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Syndrome Type 3
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Usher syndrome type 3 (USH3) is an autosomal recessive disorder characterized by progressive hearing loss, severe
retinal degeneration, and variably present vestibular dysfunction, assigned to 3q21-q25. Here, we report on the
positional cloning of the USH3 gene. By haplotype and linkage-disequilibrium analyses in Finnish carriers of a
putative founder mutation, the critical region was narrowed to 250 kb, of which we sequenced, assembled, and
annotated 207 kb. Two novel genes—NOPAR and UCRP—and one previously identified gene—H963—were ex-
cluded as USH3, on the basis of mutational analysis. USH3, the candidate gene that we identified, encodes a 120-
amino-acid protein. Fifty-two Finnish patients were homozygous for a termination mutation, Y100X; patients in
two Finnish families were compound heterozygous for Y100X and for a missense mutation, M44K, whereas patients
in an Italian family were homozygous for a 3-bp deletion leading to an amino acid deletion and substitution. USH3
has two predicted transmembrane domains, and it shows no homology to known genes. As revealed by northern
blotting and reverse-transcriptase PCR, it is expressed in many tissues, including the retina.

Introduction

The Usher syndromes (USHs) are characterized by vari-
able degrees of loss of hearing and of loss of eyesight.
Three distinct phenotypes have been described. Patients
with USH1 have congenital severe-to-profound hearing
loss and absence of vestibular function, whereas patients
with USH2 have congenital moderate-to-severe hearing
loss and normal vestibular function. The onset of retinitis
pigmentosa (RP) is prepubertal in patients with USH1
and occurs during the 2d decade of life in patients with
USH2 (Smith et al. 1994). Patients with USH3 have post-
lingual, progressive hearing loss, and the onset of retinitis
pigmentosa (RP) symptoms—nyctalopia, progressive con-
striction of visual fields, and reduction of central visual
acuity—usually occurs by the 2d decade of life (Pakarinen
et al. 1996). At least 10 loci account for subtypes of USH
(see the Hereditary Hearing Loss Homepage). Five genes
have so far been identified: myosin VIIA (MYO7A), for
USH1B (MIM 276903) (Weil et al. 1995); usherin, for
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The Folkhälsan Institute of Genetics, Biomedicum Helsinki, 00014-
University of Helsinki, Finland. E-mail: eeva-marja.sankila@helsinki.fi

* The first two authors contributed equally to this article.
� 2001 by The American Society of Human Genetics. All rights reserved.

0002-9297/2001/6904-0002$02.00

USH2A (MIM 276901) (Eudy et al. 1998); harmonin, for
USH1C (MIM 276904) (Bitner-Glindzicz et al. 2000;
Verpy et al. 2000); cadherin 23 (CDH23), for USH1D
(MIM 601067) (Bolz et al. 2001; Bork et al. 2001); and
protocadherin 15 (PCDH15), for USH1F (MIM 602083)
(Ahmed et al. 2001).

We previously assigned USH3 to 3q21-q25 (Sankila
et al. 1995). Significant linkage disequilibrium between
USH3 and the linked markers suggested enrichment of
a founder mutation in Finland and allowed us to refine
the localization of USH3 to a 250-kb genomic inter-
val between markers 107G19CA7 and D3S3625 (Joen-
suu et al. 1996, 2000). Haplotype analysis indicated
107G19CA7 to be the proximal historic recombination
breakpoint, and a recombination in one family with
USH3 placed the USH3 gene proximal to D3S3625. In
this study, we (a) sequenced, assembled, and annotated
207 kb of the USH3 critical region, (b) excluded two
novel genes—NOPAR and UCRP—and one previously
identified gene—H963—as candidates for USH3, and,
finally, (c) positionally cloned USH3.

Subjects and Methods

Families with USH3 and Controls

Clinical and genealogical data on the Finnish and Ital-
ian families with USH3 that are studied here also have
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been described elsewhere (Pakarinen et al. 1995; Sankila
et al. 1995; Joensuu et al. 1996, 2000; Gasparini et al.
1998). Control DNA samples from 100 anonymous
blood donors from eastern Finland (where there is a high
prevalence of USH3) and from 100 donors from western
and southern Finland (where there is a low prevalence
of USH3) were provided by the Finnish Red Cross Blood
Transfusion Service. A total of 51 grandparents in fam-
ilies from the Centre d’Étude du Polymorphisme Hu-
main (CEPH) were also studied as controls.

