUs from re-
orienting themselves, simply by preventing the intercapso-
mere distance from increasing, which would be necessary if
the capsomeres were to reorient. Because the saddle point
represents an equilibrium configuration, very little stabili-
zation would be needed, and the mean squared tension on the
stabilizing arms would be due only to thermal fluctuations of
the structure away from its unstable equilibrium.

Nudaurelia capensis B virus

This virus also shows a skew in the orientation of its mor-
phological units, and NBV is described as having a T = 4
surface lattice, with its capsomeres composed of trimers of
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a single subunit (Olson et al., 1990). The capsomeres are
located near the centers of facets, rather than at the vertices,
the lattice appearing to be (2, 0)g. This is characteristic of
irregularly shaped capsomeres, which fill the capsid surface
by occupying the centers of the facets of their coordination
lattice, rather than its vertices. Fig. 9 A shows a cryoelectron
microscopy reconstruction of the surface of NBV (Olson
et al., 1990); Fig. 9 B shows experimental density contours,
with the central facet lying in the nominal position and ori-
entation, and the three outlying facets nominally positioned
but with their orientation skewed by about 15° clockwise
(Olson et al., 1990).

To understand this skew angle, we have modeled NSV,
representing its morphological unit by a threefold cosine-
modulated circle of amplitude 0.5, as shown in Fig. 9 C. The
position of one MU is fixed in the center of a face, on the
threefold axis, allowing it only one degree of freedom, an
orientation angle yc. One other, outer, MU possesses the full
three degrees of freedom, two position angles, ® and ¢, and
orientation angle y,.

As with papilloma, we first orient ourselves by calculat-
ing a contour map (Fig. 10) of 2 as a function of vy, and
Yc, with the outer MU fixed at the nominal (2, 0)r posi-
tion. To the extent that the outer MUs would wander
somewhat from this position if allowed to do so, these
contours represent approximations only. Orientation angles
Yo and yc range between 0° and 120°. Fig. 10 shows two
minima, which suggests two solutions, as in the case of
papilloma. The lower left minimum corresponds to NSV,

FIGURE 9 (A)Experimental reconstruction of
the surface of insect virus NBV; (B) Experimen-
tal contours of insect virus NBV (Olson et al.,
1990); (C) contours of the MU used to model
NBV; (D) theoretical contours from the uniform
spacing NBV model, which varied v,, vy., and
interior MU position coordinates.
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FIGURE 10 Contours of 32 for an NBV type MU modeled as a cosine-
modulated circle with amplitude = 0.5. The abscissa is ‘y. and the ordinate
is v,. When vy, = 0°, a lobe points toward the threefold axis; y. = 0°
corresponds to the central MU having a lobe pointing upward; phases in-
crease counterclockwise. The solution of Fig. 10 is indicated by the trefoil
figure at the minimum.

and the upper right minimum gives a mirror image capsid.
Both minima show skewing from the nominal orientations,
which have yo = yc = 60°. The skew allows the A
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subunits nearest the fivefold centers to avoid each other,
atthe expense of a closer contact between the B and D
subunits.

By minimizing in all four degrees of freedom, we have
found the true minima corresponding to the approximations
of Fig. 10, our NSV model. The solution corresponding to
the lower minimum has the outer MU positioned very nearly
at the nominal (2, 0)r coordinates. Its face contours are
shown in Fig. 9 D, which compares well with the experi-
mental contours of Fig. 9 B, including the low density regions
at the twofold axes and between the local threefold axes and
the true threefold axis. The slight skewing of the central MU
is not observed by Olson et al. (1990), but we note that it is
difficult to orient this MU correctly by observing the ico-
sahedrally symmetric contours of the entire virion.

