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Summary
Cellular responses to stress-like stimuli require the IKK signalsome (IKKα, IKKβ and NEMO/
IKKγ) to activate NF-κB dependent genes. IKKβ and NEMO/IKKγ are required to release NF-κB
p65/p50 heterodimers from IκBα, resulting in their nuclear migration and sequence specific DNA
binding; but IKKα was found to be dispensable for this initial phase of canonical NF-κB activation.
Nevertheless, IKKα(−/−) MEFs fail to express NF- κB targets in response to pro-inflammatory
stimuli, uncovering a nuclear role for IKKα in NF-κB activation. However, it remains unknown if
the global defect in NF-κB dependent gene expression of IKKα(−/−) cells is caused by the absence
of IKKα kinase activity. We show by gene expression profiling that rescue of near physiological
levels of Wt. IKKα in IKKα(−/−) MEFs globally restores expression of their canonical NF-κB target
genes. To prove that IKKα’s kinase activity was required on a genomic scale, the same physiological
rescue was performed with a kinase dead, ATP binding domain IKKα mutant [IKKα(K44M)].
Remarkably, the IKKα(K44M) protein rescued ~28% of these genes, albeit in a largely stimulus
independent manner with the notable exception of several genes that also acquired TNFα
responsiveness. Thus the IKKα containing signalsome unexpectedly functions in the presence and
absence of extracellar signals in both kinase dependent and independent modes to differentially
modulate the expression five distinct classes of IKKα/NF-κB dependent genes.

Introduction
The NF-κB pathway is important for a host of cellular processes including its central role in
responses to stress-like stimuli, the anti-apoptotic cascade, the initiation and maintenance of
immune responses, embryonic and adult tissue development and cell cycle progression
[reviewed in (1–11)]. In mammals the NF-κB family of transcription factors is comprised of
5 subunits characterized by the presence of a conserved Rel homology DNA binding domain
[reviewed in (2,12,13)]. The RelA/p65, c-Rel and RelB NF-κB subunits are fully functional
transcriptional activators, whereas the p50 and p52 subunits lack a transcriptional activation
domain [reviewed in (12,13). NF-κBs function as specific hetero- or homo-dimers that bind to
a GGGRNWTYCC consensus DNA sequence found in the promoters or enhancers of NF-κB
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target genes [reviewed in (12,13)]. Transcriptional activating NF-κB subunits are normally
sequestered in the cytoplasm of unstimulated cells in a complex with one of the IκB family
proteins, which block their nuclear import and DNA binding activity. A large variety of extra-
cellular activating stimuli induce the proteosomal dependent destruction of IκBs thereby
differentially freeing NF-κBs to bind DNA and activate the transcription of their genomic
targets [reviewed in (14)]. Stress-like inducers of NF-κB (including pro-inflammatory
cytokines like TNFα and IL-1) function in a classical monophasic capacity to rapidly drive the
canonical NF-κB activation pathway, which largely involves the activation of p65(RelA)/p50
DNA binding activity and transcriptional competence [reviewed in (1,2,8,15)]. More recently
a distinct class of NF-κB stimuli (exemplified by LTβ, BAFF and CD40 ligand), which also
contribute to the implementation of differentiation programs and the adaptive phase of immune
responses, have been shown to function as biphasic activators initially acting via the rapid
canonical pathway and subsequently feeding into a delayed non-canonical protein synthesis
dependent route characterized by the activation of RelB/p52 heterodimers [reviewed in (8,9,
15,16)].

With the exceptions of UV radiation and the effects of some DNA damaging agents (17,18),
the release of NF-κBs from IκBs is mediated by the cytoplasmic signalsome complex, which
consists of two serine-threonine kinases (IKKα, IKKβ) and NEMO/IKKγ, a regulatory/docking
protein [reviewed in (1,7,8,15)]. IKKβ is essential for the phosphorylation of IκBs on a pair of
amino terminal serines (residues 32 and 36 in IκBα) thereby targeting IκB for ubiquitination
and subsequent proteosomal destruction [reviewed in (1,7,8)]. In contrast, IKKα is not required
for the phosphorylation of IκBs via the canonical NF-κB activation pathway in vivo, with the
exception of RANK ligand signaling in mammary epithelial cells (19). Rather, IKKα plays an
essential role in epidermal keratinocyte differentiation independent of both its kinase activity
and NF-κB activation and has also recently been found to play NF-κB dependent and
independent roles in tooth development (20–22). With respect to its physiological role in NF-
κB signaling pathways, IKKα is instead essential for the activation of the non-canonical NF-
κB activation pathway, which requires neither IKKβ nor NEMO/IKKγ [reviewed in (8,15,
16)]. In this context, via NIK (NF-κB inducing kinase) dependent signaling, IKKα
phosphorylates multiple serines of the p100 precursor of the p52 subunit, thereby inducing its
proteosome dependent processing into mature p52 subunits which are then freed to activate
NF-κB target genes as p52/RelB heterodimers (8,9,23,24). We and other groups have also
found IKKα is required to activate the transcription of canonical NF-κB target genes (25–29).
The latter dependency on IKKα is independent of IκBα destruction, and instead appears to
involve one or more nuclear targets perhaps including histone H3 (27,28) and the SMRT
transcriptional co-repressor (29) resulting in the de-repression of NF-κB target genes