Bacterial Artificial Chromosome (BAC) DNA and
Shotgun Sequencing

We shotgun sequenced partly overlapping BACs—
specifically, 355L4 and 545J16. Shotgun libraries were
prepared and plasmid DNA was extracted by GATC
Shotgun Library Construction service. DNA fragments
were ligated to the PCR-Blunt II-Topo cloning vector
(Invitrogen), and we sequenced the subclones, from both
directions, with custom vector primers designed by
GATC and with BigDye-terminator chemistry (PE Ap-
plied Biosystems), by use of a PE9700 Thermal Cycler
(Perkin Elmer). Sequence readings were transferred to a
UNIX-based system; edited and filtered by removal of
matches to the cloning and sequencing vectors, as well
as to Escherichia coli, by the GASP software package
(University of Washington Genome Center); and assem-
bled by Phil Green’s Phred, Phrap, and Consed sequence-
assembly programs. The orientation of contigs, from
centromere to telomere, was determined on the basis of
the marker order of the physical map described else-
where (Joensuu et al. 2000).

Computational Analyses and Sequence Annotation by
Integrated Gene-Prediction Programs

The complete genomic sequence assembled was
masked for repetitive elements, by the RepeatMasker2
program (University of Washington Genome Center). Se-
quence-similarity searches were performed using BLAST
programs (Altschul et al. 1997) against different data-
bases, Human Index for Nonredundant Transcripts
(HINT) (Zhuo et al. 2001), UNIGENE (Boguski and
Schuler 1995), and the TIGR Human Gene Index (Liang
et al. 2000). The sequences were compared with the
High-Throughput Genome Sequence and Genomic Sur-
vey Sequence databases (National Center for Biotech-
nology Information), to identify BAC clones or P1-de-
rived artificial clones mapping to the same region. To
compare orthologous mouse genomic sequences, ho-
mology searches were performed by use of the Celera
Assembled and Annotated Mouse Genome. Complete
sequence annotation was performed by a modified com-
putational sequence annotation tool, Genotator (Harris
1997), and by the NIX program (UK Human Genome

Mapping Project Resource Centre). Transcription-factor
and promoter predictions at the 5′-flanking genomic se-
quences of identified genes were performed by Mat-
Inspector/TRANSFAC and Neural Network Promoter
Input programs (Baylor College of Medicine Search
Launcher). Protein predictions were performed by the
PIX program (UK Human Genome Mapping Project Re-
source Centre), LASERGENE (DNASTAR), TMpred
(Swiss Institute of Bioinformatics), SignalP (Center for
Biological Sequence Analysis), and PSORT II (Human
Genome Center).

DNA and cDNA

We extracted BAC DNA as described elsewhere (Joen-
suu et al. 2000). Integrated Molecular Analysis of Ge-
nomes and Their Expression (IMAGE) cDNA clones for
expressed-sequence tags (ESTs) homologous to the
USH3 region were obtained from Research Genetics. To
obtain the complete sequence of the inserts, cDNA
clones were sequenced on both strands by vector-specific
primers.

Human-placenta RNA and Marathon Ready Human
Retina cDNA were obtained from Clontech. The first-
strand cDNA synthesis was performed with 1 mg of total
RNA, according to the supplied protocol for the SMART
PCR cDNA Synthesis kit (Clontech). Subsequently, 2 ml
of the 100-ml reaction mixture was PCR amplified by
gene-specific primers. To isolate full-length cDNAs of
the predicted genes, we performed rapid amplification
of cDNA ends (RACE) PCR with the Marathon Ready
Human Retina cDNA libraries, according to the man-
ufacturer’s instructions, by a modified PCR with an-
nealing at 65�C for 1 min 30 s, for 20 cycles, followed
by nested PCR with annealing at 60�C for 1 min 30 s,
for 40 cycles, in a total volume of 50 ml.

We designed combinations of forward and reverse
first-amplification primers and nested primers with the
program Primer3 (Whitehead Institute for Biomedical
Research/Massachusetts Institute of Technology Center
for Genome Research). When possible, the primer pairs
were designed to span introns in order to minimize false-
positive results by contaminating DNA in the reverse-
transcriptase PCRs (RT-PCRs). PCR primer sequences
and conditions are available on request.

PCR and RT-PCR

We analyzed candidate genes by PCR amplification
and direct sequencing of all exon regions with adjacent
splice sites, from genomic DNA and, when possible,
from total RNA and poly(A) RNA—using the Qiagen
Total RNA kit and the poly(A) RNA–extraction kit pro-
vided by Amersham, respectively—from Epstein-Barr vi-
rus–transformed lymphoblasts extracted from two pa-
tients with USH3, two carriers, and two controls.
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Amplification of genomic DNA was performed as de-
scribed elsewhere (Joensuu et al. 1996). For RT-PCR,
either 200 ng of lymphoblast poly(A) RNA or 1 mg of
total RNA was primed by random hexamers and was
reverse transcribed for the first-strand synthesis of
cDNA. Subsequent nested PCR from cDNA was essen-
tially performed with 2 ml of the 20-ml cDNA reaction
mix in a total volume of 25 ml with 0.2 mM of each
dNTP, 20 pmol of each primer, and 0.5 U of AmpliTaq
Gold DNA polymerase (PE Applied Biosystems). Con-
trol reactions containing human genomic DNA and wa-
ter, without cDNA, were performed. Amplification of
GC-rich regions was attempted with 1.2 mM betaine or
7% dimethyl sulfoxide.