The NBV solution appears to be a doubly skewed version
of a (2, 0)g, T = 4 lattice. One skew is in the orientation of
the central MU, which shows a 20° clockwise rotation from
the “square” orientation. The second skew is a very small
rotation of the three outer MUs about the threefold axis, 1.5°,
clockwise from the square position. These skews are sig-
nificant because they show this lattice to be somewhat non-
standard. In subsequent work we will show that this NBV
structure belongs to a family of lattices made from cosine-
modulated MUs of varying degrees of roundness, some of
which stray considerably from the standard lattices. We
have found another, nonobserved, solution for the NV
type of MU, in which the outer MU has moved consider-
ably from the positions used to make the contour plot of
Fig. 10, rotating clockwise by some 23° from the nominal
(2, O)r position.

We have modeled NBV with another sort of MU, a trimer
built of three equal Gaussian disks. This type of MU is pa-
rametrized by the radius of the disks and their separation L.
By varying L and the disk radius, we made MUs which re-
semble the capsomere cross-sections revealed in the contours
of Fig. 9 B. The resulting NBV model was very similar to that
made from cosine-modulated MUs, showing the same skews,
and fitting the experimental contours somewhat less well.
The success of the model based on the Gaussian disk MU
corroborates the idea that a useful capsid pattern model needs
only a reasonably faithful MU model.

DISCUSSION

The two-dimensional capsid patterns discussed in this paper
were generated by a “bottom-up” strategy, in which the
emergent collective behavior of a large number of simple
units, interacting in a simple manner, determines a large-
scale pattern. The abstractions of capsid taxonomy, such as
designations like (m, n)y_, for example, are emergent prop-
erties not coded into the MUs. A bottom-up strategy contrasts
with a “top-down” strategy, which creates a mandated pat-
tern by applying a set of predetermined rules. The top-down
approach is more in keeping with an assembly mechanism
which builds the pattern, as if from a blueprint, through the
actions of enzymes or specific bonding patterns. Bottom-up
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says how the capsid pattern grows itself, whereas top-down
says how it is constructed.

The quasi-equivalence theory (Q.E.) and our uniform
spacing approach (U.S.) both explain the observed patterns
as extrema of an interaction function, and both consider the
relations between the correct number of capsomeres or pro-
tein subunits already juxtaposed on a closed shell, but they
differ profoundly. Q.E. uses bond deformation energy as the
interaction function; U.S. argues that hydration energy
and/or electrostatic free energy point to 22. Q.E. generates
its capsomeres by clustering protein subunits about the vertex
points of the coordination lattice; U.S. inputs its capsomeres
and does not try to derive them. Q.E. acts on the local dis-
tance scale of covalent bonds; U.S. models interactions on
the nanometer scale. Q.E. does not represent the capsomeres
mathematically; U.S. uses a continuous representation which
allows input of MU shape. Q.E. places its emphasis on the
lattices, which are stipulated through a plausibility argument,
rather than on the capsomeres; U.S. emphasizes the capso-
meres, which are stipulated, and uses capsomere shape to
drive dynamic pattern evolution. In short, quasi-equivalence
is about the strictly local and specific interactions between
protein subunits placed on a lattice, which organizes them
into capsomeres, whereas uniform spacing is about longer
scaled interactions between preformed capsomeres, which
dynamically generate a pattern.

Because of its tendency to blur sharp edges, the Fourier
representation is natural for a nanometer resolution scale.
This scale length also allows easy access to the connection
between the capsomere form and its capsid pattern forming
function. The canonical relation between biological form and
function, typified by the congruency of enzyme and substrate
surfaces, occurs at the atomic distance scale. But the success
of the uniform spacing model in reproducing capsid patterns
argues that the capsomere fulfills its pattern-forming func-
tions via shapes and interactions characterized on the nanom-
eter, not the atomic, distance scale. Even the flexible bonding
arms, a manifest intercapsomere interaction, are functional at
the nanometer scale.

The generic nature of the uniform spacing model appears
in that the results of the minimization do not strongly depend
on what function is chosen for minimization or on the details
of the MU modeling. We have argued that a useful and physi-
cally plausible function is 32, the average of the square of
the mass distribution. Minimization of the electrostatic free
energy, calculated via the linearized Poisson-Boltzman equa-
tion, and of the hydration energy both point to 3.2. The stand-
ard lattices result inexorably from all nearly round MUs and
all interaction functions which are repelling at close range.
If the MU shape is made increasingly nonround, departures
from the standard lattices are observed, yet the similar NBV
models generated from cosine-modulated circles and super-
imposed Gaussian disk MUs show that even when nonstand-
ard lattices result, the details of the MU modeling are not
critical.