In this report we have investigated the physiological requirement of IKKα’s kinase activity for
the expression of NF-κB dependent genes on a genomic scale in IKKα null MEFs.
Physiological expression of Wt. IKKα in IKKα(−/−) MEFs by retroviral transduction resulted
in the rescue of specific NF-κB dependent genes in the presence and absence of TNF-α
stimulation. Comparative microarray screens with NF-κB compromised MEFs [p50(−/−) and
Wt. + IκBα(S32A, S36A)] revealed that the large majority of these IKKα rescued genes are
either dependent on basal or TNFα inducible NF-κB, thus demonstrating that: (1) IKKα plays
an essential role in controlling the expression of both signal induced and basal NF-κB
dependent genes and 2) IKKα does not appear to influence the expression of a large number
of genes outside of the NF-κB pathway. Comparable physiological rescue with a kinase dead
IKKα mutant protein [(IKKαK44M)] showed that most of these genes are dependent on
IKKα kinase activity for their stimulus dependent and independent expression. However, the
expression of up to 28% of these NF-κB dependent genes was also surprisingly rescued by the
kinase inactive IKKα(K44M) mutant. Furthermore both wild type and mutant IKKα are also
required for the basal levels of expression of specific NF-κB dependent genes. Thus, our
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findings collectively reveal that the levels of expression of different downstream NF-κB
dependent genes are differentially co-dependent on catalytically active IKKα in the presence
or absence of extracellular stimuli.

Experimental Procedures
Tissue Culture

Growth of IKKα(−/−) MEFs and their stimulation with TNF-α was performed as previously
described. Wt. IKKα/CHUK-HA or IKKα(K44M)-HA (a kinase inactive ATP binding domain
mutant with lysine 44 mutated to methionine) with carboxy-terminal HA epitope tags (30–
32) were introduced into IKKα(−/−) MEFs by transduction with a retroviral vector co-
expressing a puromycin resistance gene followed by 6–8 days of puromycin selection (26,
33). IKKα(−/−) cells harboring an empty retroviral vector (EV cells) were simultaneously
generated as a matched negative control.

RNA Preparation:
Total cellular RNAs were extracted from cell lysates with an RNeasy kit (Qiagen). Purified
RNAs were converted to double-stranded cDNA with a Super Script Double Stranded cDNA
synthesis kit (Invitrogen) and an oligo-dT primer containing a T7 RNA polymerase promoter
(GENSET). Biotin-labeled cRNAs were generated from the cDNA samples by in vitro
transcription with T7 RNA polymerase (Enzo kit, Enzo Diagnostics). The labeled cRNAs were
fragmented to an average size of 35 to 200 bases by incubation at 94°C for 35 min.
Hybridization (16 hr), washing and staining protocols have been described [Affymetrix Gene
ChipR Expression Analysis Technical Manual; (34)].