We electrophoresed PCR products on either 1%–2%
SeaKem agarose gel or 0.7 # MDE SSCP (FMC) poly-
acrylamide gels and visualized them by ethidium-bro-
mide or silver staining (Bassam et al. 1991). Direct se-
quencing of the purified amplification products (PCR
purification kit; Qiagen) was performed by automated
sequencing (ABI 377-sequencer; PE Applied Biosystems)
by use of the PCR primers.

Analysis of Novel Single-Nucleotide Polymorphisms
(SNPs)

By genomic sequencing of NOPAR, in families with
USH3, we identified novel SNPs—RSNP2 and TSNP1, in
NOPAR introns 1 and 9, respectively. Intronic forward
and reverse primers used in the genotyping of the families
with USH3 were as follows: TSNP1 (forward, 5′-TGGTA-
GGTAATCTTAGTCCAACAA-3′; reverse, 5′-TTTTGC-
CTCACATAGAATGGTG-3′), 390 bp; and RSNP2 (for-
ward, 5′-CATGCACCAAGCTCTCACAT-3′; reverse, 5′-
AAGCTGAGGGAAGAAACTGC-3′), 264 bp. The alleles
were detected either by direct sequencing or by SSCP anal-
ysis, in 0.7 # MDE gel, for 18 h at 5 W, at room tem-
perature. The SSCP alleles were visualized by silver stain-
ing. Haplotypes were manually constructed under the as-
sumption that there were a minimum number of re-
combinations.

Isolation of the Candidate Gene USH3

The interexon 5′- and 3′-UTR primers used in combin-
ing the exons from cDNA synthesized, by PCR (condi-
tions were as described above), from human-retina total
RNA or the Marathon Ready Human Retina cDNA li-
brary (Clontech) were as follows: E3F (5′-CTCCTGTGG-
CTGTCTTGTCA-3′) and W27577R (5′-TGGTGGGTT-
TGCCTCTTAGT-3′); E2F (5′-AAGCAATCCCAGTGA-
GCATC-3′) and E3R (5′-TGACAAGACAGCCACAG-
GAG-3′); E1F (5′-TCACTATCTGAAACTATCTTGT-
TGT-3′) and E2R (5′-TAGGGGACCATGCAGAGTTT-
3′); and E1F2 (5′-TGCCTCCCCACCATTCACCA–3′)
and E2R2 (5′-CATGAAGAAGGCTGTCCCCACCA-3′).

Mutation Detection

Using genomic DNA, we amplified genomic fragments
encompassing five USH3 exons, by use of the following
intronic primers: E1F (see above) and P1R (5′-AAGCCC-
CTGAACTTTATAGG-3′), 910 bp; P1BF (5′-TTGTGG-
CCATTTTTGGAGAT-3′) and P1BR (5′-CCCCAAACA-
TGTATCAAGTGC-3′), 207 bp; P2F (5′-TCAGAAGG-
ATTTTAGTGATGTTTGA-3′) and P2R (5′-TCTTTTT-
GACATATTGAAAAGCACA-3′), 352 bp; P3F (5′-ATG-
TCAATGGGGATGATGGT-3′) and P3R (5′-GGAGCC-
CATTCAGAAAATGA-3′), 291 bp; and P4F (5′-TTCC-
CCTGAATTACCCATCA-3′) and P4R (5′-AGCATCT-
GGAAACTCGGTGT-3′), 339 bp. PCR products were
purified and sequenced as described above.

The Finmajor mutation and the Italian 3-bp deletion
were screened by direct sequencing of the 291-bp prod-
uct amplified by primers P3F and P3R. For the Finminor

mutation, we used SSCP; a 198-bp fragment was PCR
amplified by primers P2F2 (5′-TCCCAGTGAGCATCC-
ACGTC-3′) and P2R2 (5′-TGAAAAGCACATTTGTC-
TTCAGAGG-3′), and the alleles were separated on 0.7
# MDE gels, for 18 h at 5 W, at room temperature and
were visualized by silver staining.