Because of shell curvature, each individual capsomere
experiences a radial tension which returns it to the capsid
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surface should it begin to wander off. The spacing forces,
on the other hand, tend to push the capsomeres away from
one another, exerting a compression in the tangential di-
rection. In general, such a combination of tensile and com-
pressive forces, as we have posited for the capsid, is char-
acteristic of the “tensegrity” structures, discussed by
Buckminster Fuller (1975). He states that “tensegrity pro-
vides the ability to yield increasingly without ultimately
breaking or coming asunder.”

The uniform spacing model is not an assembly model,
because it does not produce an icosahedrally symmetrical
capsid from capsomeres floating in solution. It treats the
compressive, tangential, aspect of a two-force, tensegrity
structure (Buckminster Fuller, 1975) as it must exist in equi-
librium, after assembly. It assumes that radial, tensile per-
turbations to the equilibrium have marginal effect on the
tangential perturbations with which the model is concerned,
that the radial and tangential motions are essentially de-
coupled normal modes of a three-dimensional linear stability
analysis. Corroboration of this assumption must wait until a
three-dimensional two-force assembly model is available.
For now, it is enough to note that (1) the generic nature of
the model suggests that small changes to the interaction func-
tion from coupling to radial modes would have marginal
effect; (2) the model appears to work without including radial
modes. The MU trajectories (e.g., Fig. 4) do not represent the
movements of capsomeres as they assemble into a capsid.
However, it is likely that MU trajectories representing tan-
gential perturbations from an equilibrium solution do re-
semble the movements of the outer portions of capsomeres
as they undergo small nonradial perturbations. Observed pat-
terns correspond to stable uniform spacing solutions, so until
an experimental capsid pattern is found to correspond to an
MU configuration with nonvanishing gradients, there is rea-
son to believe that the stability of a uniform spacing pattern
to tangential perturbation predicts the stability to equivalent
perturbations of the outer portions of the corresponding real
capsomeres.

The tangential, compressive, stability of the capsid pat-
terns has been our focus. If external stabilizing interactions
are absent, then it is essential that the capsid pattern be dy-
namically stable, so that small random perturbations from the
average capsomere position are damped out. A structure with
multiple instabilities (i.e., a global maximum), or one which
was not an extremum at all (i.e., at a point in configuration
space with non-zero gradient of Eqxt), would need to be held
together entirely by external interactions. Such a structure
would not be consistent with the uniform spacing model. The
most intriguing situations, intermediate between obvious sta-
bility and hopeless instability, involve the saddle point equi-
librium structures seen for SV40. The SV40 saddle point
possesses a single unstable eigenvalue, so its instability is
relatively mild, having only one unstable direction in con-
figuration space and needing stabilization only along this
direction; the bonding arms are well-suited for this function.
This speculative picture of the role of these nonspecific
bonds vis-a-vis capsid stability could be put on firmer ground
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by comparison among the papovaviruses as structure details
become available.

CONCLUSION

We have proved by demonstration that observed capsid pat-
terns, even features like skewing, can be generated without
recourse to specific bonds, scaffold structures, or enzyme-
mediated mechanisms. This is a step beyond saying that the
assembled capsid must be consistent with the shapes of its
constituent capsomeres; it suggests that the nanometer scale
capsomere geometry determines the nanometer scale capsid
architecture. We have argued that the uniform spacing model
expresses the tangential stability of a capsid made of cap-
someres which interact via both repelling and attractive
forces. Thus related to the capsid, the uniform spacing model
informs further considerations of capsid architecture, pro-
viding a platform from which to proceed. Finally, the model
suggests that to assemble into a stable capsid, the capsomeres
might need only to be coaxed toward one extremum (usually
a local minimum) of a comprehensive free energy function
and away from all others, the capsomere shapes directing
much of the process.