DNA Microarrays and Clustering Analysis:
We employed Affymetrix MG-U74Av2 chips that include 12400 genes. Chips were stained
with streptavidin-phycoerythrin (Molecular Probes) and scanned with a Hewlett-Packard Gene
Array Scanner. DNA microarray chip data analysis was performed using MAS5.1 software
(Affymetrix) and as previously described (26). Levels of gene expression were quantitated
from the hybridization intensities of 16 pairs of perfectly matched (PM) and mismatched (MM)
control probes (35) (Affymetrix Inc.). The average of the differences (PM minus MM) for each
gene-specific probe family were calculated and expressed as Signal values. The software
computes how each transcript’s expression level has changed between the baseline and
experimental samples (Difference Call/Change Call). Change Call is a qualitative call that
describes whether a transcript in an experimental array has changed compared to a baseline
array. One array is designated as the experimental and another array is designated as the
baseline. Wilcoxon’s Signed Rank is used to generate a Change p-value. A Change call is
assigned based on analysis parameters. Change p-values between 0.00 and 0.0025 are given
an Increase (I) call. Change p-values between 0.0025 and 0.003 are given a Marginal Increase
(MI) call. Change p-values between 0.997 and 0.998 are given a Marginal Decrease (MD) call.
Change p-values between 0.998 and 1.00 are given a Decrease (D) call (Affymetrix User
manual). For a comparative chip file (such as TNFα stimulated IKKα(−/−) MEF + Wt.IKKα
vs. IKKα(−/−) MEF + EV (empty vector), the experimental file [Wt.IKKα 2T] was compared
to the baseline file [EV 2T]. We employed the following stringent selection criteria to identify
significant changes in gene expression: (1) a change call of “increase” or “marginal increase”
in both samples; and (2) average fold change values of 1.5 or greater (minimum of 1.3 fold
each) in two independently stimulated samples of IKKα(−/−) MEF + Wt.IKKα 2T vs. IKKα
(−/−) MEF + EV 2T. The following additional criteria were employed to identify the spectrum
of these genes that were also dependent upon NF-κB for their expression: (1) A change call of
either “Increase” or “Marginal Increase” in Wt. MEF 2T vs. Wt. MEF + IκBαSR-Ires-
Neomycin or (2) a change call of either “Increase” or “Marginal Increase” in Wt. MEF 2T vs.
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p50 (−/−) MEF 2T and (3) a valid presence call of “P” in Wt. 2T screens. By this analysis we
define NF-κB dependency to represent genes whose expressions either directly (true direct
targets of NF- κB subunits) or indirectly (other downstream genes whose expressions are
effected by the NF-κB pathway) require NF-κB. The TNFα inducibilities of genes rescued by
either Wt. IKKα or IKKα(K44M) were based on a combination of the following stringent
criteria: (1) Increase calls in duplicate 2T vs. US microarray screens of IKKα(−/−) MEFs
rescued by Wt. IKKα or IKKα(K44M) and/or (2) TaqMan ‘real time’ PCR analysis performed
at least in duplicate and an increase call in one out of two screens. By these criteria, the vast
majority of IKKα rescued genes that responded to TNFα did so with fold change values of 2.0
and higher in duplicate screens with a minimum of average fold change value of 1.7.

Hierarchical clustering was performed with the Cluster program (available at http://
rana.lbl.gov/) as described previously (36). Genes that have double “Increase calls” and are
induced >1.5 fold (avg. fold values) in the duplicate primary Wt. IKKα vs. EV rescued IKKα
(−/−) MEFs (see above description) were selected. The Signal values (equivalent to the
quantities of mRNAs, see “above”) of the selected genes were median centered by subtracting
the median observed value, and normalized by genes to the magnitude (sum of the squares of
the values) of a row vector to 1.0. The normalized data were clustered by average linkage
clustering analysis of Y axis (genes) using an uncentered correlation similarity metric, as
described in the program Cluster. Signal values of 50 or less were set to 50 before centering
and normalization. The clustered data were visualized with the Treeview program (available
at http://rana.lbl.gov/).

TaqMan Real-Time Quantitative PCR
TaqMan Real-time quantitative PCRs were performed as previously described (26,37). Data
from TaqMan PCR analyses were normalized based on GAPDH mRNA copy numbers using
rodent GAPDH control reagents (Applied Biosystems). TaqMan probe sets were designed for
the following genes using either Primer Express 1.5 or Bio. Rad Beacon Designer 2.0 software:
ATF3, A20, ISG15, MyD118/GADD45β, SAA3 and VCAM1. Murine IL-6 and RANTES
TaqMan reagents were obtained from ABI. TaqMan ‘real time PCR’ experiments were
performed in an ABI PRISM 7700 sequence detector or in a Bio. Rad iCycler. DNA sequences
for each of these probe sets are available upon request.

Western Blotting:
Cell lysates were prepared in an isotonic lysis buffer containing 1% NP-40 supplemented with
protease inhibitors. SDS-10%PAGE transfer to PVDF membranes was performed as
previously described, and membranes were probed with primary antibodies to either IKKα
(Cell Signaling Technology) or NEMO (Santa Cruz) followed by an anti-rabbit-Horseradish
Peroxidase conjugated secondary antibody (Amersham). Blots were developed using a Lumi-
Light Plus kit (Roche).