Northern Blot and In Situ Hybridization

A human multiple-tissue northern blot from 12 adult
tissues was hybridized by use of an a[32P]-dCTP random-
labeled cDNA probe (USH3 nucleotides �33–321; 354
bp) comprising exons 1–3 and part of the 5′ UTR. The
membrane was washed at 65�C with 2 # SSC (saline
sodium citrate) and 0.05% SDS, then exposed to x-ray
film at �80�C for 2 d. In situ hybridization and the pro-
duction of cRNA probes were performed as described by
Wilkinson and Green (1990). In short, 4% paraformal-
dehyde–fixed paraffin sections from embryonic 16-d-old
mouse embryos and from dissected adult eyes and inner
ears were used for analysis. A 262-bp fragment from the
Marathon Ready Mouse Brain cDNA library (Clontech)
was produced by primers mouse/p1 (5′-ATCCCCGTAA-
GCATCCACAT-3′) and mouse/p2 (5′-TTCTGTAGGCA-
TAGGTCCCTTC-3′). The amplified fragment was cloned
into the pGEM-T Easy vector (Promega) according to the
manufacturer’s instructions. Subsequently, [35S]-labeled
antisense and control-sense cRNA probes were synthe-
sized by in vitro transcription. The control-sense probe
did not produce any hybridization signal above back-
ground level.

Results

Construction of the Genomic Contigs and Transcript
Map

We chose two partly overlapping BAC clones (355L4
and 545J16) flanking both 107G19CA7 and most of the
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Figure 1 Schematic representation of physical and transcript maps covering the USH3 region, depicting the initial 250-kb USH3 region
and the extended 133-kb USH3 region, with partly overlapping BAC clones. Polymorphic markers and sequence-tagged sites are indicated by
vertical lines. Previously mapped BAC clones are shown in dark blue, and the 207-kb sequence contig assembled is indicated by a purple line.
Database-derived and partly assembled BAC sequences from clones RP11-385G14 and RP11-251C9 are indicated by green dashed arrows. The
centromere is on the left. A pair of previously known genes—KIAA0001 and H963—and a group of three novel genes—NOPAR, UCRP, and
USH3—are indicated by yellow and light-blue arrows, respectively, showing the orientation of transcription. ESTs representing parts of the 3′

UTRs of the transcripts are indicated by vertical arrows. H963, NOPAR, UCRP, and USH3 were subjected to mutation analyses in this study.

previously defined USH3 critical region toward D3S3625,
for shotgun sequencing. Database-derived BAC clone
RP11-385G14 sequence was aligned with genomic con-
tigs of BAC clone 545J16, to extend the distal sequences.
Gap filling was performed by primer walking from the
contig end sequences and by PCR across the gaps. A final
sequence contig of 207 kb, which is depicted in figure 1,
was assembled.

Use of nucleotide-nucleotide BLAST for searches of the
contig identified 30 distinct or partly overlapping human
ESTs and 11 orthologous mouse or rat ESTs (table 1).
Starting from the identified ESTs and exons predicted by
GRAIL and GENESCAN, we used a combination of RT-
PCR, RACE experiments, and direct PCR of cDNA li-
braries, to assemble two novel genes: NOPAR (for no
opposite-paired repeat) and UCRP (for USH critical re-
gion pseudogene) (fig. 1). We identified two alternatively
spliced transcripts—NOPAR and NOPAR2—which en-
code putative polypeptide isoforms, of 721 and 756
amino acids, respectively, showing 61% identity to the
amino terminus of TRAP230 (Ito et al. 1999), also called
the “human OPA-containing gene,” or “HOPA” (Phili-
bert et al. 1999). The NOPAR coding region comprises
approximately one-third of the length of TRAP230/
HOPA and lacks the 3′ OPA repeat contained in
TRAP230/HOPA. Northern blot analysis of NOPAR

showed widespread expression in adult tissues (data not
shown). Transcription in human retina was shown by RT-
PCR.

The 2,045 bp of UCRP cDNA obtained consists of
five exons spanning 170 kb genomic DNA. However,
the open reading frame (ORF) is disrupted, and the
gene thus is probably an unprocessed pseudogene. The
region also contained two previously identified genes:
KIAA0001 (Nomura et al. 1994), which was previously
excluded as USH3 (Joensuu et al. 2000), and platelet-
activating–receptor homolog mRNA H963 (Jacobs et
al. 1997).

Refinement of the USH3 Critical Region

The exons and flanking intronic sequences of NOPAR,
UCRP, and H963 were examined for mutations in pa-
tients with USH3; however, no potential disease-causing
mutations were detected. Genomic sequencing of the NO-
PAR introns in patients with USH3 indicated the presence
of two novel SNPs, RSNP2 (nucleotide C/G) and TSNP1
(nucleotide T/C), in introns 1 and 9, respectively (fig. 1).
Haplotype analysis revealed conservation of the segment
RSNP2–TSNP1 in all 48 USH3 chromosomes studied
(data not shown). This supported our previous haplotype
analysis placing USH3 distal to 107G19CA7 (Joensuu et