APPENDIX

The representations of the morphological unit
and the capsid

Here we give the details of the representation of the capsid
and its self-interaction. The capsid mass distribution is con-
structed in three steps. First, we write the surface density
omu(Q2) of an MU situated at the north pole of a sphere of
radius R, where ) = {0, ¢}, a shorthand notation for the
usual spherical polar coordinates ® and ¢. Second, we write
the surface density of a face triangle, 0¢,..({2), containing J
MUs located at spherical coordinates {B;, ;} forj = 1toJ.
(The O coordinate is B, and the ¢ coordinate is c.) This is
accomplished by rotating oy to each of the points (B;, o)
and summing the results to form oy,... Third, the surface
density of the virion, o({2), is written by rotating oy, to each
of the 20 face positions and summing the results.
The first step is an expansion in spherical harmonics:

L 1
0-MU(‘()) = 2 2 alm),Im(Q)’

1=0 m=—1

(A1)

where the a,,, are a set of constant numbers which charac-
terize the shape of the MU. Because all our work is done at
a constant radius, the radial coordinate R is suppressed. The
spherical harmonics obey the well-known orthogonality re-
lation

810w = f Y, (Q)Y; ,.(Q) dQ, (A2)

where d() = sin® d¢ dO is the usual area element in spheri-
cal coordinates, and the integral is taken over the entire
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spherical surface. Applying Eq. A2 to Eq. Al, we find

a, = f o\ (Y7, () dQd. (A3)
Equation A3 allows us to calculate the a,, corresponding to
any assumed oyy. If the MU is round, then only m = 0 terms
survive, and if the MU has n-fold symmetry, then a,, is
non-zero only if m is a multiple of n.

The second step requires rotating the MU to an arbitrary
point on the surface of the sphere, and, once there, rotating
it about the local axis. Equation Al gives an MU located
at the north pole, where the local axis ) has spherical co-
ordinates (0, 0). We wish to place an MU at point ); with
spherical coordinates (8;, c;), and then to rotate the MU
about axis ); by an angle vy;. Together, these three coordi-
nates are the Euler angles (a;, B, 7v;), which we will de-
note by the symbol R;; these angles parametrize the rota-
tion from the standard coordinate system to the primed
system, whose z-axis is 7); (We use the convention of
Gottfried (1966), in which the second Euler rotation is
about the new y-axis instead of the new x-axis. This allows
identification of «; and B; with the usual spherical coordi-
nates ¢; and @;, respectively.)

The MU rotated by «, B, 7 is represented by a new surface
density, o’(£2), and it is described by a different set of co-
efficients, a',, in the standard coordinate system. However,
in the new, primed system, its coefficients a;,, will be un-
changed. This relationship is written

ovmu(2') = o'\ (D), (A4)
or
L 1 L 1
2 E aszIm(Q')=2 2 a' 1, Y1 (). (AS5)
1=0 m=—1 1=0 m=—1

Now ()’ represents the spherical coordinates in the primed
system. The connection between a spherical harmonic in the
coordinate system rotated by (a, 3, y) and those of the stand-
ard system is (Gottfried, 1966)

!
Y, (0", ¢)= X Y,.(0, D}, (B, 7), (A6)
m'=-1
where D}, . is a Wigner matrix with the form (Gottfried,
1966; Vogel and Provencher, 1988)

D, .(a, B,y) = e~i"d! (B)e~"".

The matrices D!, (a, B, ) are the Ith order representation
of the three-dimensional rotation group, acting on basis vec-
tors ¥;,(€2). The matrix d, ,.(B) can be calculated by a closed
sum (Gottfried, 1966; Vogel and Provencher, 1988) with
good accuracy in double precision up to order / = 50. Equa-
tions A5 and A6 combine to yield

(A7)

1
a,,= 2 D! (B, Va,,

m=-1

(A8)
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Now in step two we can construct the density of an imagi-
nary face triangle situated at the north pole, composed of a
set of J¢,ce MUs with Euler coordinates R; = (o, B;, ;), for
Jj = 1t0 Jgaee. Summing Eq. A8 over all Jg,.. MUs and in-
troducing strengths s; discussed below, we have