Immunostaining.
Prior to immunostaining cells were maintained in 10 cm tissue culture treated plates in their
regular growth media. Cells were trypsinized, resuspended in 12 ml of growth medium, and
plated at 3 ml/well in 6-well plates containing 22 mm glass microscope coverslips (VWR) pre-
coated with poly-L-lysine (Sigma). Cells were incubated overnight at 37°C with 5% CO2. The
following day, cells were washed and then fixed in 50% methanol/50% acetone for 10 min.
These and all subsequent washes were with PBS. The fixed cells were rehydrated in PBS, and
the coverslips were washed, blocked with PBS containing 10% heat denatured fetal bovine
serum for 1 hr, and washed again. In situ expression of retrovirally transduced Wt. IKKα-HA
and IKKα(K44M)-HA proteins in IKKα(−/−) cells were specifically detected with a primary
anti-HA 12CA5 antibody (38). 12CA5 antibody was diluted in blocking solution and applied
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to the cells, followed by 1 hr incubation at room temperature. Following washing, alkaline-
phosphatase conjugated goat anti-mouse IgG (Jackson) secondary antibody, diluted 1:2000 in
block solution, was applied for 1 hr incubation at room temperature. The coverslips were
washed and NBT/BCIP developing substrate applied (Roche). Cells were visualized on a Nikon
Diaphot phase contrast microscope and photographed using a Nikon D1X digital camera.

NF-κB DNA Binding:
Activation of NF-κB p65 dependent DNA binding activity was quantitated with an ELISA-
based kit (Active Motif Inc)(39). Nuclear extracts were prepared from unstimulated or 2 hr
TNFα stimulated wild type, IKKα null and Wt. IKKα or IKKα(K44M) rescued IKKα(−/−)
MEFs and applied to 96 well plates containing an immobilized NF-κB DNA binding consensus
oligonucleotide according to the manufacturer’s instructions (Active Motif Inc). DNA bound
NF-κB was detected with a p65 specific primary antibody followed by addition of a secondary
antibody conjugated to horseradish peroxidase (HRP) and absorbence quantitated at 450 nm
with a microplate spectrophotometer. The specificity of NF-κB DNA binding was confirmed
by competitions with wild type and mutant NF-κB binding sequences. Negative controls for
stimulus dependent NF-κB nuclear localization and DNA binding activity also included nuclear
extracts prepared from NEMO (−/−) and p65/p50 (−/−) MEFs.

Results
Physiological rescue of IKKα(−/−) MEFs with Wt. IKKα and IKKα(K44M) proteins does not
interfere with the induction of NF-κB DNA binding activity

By employing DNA microarray chip technology, we previously reported that the IKKα protein
was as essential as the IKKβ and NEMO/IKKγ signalsome subunits for the genomic NF-κB
dependent transcriptional response induced by TNF-α or IL-1 stimulation. Our finding of a
strict requirement for IKKα in the regulation of NF-κB dependent transcription in MEFs was
controversial, because earlier studies had shown that cells derived from IKKα null mice
exhibited no significant defect in the stimulus dependent induction of NF-κB nuclear
localization and DNA binding activity. However, in agreement with our observations, two
other studies had shown that IKKα was required for the TNFα and IL-1 dependent
transcriptional induction of IL-6 gene expression (25,40). Subsequent to these reports,
chromatin immunoprecipitation experiments showed that IKKα’s role in engendering DNA
bound NF-κB with transcriptional competence was associated with its TNFα dependent
binding to the IκBα gene’s promoter and with its ability to directly phosphorylate histone H3
on serine 10 in vitro (27,28) and more recently to also phosphorylate and thereby facilitate the
release of the SMRT co-repressor from specific NF-κB target gene promoters (29).

To determine if the intrinsic defect of IKKα(−/−) MEFs to express NF-κB dependent genes on
a genomic scale was solely due to the absence of a functional IKKα kinase, we employed
retroviral transduction to rescue physiological levels of Wt. IKKα expression in a large
population of IKKα (−/−) MEFs. To determine if IKKα’s kinase activity was required to rescue
the expression of their NF-κB dependent genes, we also derived a similar population of
IKKα(−/−) MEFs expressing near physiological levels of a kinasedead IKKα mutant [IKKα
(K44M)](31,32). To rule out any effects of stable retroviral transduction, we also generated a
matched negative control population of IKKα(−/−) MEFs harboring the empty retroviral vector
[IKKα(−/−)-EV cells]. Western blotting revealed that the levels of Wt. IKKα and IKKα(K44M)
expression in IKKα(−/−) rescued MEFs were similar to the expression of endogenous IKKα
in wild type NF-κB competent MEFs (see Figure 1). Importantly as shown in Figure 2, in situ
immunostaining also revealed uniform expression of either the Wt. IKKα-HA or mutant
IKKα(K44M)-HA proteins in their respective stably transduced cell populations. These stable
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populations of IKKα(−/−) cells expressing physiologically comparable levels of either Wt.
IKKα-HA or IKKα(K44M)-HA were used in all subsequent experiments.