Table 1

Location of ESTs in the 207-kb Contig

EST Location(s)
GenBank

Accession Number dbEST Details

1 24264–24640 R75628 Homo sapiens cDNA clone IMAGE: 143509 3′

2 65074–65380 R79610 H. sapiens cDNA clone IMAGE: 146349 5′

3 65715–65825 T39157 H. sapiens cDNA clone IMAGE: 60197 5′

4 66204–66483 T40442 H. sapiens cDNA clone IMAGE: 60197 3′

5 66139–66502 R79611 H. sapiens cDNA clone IMAGE: 146349 3′

6 78227–78422, 107727–107829, 114184–114230 AI501968 Rattus norvegicus cDNA clone UI-R-C0-jb-b-08-0-UI 3′

7 78227–78422, 107727–107829, 114184–114251 AW920576 EST351880 Bento Soares R. norvegicus cDNA clone RGIGZ01 5′

8 79115–79401 AW897677 CM1-NN0062-280400-202-d05 NN0062 H. sapiens cDNA
9 79118–79401 AW897669 CM1-NN0062-280400-202-b05 NN0062 H. sapiens cDNA
10 99994–100283 AA776659 H. sapiens cDNA clone IMAGE: 970436 3′

11 78227–78422, 107727–107829, 114184–114241 BE948099 UI-M-BH3-aws-h-03-0-UI.s1 Mus musculus cDNA clone UI-M-BH3-aws-h-03-0-UI 3′

12 136681–136758 AF062710 AF062710 H. sapiens cDNA clone HA0028
13 136681–136758 AI110602 H. sapiens cDNA HA0028
14 181289–181421 AA931311 H. sapiens cDNA clone IMAGE: 1565326 3′

15 186110–186218 BE843843 RC0-TN0079-310700-021-b10 TN0079 H. sapiens cDNA
16 186131–186641 AA170490 M. musculus cDNA clone IMAGE: 618166 5′

17 186185–186518 AW591154 H. sapiens cDNA clone IMAGE: 2703652 3′

18 186193–186446 BB209769 BB209769 M. musculus cDNA clone A430094C06 3′

19 186193–186773 BE283279 601101050F1 M. musculus cDNA clone IMAGE: 3493212 5′

20 186235–186446 AI172577 R. norvegicus cDNA clone UI-R-C2p-nz-h-03-0-UI 3′

21 186313–186789 AA162789 M. musculus cDNA clone IMAGE: 598871 5′

22 186665–187193, 190857–190910 AV653286 AV653286 GLC H. sapiens cDNA clone GLCDJC11 3′

23 186660–187193, 190857–190910 AV653266 AV653266 GLC H. sapiens cDNA clone GLCDJB03 3′

24 186676–187016 AV757663 H. sapiens cDNA clone: BMFBHF02, 5′ end
25 186903–187075 AA184698 M. musculus cDNA clone IMAGE: 634121 3′

26 186952–187148 AI592667 M. musculus cDNA clone IMAGE: 634121 5′

27 187086–187195, 190857– 190954 AA353758 EST61951 H. sapiens cDNA 5′

28 200484– 201179 AU138895 H. sapiens cDNA clone: PLACE1009521, 5′

29 204146– 204843 AL042755 H. sapiens mRNA; EST DKFZp434C0522_r1
30 199885– 200422 AU157802 H. sapiens cDNA clone: PLACE1009521, 3′

31 205968– 206348 AL042756 H. sapiens mRNA; EST DKFZp434C0522_s1
32 199885–200231 AI167543 Soares_NhHMPu_S1 H. sapiens cDNA clone IMAGE: 1661439 3′

33 199883–200242 AA027011 Soares_pregnant_uterus_NbHPU H. sapiens cDNA clone IMAGE: 469358 3′

34 199885–200183 AI277229 Soares_placenta_8to9weeks_2NbHP8to9W H. sapiens cDNA clone IMAGE: 1893709 3′

35 206135–206348 AI889440 H. sapiens cDNA clone IMAGE: 2444461 3′

36 200575–200753 AA026830 H. sapiens cDNA clone IMAGE: 469358 5′

37 200005–200189 AI686699 H. sapiens cDNA clone IMAGE: 2268648 3′

38 200580–200783 R35752 Soares placenta Nb2HP H. sapiens cDNA clone IMAGE: 136983 5′

39 202796–202998 AA056078 Soares retina N2b4HR H. sapiens cDNA clone IMAGE: 381530 3′