L 1
O'fm(Q) = 2 E b,mYlm(Q),

I1=0 m=-1

(A9)

where

Ji 1

2 D.,.R)a,s,.
1

0 m'=—

Mz

(A10)

by =

i

J

The face must have threefold symmetry, so b,,, vanishes un-
less m is a multiple of three. This occurs naturally if all the
MUs of the threefold symmetric face are included in the sum
over j. However we calculate the same b,,, and make a great
savings by including only the J dynamically independent
MUs, those which are not related to each other by the three-
fold symmetry; we then set b;,, = 0 for m not a multiple of
three, and multiply the sum over the independent MUs by a
factor of three. If an MU is located at the threefold axis, then
it requires a strength s; = V5, lest it be counted three times.

In the third step, we calculate the surface density of the
entire capsid:

L 1
o @) =2 3 ¢,Ya(Q),

1=0 m=-1

(Al11)

so we need to find Fourier coefficients c;,. The surface den-
sity of the virion is constructed by rotating the imaginary face
at the north pole into the 20 positions occupied by the faces
of the icosahedron. Because these 20 faces are situated on the
surface of the sphere, they are actually spherical equilateral
triangles. For this purpose, we write the matrix

20
Ifn,m’ = 2 Dfn,m’(Fn)’

n=1

(A12)

where F,, = (¢,, ©,, v,) denotes the three Euler angles which
parametrize the rotation which carries the imaginary face at
the north pole into the nth face of the icosahedron. Then

1
— 1
C[m - 2 Im,m'bl,m' .

m=-1

(A13)

The matrix I}, . needs to be calculated only once. It is real,
and vanishes for/ = 1,2, 3,4,5,7,8,9, 11, 13, 14, 17, 19,
23, and 29 for I/ < 60. Because the icosahedron has fivefold
symmetry, I}, .. vanishes unless m is a multiple of five; and
the threefold face symmetry requires that b,,, vanish unless
m is a multiple of three. So, we need to save I}, . only if m’
is a multiple of three and m is a multiple of five. It is now
clear that if c,, is calculated from Eq. A13, each fivefold
vertex is counted five times, and each twofold symmetry
point is counted twice. Thus, an MU at a fivefold vertex
requires strength s; = %5, and one at a twofold axis has
strength V5.



Marzec and Day

By defining

M., =3I, Dk (R)s,, (A14)
jm"
we can write finally
o Q)= X M, ., Y,(Q). (A15)

Lm,m'

In three dimensions, the mass (or charge) density distri-
bution is p(¥) = 8(r - R) o({2), and we normalize so that the
total mass (or charge) on the sphere equals the area integral
over o()) or the volume integral over p(F):

M(orQ) = f o(Q)R2dQ = f r? dr f dQp(F)
(A16)

The interaction function E;nr

This formalism can be used to calculate the interaction be-
tween the MUs. A fairly general interaction function Eqnt
can be written

Epe = fd3r1d3r2p(7'l)p*(?2)f(¢))
(A17)

=R f dQ,dQ, f(P)o(€d,)o*(€Y,),

where @ is the angle between the axes ); and 4), associated
with €}, and (),, respectively, and f(®) is an arbitrary func-
tion. This form allows that two patches of the virion surface,
at (), and (),, contribute to the interaction an amount pro-
portional to the product of their surface densities, weighted
by a function of the distance between them. To express this
in terms of the ¢, we need

L
f(®) =3 gPcos D),

1=0

(A18)

which is a standard expansion in terms of Legendre func-
tions; and we need the addition theorem for spherical har-
monics (Jackson, 1975):

4 1
Pleos®) = i 3 Y @)Y@). (A9

Combining Egs. A2, Al1, A17, A18, and A19 we find

L ]
B = UnRY S 3 8o e,
=0 -1
(a20)

M=

l
— 2 *
= WiCim€ im>
m=-1

=0 -

where we have introduced w; = 4mR%g)/(21 + 1).