As discussed above, studies with IKKα null mice have proven that the loss of IKKα has no
effect on the induction of NF-κB DNA binding activity by proinflammatory cytokines (40–
42). Consequently, before proceeding to compare the effects of exogenous wild type and kinase
dead IKKα on the TNFα induced NF-κB dependent transcriptional response of IKKα null
MEFs, it was necessary for us to verify that our retrovirally derived cell populations exhibited
comparable TNFα induced NF-κB DNA binding activity to their IKKα(−/−) counterparts and
Wt. MEFs. To this end, we employed a quantitative ELISA-based DNA binding assay to
directly compare levels of NF-κB p65 subunit DNA binding activity induced by TNFα
stimulation. Nuclear extracts of NEMO/IKKγ(−/−) and p65/p50(−/−) MEFs were employed
as negative controls. As shown in Figure 3, comparable levels of NF-κB p65 DNA binding
activity were induced upon TNFα stimulation of wild type, IKKα(−/−) + EV, IKKα(−/−) +
Wt.IKKα and IKKα(−/−) + IKKα(K44M) MEFs. To validate the specificity of the DNA
binding reactions, NF-κB p65 dependent DNA binding was abolished in nuclear extracts of
TNFα induced IKKα(−/−) + Wt.IKKα and IKKα(−/−) + IKKα(K44M) cells by an excess of a
wild type NF-κB binding oligonucleotide but not by a mutant NF-κB binding sequence (Figure
3). Importantly, this experiment demonstrates that when expressed at near-physiological levels,
the IKKα(K44M) mutant protein does not function in a general dominant negative manner with
respect to the nuclear localization and activation of NF- κB DNA binding activity.

Physiological rescue of IKKα(−/−) MEFs with Wt. IKKα is sufficient to restore the global
expression of NF-κB dependent genes

To identify the cohort of TNFα responsive genes in IKKα(−/−) MEFs, which are not expressed
due to their IKKα deficiency, we compared DNA microarray screens of IKKα(−/−) MEFs
rescued with Wt. IKKα to IKKα(−/−) cells expressing an empty retroviral vector (EV) as a
matched negative control. IKKα(−/−) + Wt. IKKα screens were performed in duplicate to rule
out any gene specific variations and were compared to TNFα stimulated IKKα(−/−)EV cells.
118 genes were rescued based on the stringent criteria of double increase calls (Affymetix
MAS 5.1) and average fold change values of 1.5 or greater. Hierarchical clustering of the signal
values of these 118 genes shows that two independent TNFα stimulations of the Wt. IKKα
rescued IKKα(−/−) cell population have very similar expression profiles (see columns 1 and
2 of Figure 4). Some variations in the degrees of expression of specific genes were observed
but more importantly all of these genes are expressed at significantly higher levels in the two
Wt. IKKα rescued samples compared to TNF stimulated IKKα(−/−) cells harboring the empty
retroviral vector or to parental IKKα(−/−) cells.

To determine if these IKKα dependent genes were also dependent on NF-κB, we employed
hierarchical clustering analysis to cross compare these screens to others performed with two
varieties of NF-κB compromised MEFs: (1) Wt. MEFs stably expressing an IκBα(S32A, S36A)
super-repressor (26) and (2) NF-κB p50(−/−) MEFs (43). Both cell lines were stimulated with
TNFα for 2 hrs and compared to their wild type counterparts. Some variation in the degrees of
NF-κB dependence of subsets of genes in the p50(−/−) and Wt. + IκBαSR screens were
observed (see Figure 4 Treeview image). This latter effect was most likely due to a combination
of the penetrance of the IκBα super represssor as well as the different thresholds of specific
NF-κB subunits required for the expression of their specific downstream target genes. Known
genes and ESTs with significant decreases in expression in either the IκBαSR expressing MEFs
or in p50(−/−) MEFs compared to Wt. MEFs were judged to be dependent on NF-κB for their
activity.