40 201215–201642 AI050350 M. musculus cDNA clone IMAGE: 1379171 5′

41 199880–200139 R35645 H. sapiens cDNA clone IMAGE: 136983 3′
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Figure 2 Pedigree of a Finnish family with USH3, segregating a
paternal Finmajor mutation (maj)—c.300TrG—and a maternal Finminor

mutation (min)—c.131TrA. Alleles at seven microsatellite markers,
two SNPs, and USH3 are shown; wt p wild type. The chromosomes
assumed to carry the disease allele are in boldface type. The father
carries a conserved ancestral haplotype, whereas the mother’s disease-
associated haplotype shares alleles at the RSNP2–D3S1594 segment
only. A recombination in the maternal chromosome of individual II-
1 excludes the segment RSNP2–D3S1279 as the site of the USH3
mutation. At the bottom is the result of an SSCP analysis used in the
detection of the Finminor mutation. A mobility shift caused by the mu-
tation was detected in individuals I-2, II-2, and II-4.

al. 2000); however, a recombination event in one family
excluded the RSNP2-TSNP1-tel segment as the site of the
causative mutation (fig. 2). No additional transcripts in
the remaining 60-kb critical region between markers
107G19CA7 and RSNP2 were found. This implicated the
region immediately centromeric to 107G19CA7 and ex-
tending to 25B8CA2, as part of the USH3 critical region.

Identification of the USH3 Gene

We assembled database-derived RP11-251C9 sequences
between 107G19CA7 and 25B8CA2. BLAST analyses of
the newly constructed 133-kb contig revealed 11ESTs (data
not shown). Starting from a retina-derived EST 35f2 and
exons predicted in its vicinity, a contiguous cDNA sequence

of 1,444 bp was obtained by RT-PCR of human retina-
derived total RNA (a gift from F. P. M. Cremers) and by
PCR of Marathon Ready Human Retina cDNA. Sequence
analysis suggested a 360-bp ORF comprising four exons
that span ∼18 kb at the genomic level. By comparison of
the genomic sequence with the USH3 cDNA sequence, the
exon-intron boundaries and their flanking sequences were
confirmed and were in agreement with the consensus GT-
AG splicing rule. A splice variant, USH3 isoform b, com-
prising an additional 87-bp exon (1b) with an in-frame
stop codon between exons 1 and 2 was also detected. The
first in-frame ATG codon in exon 1 conforms with the
Kozak motif (Kozak 1987). No splice acceptor was found
at the 5′ end of exon 1, suggesting that this exon is the
first. There is a 5′ UTR of �392 bp and a 3′ UTR of �692
bp. Computational promoter analysis revealed five possible
promoters for USH3. The putative promoter regions lack
TATA boxes but include CAAT and GC boxes. Three al-
ternative polyadenylation signals were found, at 156 bp,
764 bp, and 3,568 bp downstream of the termination co-
don, consistent with both the northern blot analysis show-
ing three transcripts, of 4.5 kb, 1.5 kb, and 1.0 kb, re-
spectively, and expression in many adult-human tissues (fig.
3). Expression was also detected in adult-human retina, by
RT-PCR. Only human lymphoblasts did not show a signal,
as confirmed by both RT-PCR and northern blotting.

The analysis with the Celera Assembled and Anno-
tated Mouse Genome indicated several genomic frag-
ments highly homologous to exons 2 and 3 of USH3.
In situ hybridization with [35S]-labeled riboprobes cor-
responding to the orthologous mouse sequence showed
a low-level, ubiquitous expression in several mouse tis-
sues (data not shown).

The candidate gene USH3 encodes a novel, putative
transmembrane protein of 120 amino acids with a
calculated molecular mass of 13.4 kD (fig. 4). It shows
no homology to previously known genes or proteins.
Bioinformatics analyses suggest a cytosolic amino ter-
minus, two helical transmembrane domains (residues
25–41 and 63–79), and a putative endoplasmic-retic-
ulum membrane–retention signal, TKGH, in the car-
boxy terminus.

USH3 Mutations

We identified three causative mutations in Finnish and
Italian patients with USH3 (fig. 5). The Finnish founder
mutation is a nonsense mutation, c.300TrG in exon 3
(Y100X, or Finmajor), predicting the truncation of 21
amino acids. Finmajor was found in 52 patients with USH3
who were homozygous for a conserved ancestral hap-
lotype, whereas all 36 parents analyzed and 26 of 45
unaffected siblings were heterozygous for the mutation.
The second Finnish mutation is a c.131TrA transver-
sion at codon 44 in exon 2, resulting in an amino acid
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Figure 3 USH3 expression. Northern analysis of an adult-hu-
man multiple-tissue blot was performed by use of a probe comprising
the coding region of USH3. Two signals, of ∼4.5 kb and ∼1.0 kb, are
detected in all tissues. In addition, a weak signal, of ∼1.5 kb, is detected
in spleen mRNA. The blot was hybridized with a b-actin probe as a
control (bottom).

substitution of lysine for methionine (M44K, or Finminor).
In two Finnish families, four patients are compound het-
erozygous for Finmajor and Finminor. These patients have
inherited the common ancestral haplotype, from one
parent, and a partly distinctive haplotype, from the other
parent (fig. 2). The Finminor mutation originates from the
same region in eastern Finland where USH3 is known
to be prevalent. In a consanguineous Italian family with
USH3 showing linkage to the 3q21-q25 markers (Gas-
parini et al. 1998), we detected a homozygous 3-bp de-
letion, c.231–233delATT in exon 3, resulting in the sub-
stitution of one methionine for isoleucine and leucine at
codons 77 and 78.