The simplest interaction is Ej,c,), arising from a purely
local, delta function interaction, fioca(®) = 8(cos @ - 1).
Inserting this into Eq. A18 and using the completeness re-
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lationship for Legendre functions (Jackson, 1975), we find
8Liocal = (21 + 1)/2 and wy joca1 = 27R*. This can be verified
by direct evaluation of Eq. A17.

The average of the square of the mass (or charge) density
is given by

32 =1/(4m) f dQo*(Q) = 1/(4m) 2 21: lel?,  (A21)

=0 m=-1

50 Ejgcal = V2(4TR?)? 32,

Linearized Poisson-Boltzmann electrostatics

If we suppose that the MUs carry a charge, then the inter-
action can be taken as the electrostatic free energy, which we
can calculate by means of the linearized Poisson-Boltzmann
equation:

V¢ — (k¥e)d = —4mp,/e, (A22)

where p,(F) = 8(r - R) o({2), and is the applied three-
dimensional charge distribution, 2 is the usual Poisson-
oltzmann damping parameter, a constant in this calculation,
and e is the dielectric constant, also taken to be constant. We
expand the potential field as

L1
¢F) =2 2 V(Y.

1=0 m=-1

Substituting Eq. A23 and Eq. All into A22, and using
the completeness relationship Eq. A2 gives the equation
for V,,,:

(A23)

22 e -y

(A24)
_ 47r?8(r — R)c,,
=-——
The solution is
4R (R\"* Kr. Kr,
Vm(’)=_€“ 7 Cimdir1r2 W K1 W .
(A25)

Here r. and r. are the lesser and greater of r and R, and
I;1 1 and K} ,, denote modified Bessel functions of half-
order.

We can now evaluate the Helmholtz free energy A
directly:

1
A=3 f P.(F)F) dr. (A26)

Substituting for p and ¢, and using the completeness rela-
tionship, we find

2aR3 L kR KR
A= 22 clmc;m11+l/2(_——>Kl+l/2<_)‘

e S5 Ve Ve

A27)
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Comparing with Eq. A20 gives

27R3 kR kR
leTIHl/z "\—/‘—€ K i1p W

21+ 1 kR KR
&= JRe Ly \/E K W .

In the large kR/\/€ limit, 14 1/5(x) Kir10(x) — 1/2x
(Jackson, 1975), so we find g, — (21 + 1)/4KR2\/E, and
w; = mR?/ K\/E. This interaction is completely local because
the w; are constant, and so in the large KR/'\/E limit, we find
A = (47°R? Eé/x\/z, where X2, is the average square
charge density.

In the small kR limit, I;41/(x) Kj+12(k) — 1/(21 + 1)
(Jackson, 1975), so we find g; — 1/(2Re), and w;, =
(27R%/€)/(21 + 1). This g, corresponds (Jackson, 1975) to
feoutomb(P) = (1/2€)/1r; — r3l, so as kR\ /€ vanishes, the
Coulomb potential is recovered.

and

Shape of the morphological unit

When we speak of a Gaussian MU of a particular shape,
we mean a structure with a surface density given at the
north pole by

U'MU(Q) = ¢ aAOSP, ( A28)

The shape of the MU is determined by s(¢), which defines
the nominal edge of the MU; the parameter a determines
the rate of falloff of density with distance from the center
of the MU. A disk has s(¢) = ¢, a constant which equals
the radius of the MU in radians. A pentagon has a ramp
function for s(¢), with s(¢ + 2wn/5) = s(¢). The star-
shaped MU used for papilloma has s(¢) = ¢r [1 — 0.2
cos(5¢)]. Each of these shapes is sized to cover the sphere
as totally as disks do a plane, covering € = 'n'/\/ﬁ =
0.906899 of its area. For disks, this gives 4me = 27N(1 -
cos ¢g), for N MUs on the sphere. We have generally set
a = 1, which makes the MU fall off most rapidly at ® =
s(¢). Although the Gaussian MU never falls away to zero,
setting @ = 1 gives an MU with the sharpest “edge.”
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