The fold change values of a representative set of 40 genes rescued by restoring Wt. IKKα
expression in IKKα null MEFs are shown in Table I. The relative NF-κB dependencies of these
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genes are presented as positive fold change values in one of two microarray screens [Wt. MEF
vs. Wt. MEF + IκBαSR or Wt. MEF vs. p50(−/−)]. Importantly many of these genes were also
rescued to levels of expression observed in wild type MEFs. Comparisons of the relative mRNA
expression levels of genes in duplicate TNFα stimulated and un-stimulated samples revealed
that the genes rescued by Wt. IKKα protein in IKKα null cells fell into two distinct stimulus
dependent and independent classes (Table I, Figure 5 and data not shown). The signal values
(equivalent to mRNA quantities) of three representative examples of the stimulus dependent
(Fas ligand, C/EBP-δ and CXCL10) and independent (Clast1, NOV and C1r) classes of these
Wt. IKKα rescued genes are presented in bar graph format in Figure 5. Collectively, these
results reveal that the expression of a large number of NF-κB dependent genes was restored in
IKKα null MEFs by retroviral transduction of a Wt. IKKα protein in a TNFα responsive manner
including: IL-6, GADD45β, RANTES, ScyB5/LIX, A20, IκBα, IFITR-1, C/EBP-δ, ATF3, Fas
ligand, Caspase 11, M/CSF-1, Serum amyloid A3, MIP2β, VCAM, JunB, ScyD1, ISG15, Gro1,
MMP3, MMP13 and Met 1 (see Table I and selected signal value comparisons in Figure 5A).
Amongst these forty representative genes rescued by the Wt. IKKα protein, examples of signal
independent rescues by Wt. IKKα include ClastI/LR8, C1r, IFP35, Plf2, Plf3, Itm2b, NOV/
CNN3, Decorin, Snx10 and IFITR2 (see genes highlighted in Gray in Table I and also selected
signal value comparisons in Figure 5B). In agreement with these results, the expression of this
same class of genes without extracellular stimulation was also found to be similarly reduced
in Wt. MEFs harboring a constitutively expressed IκBα super repressor or in p50 null MEFs
in comparison to their wild type counterparts (data not shown). Thus these observations show
that the Wt. IKKα containing signalsome is required for both the stimulus dependent and basal
levels of expression of NF-κB dependent genes. Because this class of NF-κB dependent genes
required IKKα without TNFα stimulation, they define a novel class of IKKα dependent genes
that are downstream of basally activated NF-κB.

In addition, the vast majority of the 118 genes rescued by physiological restoration of IKKα
in IKKα null MEFs were co-dependent on NF-κB, based on their reduced or severely
compromised expression in either Wt. MEFs expressing an IκBα super repressor or NF-κB
p50 (−/−) MEFs (Figure 4 and Table I). Thus our global expression results also show that
IKKα is not likely required for the transcription of a large number of genes outside of the NF-
κB pathway. It also directly follows that in spite of IKKα’s reported ability to facilitate
potentially more general aspects of chromatin activation by either phosphorylating serine 10
of histone H3 or the SMRT transcriptional co-repressor (27–29), IKKα must somehow still
remain preferentially targeted to NF-κB dependent genes .

A kinase inactive IKKα mutant rescues a portion of the genes dependent on wild type IKKα
in IKKα(−/−) MEFs

Because IKKα’s mechanism of action to activate NF-κB dependent transcription in the
canonical pathway remains poorly understood, we next investigated whether the kinase activity
of IKKα was essential for the expression of the 118 genes rescued by the Wt. IKKα protein in
IKKα(−/−) MEFs. Lysine 44 in IKKα’s kinase domain is essential for its binding of ATP and
its mutation to methionine prevents ATP binding thereby completely destroying IKKα kinase
activity (32,44). To determine the contribution of IKKα’s kinase function for the rescue of NF-
κB dependent genes, we used duplicate microarray analysis to determine the ability of a kinase
dead IKKα(K44M) mutant to rescue IKKα/NF-κB dependent targets when expressed at near
physiological levels in the IKKα(−/−) cells (see Hierarchical Treeview comparisons of Wt.
IKKα and IKKα(K44M) expressing IKKα(−/−) cells in columns 1 and 2 and columns 3 and 4
respectively in Figure 6). These results demonstrate that ~72% of the genes rescued by Wt.
IKKα in IKKα(−/−) cells were unaffected by the presence of comparable levels of an IKKα
(K44M) mutant protein. Surprisingly, ~28% (33 of the 118 IKKα dependent genes) were
reproducibly rescued by the IKKα(K44M) mutant. Most of these 33 IKKα(K44M) rescued
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genes can be visualized as two co-clustered groups in the upper and lower portions of the
hierarchical treeview image presented in Figure 6.