By direct sequencing (in the case of Finmajor and the
Italian mutation, c.231–233delATT) and by SSCP anal-
ysis (in the case of Finminor), none of either 100 anony-
mous blood donors from southern and western Finland
or 51 grandparents in families from the CEPH were
found to carry any of the three mutant alleles. Of 100
anonymous blood donors from eastern Finland, 1 was

heterozygous for Finmajor. This was expected, because
USH3 is clustered in eastern Finland (Pakarinen et al.
1995).

Discussion

The association of RP with sensorineural deafness is
named “USH.” More than 60 genes responsible for RP
and for related disorders have been identified (Retnet),
and, to date, ∼20 genes for nonsyndromic deafness are
known. Products of RP genes include phototransduction
proteins, photoreceptor structural proteins, transcrip-
tion factors, and proteins involved in metabolism of the
photoreceptor and of the retinal pigment epithelium.
The recent identification of several deafness genes by
molecular genetic studies has enabled the investigation
of the molecular basis of normal and pathological au-
ditory function. The genes encode proteins that have a
role in hair-cell transduction, in ionic homeostasis in the
cochlear duct, and in integrity of the tectorial membrane
(Steel and Kros 2001).

Five genes underlying USH have been identified in
previous studies. Mutations of myosin VIIA cause non-
syndromic deafness as well as USH1B (Weil et al. 1995;
Liu et al. 1997a, 1997b). The shaker-1 mice with myo7a
mutations show progressive disorganization of the ste-
reocilia bundle (Self et al. 1998). Although there is no
retinal degeneration in shaker-1 mice, abnormal accu-
mulation of opsin in the connecting cilium of photo-
receptors and a failure of melanosome transport in the
retinal pigment epithelium have been detected (Liu et
al. 1998, 1999; Liu and Williams 2001). It is thought
that harmonin interacts with myosin VIIA in the sensory
cells of the inner ear, and harmonin mutations underlie
USH1C as well as autosomal recessive nonsyndromic
deafness DFNB18 (Verpy et al. 2000). Surprisingly, no
harmonin expression was detected in neonatal-mouse
eyes (Verpy et al. 2000), whereas anti-harmonin staining
was found in portions of the developing-human eyes
(Bitner-Glindzicz et al. 2000). Mutations in two novel
cadherin-related genes—CDH23 and PCDH15—are
responsible for USH1D and USH1F, respectively (Ah-
med et al. 2001; Bolz et al. 2001; Bork et al. 2001).
Disorganized stereocilia in the corresponding deaf-
mouse mutants waltzer (Di Palma et al. 2001) and Ames
waltzer (Alagramam et al. 2001) indicate that cadherins
are involved in either the lateral links or the tip links
that join adjacent stereocilia, although no gross retinal
pathology has been detected in these mouse models.
Humans with CDH23 mutations show variable retinal
symptoms or, as in autosomal recessive nonsyndromic
deafness DFNB12, no retinal phenotype at all (Bolz et
al. 2001; Bork et al. 2001). USH2A, as well as non-
syndromic RP, is caused by mutations in usherin, which
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Figure 4 Predicted schematic structure and regions of secondary structure in the human USH3 gene and in USH3 protein. A, The five
exons of USH3, depicted by numbered boxes (E1–E4). The lengths of the exons are shown below the boxes, and those of the three separating
introns are shown above the lines. The translation-initiation site and the first stop codon are indicated. Three polyadenylation signals (Poly(A))
and their predicted locations downstream of the termination codon are indicated by arrows. B, One-hundred-twenty-amino-acid protein, encoded
by USH3, with two predicted transmembrane domains, at residues 25–41 and 63–79. The combination of putative secondary structures, such
as a-helices, b-pleated sheets, and b-turns, features possible functional protein domains. An alternatively spliced transcript (bottom) of USH3
predicts a 30-amino-acid protein.

encodes a putative extracellular-matrix protein (Eudy
et al. 1998; Rivolta et al. 2000).

Our results demonstrate that a gene encoding a 120-
amino-acid protein with two predicted transmembrane
domains and no homology to previously known pro-
teins underlies USH3. In contrast to previously char-
acterized USH genes that show distinct expression pat-
terns in the sensory structures of the inner ear and of
the retina, USH3 shows ubiquitous expression in several
tissues. However, two genes involved in nonsyndromic
X-linked RP—RP2 and RPGR—are also ubiquitously
expressed but, nonetheless, have an important and spe-
cific role in the retina (Roepman et al. 1996; Schwahn
et al. 1998). Patients with USH3 are born with normal
hearing and vision, and the progressive sensory defects
start later in life, leading to profound hearing loss, var-
iable vestibular dysfunction, and severe RP with nyc-
talopia, constriction of the visual fields, and loss of cen-
tral visual acuity.