The fold change values of 20 representative genes rescued by the IKKα(K44M) mutant protein
are presented in Table I. Comparable degrees of rescue of each of these genes were achieved
with Wt. IKKα and the kinase inactive IKKα mutant proteins. However, in contrast to the
expression of genes restored by Wt. IKKα, pairs of TNFα stimulated and unstimulated
microarray screens of IKKα(K44M) transduced IKKα null cells revealed that only a small
fraction of the genes rescued by the IKKα(K44M) mutant responded to TNFα stimulation (see
examples of A20, M/CSF-1 and VL30 highlighted in gray in Table II). Bar graphs of signal
values (comparable to amounts of mRNAs) of three representative examples of the stimulus
dependent (A20, mVL30 and B94) and independent (Coagulation factor III, Sgk and NDPP1)
classes of IKKα(K44M) rescued genes are shown in Figure 7. In addition to these two distinct
classes of genes, a third class of IKKα(K44M) rescued genes only responded to TNFα
stimulation after rescue by Wt. IKKα and not if rescued by the IKKα(K44M) kinase inactive
mutant (see examples GADD45β, ATF3 and JunB in Table II). Interestingly, in comparison
to the NF-κB dependent genes solely rescued by the Wt. IKKα protein, a larger fraction of the
IKKα/NF-κB dependent genes rescued by the kinase inactive IKKα(K44M) mutant
preferentially encoded proteins associated with NF-κB autoregulation, growth arrest,
apoptosis, proliferation and survival (see representative genes in Table II and discussion
section). In addition, most of these NF-κB dependent genes, which are rescued by wild type
and kinase inactive IKKα, depend on the IKKα for their basal levels of expression in the absence
of an extracellular stimulus. Thus our global expression profiling analysis reveals the surprising
result that different NF-κB dependent genes differentially require IKKα kinase activity for their
basal and TNFα dependent expression, with the majority of genes encoding proteins associated
with pro-inflammatory stress-like responses requiring IKKα kinase activity.

TaqMan ‘real time’ PCR validations of Wt. IKKα and IKKα(K44M) rescued genes
As an additional validation of the duplicate microarray screens, TaqMan ‘real time’ PCR
experiments were performed on eight NF-κB target genes (IL-6, ISG15, RANTES, SAA3,
VCAM1, GADD45B, A20 and ATF3). Importantly, TaqMan validations were performed at
least in duplicate on a third independent set of unstimulated and 2 hr (2T) TNFα stimulated
samples, which were not employed in the duplicate microarray screens. Figure 8 shows the
absolute expression levels in the context of TNFα stimulation of each of these eight genes as
mRNA copy numbers in IKKα (−/−) MEFs expressing Wt. IKKα, IKKα(K44M) or an empty
retroviral vector (EV) compared to Wt. MEFs. Each of these genes are expressed in Wt. MEFs
and Wt. IKKα rescued IKKα (−/−) MEFs above their low to negligible levels in IKKα(−/−)
+EV cells. Some variations in the degrees of the IKKα dependent rescues in comparison to
wild type control cells are noted with some genes being expressed at higher levels in the wild
type control and others expressed at higher levels in the Wt. IKKα rescued cells. Figure 9
illustrates the TNFα dependencies of the same eight genes. In agreement with the duplicate
microarray screens, A20, ATF3, and MyD118/GADD45β, were rescued by the IKKα(K44M)
mutant in comparison to IKKα(−/−)EV MEFs, while IL-6, ISG15, RANTES, SAA3 and
VCAM1 failed to exhibit expression above background in IKKα(K44M) expressing IKKα(−/
−) cells. Of these three IKKα(K44M) rescued genes, only A20 significantly responded to
TNFα stimulation. In agreement with our duplicate microarray screens, after their rescue by
Wt. IKKα each of these eight genes was confirmed to be TNFα responsive.

Discussion
Studies of IKKα(−/−) and IKKβ(−/−) MEFs have definitively shown that IKKβ is the in vivo
IκBα kinase, and that IKKα is not needed for IκB degradation, NF-κB nuclear localization nor
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for inducing NF-κB DNA binding activity in response to proinflammatory NF-κB stimuli like
TNFα. However, IKKα functions in the canonical NF- κB pathway to ensure or modulate the
transcriptional competence of DNA bound NF-κB. In support of this view, we have shown
herein that restoration of IKKα(−/−) MEFs with near physiological levels of a wild type
IKKα kinase globally and specifically activated NF-κB dependent genes in response to
TNFα stimulation. In addition, these experiments also revealed a hitherto unknown
requirement for IKKα to maintain the basal levels of expression of specific NF-κB dependent
genes in the absence of an extracellular stress-like stimulus. Furthermore, the ability of a kinase
inactive IKKα mutant to rescue a portion of these NF-κB target genes reveals that even though
the IKKα protein is globally required for the expression of NF-κB dependent genes, its role as
a functional kinase is also target gene specific. In summary our findings show that genes
dependent on IKKα and NF-κB can be formally divided into five distinct classes of responsive
genes: (1) genes that require a functional Wt. IKKα kinase for their stimulus dependent, NF-
κB dependent expression; (2) genes that require a functional Wt. IKKα kinase for their stimulus
independent basal NF-κB dependent expression; (3) genes that require a functional Wt.
IKKα kinase for their signal dependent rescue but only require an IKKα protein for their basal,
stimulus independent expression, (4) genes that require the IKKα protein regardless of its
kinase activity for their stimulus dependent, NF-κB dependent expression and (5) genes that
require an IKKα protein regardless of its kinase activity for their stimulus independent, basal
NF-κB dependent expression.