Previously, we assigned, by linkage, a USH3 locus to
3q21-q25 and established the existence of a USH sub-
type characterized by postlingual, progressive hearing
loss (Sankila et al. 1995). That cases of USH3 comprise

∼40% of all cases of USH in Finland has been explained
by a founder effect. Families with USH showing linkage
to the USH3 region have also been reported in the
United States and Sweden (Kimberling et al. 1995),
Spain (Espinos et al. 1998), Israel (Adato et al. 1999),
and Italy (Gasparini et al. 1998). Using the significant
linkage disequilibrium observed in the Finnish families
with USH3, we were able to refine the USH3 critical
region to 250 kb (Joensuu et al. 2000). The entire seg-
ment was subcloned, sequenced, and assembled, re-
sulting in a 207-kb–sequence contig with 30 human
ESTs. Three genes (NOPAR, UCRP, and H963)—two
of which were novel—were identified and excluded as
candidates, by sequencing. Of these, UCRP is probably
an unprocessed pseudogene; however, interestingly,
NOPAR shows significant homology to a thyroid-hor-
mone receptor–associated protein, TRAP230 (Ito et al.
1999). The candidate gene that we identified, USH3,
lies outside the initial critical region defined by haplo-
type analyses. This is explained by the fact that two
mutations instead of the expected one founder mutation
were found to segregate in the Finnish families with
USH3. The Finnish founder mutation, c.300TrG in
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Figure 5 Detection of three different mutations segregating in families with USH3. A, Sequence analysis of a genomic PCR fragment
comprising exon 3 in a normal control, in a patient with USH3 who is homozygous for the ancestral Finmajor mutation—c.300TrG (resulting
in Y100X)—in a heterozygous carrier, and in a compound heterozygous patient (Finmajor/Finminor). Positions of mutated nucleotides are indicated
by arrows and asterisks. B, Finnish mutation Finminor—c.131TrA (resulting in M44K) in exon 2: sequence chromatograms of a control and of
a compound-heterozygous patient with USH3 (Finmajor/Finminor). C, Sequence chromatograms of a control, of a homozygous patient, and of a
heterozygous carrier, representing the Italian mutation—a 3-bp deletion, c.231–233delATT—in exon 3. The deletion results in the substitution
of one methionine for isoleucine and leucine. The deleted nucleotides are indicated below the normal control sequence.

exon 3, was found in all USH3 chromosomes with the
Finnish ancestral haplotype. It leads to a premature stop
codon, which most probably affects mRNA stability or
produces a truncated protein. In two Finnish families,
patients were heterozygous for Finmajor and a c.131TrA
transversion resulting in an amino acid substitution of

lysine for methionine. In an Italian family with USH3,
a homozygous 3-bp deletion, c.231–233delATT in exon
3, was detected. Among 200 Finnish controls and 51
individuals from the CEPH families, 1 Finnish individ-
ual was, as expected, heterozygous for the Finmajor mu-
tation, whereas neither of the other two mutations was
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detected. Although the biochemical mechanisms by
which USH3 causes retinal and cochlear disease remain
to be elucidated, the identification of USH3 will already
enable exact and even presymptomatic diagnosis of the
disease.
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Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z,
Miller W, Lipman DJ (1997) Gapped BLAST and PSI-
BLAST: a new generation of protein database search pro-
grams. Nucleic Acids Res 25:3389–3402

Bassam BJ, Caetano-Anolles G, Gresshoff PM (1991) Fast and
sensitive silver staining of DNA in polyacrylamide gels. Anal
Biochem 196:80–83

Bitner-Glindzicz M, Lindley KJ, Rutland P, Blaydon D, Smith
VV, Milla PJ, Hussain K, Furth-Lavi J, Cosgrove KE, Shep-
herd RM, Barnes PD, O’Brien RE, Farndon PA, Sowden J,
Liu XZ, Scanlan MJ, Malcolm S, Dunne MJ, Aynsley-Green
A, Glaser B (2000) A recessive contiguous gene deletion
causing infantile hyperinsulinism, enteropathy and deafness
identifies the Usher type 1C gene. Nat Genet 26:56–60

Boguski MS, Schuler GD (1995) ESTablishing a human tran-
script map. Nat Genet 10:369–371

Bolz H, von Brederlow B, Ramirez A, Bryda EC, Kutsche K,
Nothwang HG, Seeliger M, del C-Salcedó Cabrera M, Vila
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