Modifications of NF-κB subunits and other post-translational nuclear processes are also
necessary for the induction of NF-κB target genes and a number of reports have implicated
IKKα in these events. Phosphorylation of serines 276 (in the Rel Homology domain/RHD) and
serines 529 and 536 in the transcriptional activation domain (TAD) of the NF-κB p65/RelA
subunit have been suggested to play activating roles, and a number of kinases have been directly
implicated in this step including the IKKs (45–52). Transactivation by p65/RelA in response
to TNFα was localized to serine 529 within the p65/RelA TAD and found to mediate its
transcriptional activation independent of NF- κB’s ability to bind DNA [Wang, 1998 #404].
Phosphorylation of serine 276 was also found to be involved in the activation of p65/RelA at
least in part by controlling its association with the p300/CBP co-activator or the histone
deacetylase HDAC-1 (53). IKKβ and IKKα were both implicated as downstream effectors of
Akt- dependent signaling targeted to serines 529 and 536 in the p65/RelA TAD, which in part
appeared to involve the engagement of the CBP/p300 transcriptional co-activator [Madrid,
2000 #838; Madrid, 2001 #1245]. PTEN, a negative upstream effector of Akt, was also reported
to inhibit TNFα induced NF-κB activation [Koul, 2001 #1304;Gustin, 2001 #1305], which was
subsequently shown to occur solely at the level of p65 transactivation [Mayo, 2002 #1746].
Additionally, IL-1 and Akt mediated NF-κB activation was found to involve p65 TAD
phosphorylations with a co-dependency on IKKα and IKKβ [Sizemore, 2002 #1745]. TNFα
induced phosphorylation of p65/RelA serine 536 was recently shown to be dependent on both
IKKα and IKKβ and mediated by TRAF2, TRAF5 and TAK1 signaling (54) and a requirement
for IKKα in p65 serine 529 phosphorylation and NF-κB dependent transcriptional activation
in response to LTβ stimulation has also recently been reported (55). In addition, the activation
of NF-κB by the HTLV-Tax1 protein involves the specific phosphorylation of p65 serines 529
and 536, requiring IKKα, but not IKKβ (56). IKKα’s mechanism of action in the canonical
NF-κB pathway has also been proposed to be purely nuclear in nature. In this context, IKKα
has been shown to migrate into the nucleus (57) and associate with the promoters of NF-κB
dependent genes upon TNFα stimulation (27,28). More recently mitogenic activation of the c-
fos gene by epidermal growth factor dependent signaling was found to require the constitutive
and induced recruitment of p65/RelA and IKKα respectively to the c-fos promoter (58).
Because IKKα was also found to phosphorylate serine 10 of histone H3 in vitro and the
phosphorylation status of histone H3 in IKKα(−/−) MEFs was enhanced by introduction of
wild type IKKα (27,28), these results suggested that IKKα might be functioning by enhancing
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the transcriptional accessibility of the chromatin of NF-κB target genes and potentially a
broader range of genes that also respond to TNFα stimulation. More recently, IKKα was also
shown to be critical for the signal dependent expression of the cIAP-2 and IL-8 NF-κB
dependent genes in several cellular contexts by virtue of its required ability to phosphorylate
the SMRT co-repressor, thereby also inducing chromatin activation by facilitating the
exchange of transcriptional corepressors for co-activators (29).

Wild type IKKα kinase restores the expression of NF-κB dependent genes in IKKα null MEFs
Our comparative genomic analysis of the abilities of wild type IKKα and a kinase dead IKKα
(K44M) ATP binding domain mutant indicate that IKKα’s kinase activity is required for the
activation of most but not all genes whose expressions are dependent on NF-κB. Indeed, we
find that IKKα kinase activity is required for the induction of numerous TNFα responsive NF-
κB target genes (including RANTES, IκBα, IL-6, ISG- 15, IFITR-1, mGBP-2, mGBP-3, Gro1,
Fas ligand, Jun-B, Caspase 11, ScyD1, Serum amyloid A3, MMP3, MMP13, ScyB5/LIX, Ptx3,
Schaflen 2, Met1 and C/EBPδ), many of which we previously identified as targets of pro-
inflammatory cytokine mediated NF- κB activation in Wt. MEFs but not in IKKα null MEFs
(26).

The expression of the majority of IKKα rescued NF-κB target genes in IKKα null MEFs were
rescued by Wt. IKKα to within 2 fold of their levels in wild type MEFs (see fold change values
of representative set of 40 genes in Table I) with a portion of NF-κB targets being expressed
at higher levels in wild type MEFs. This latter observation is not that surprising given that long
term inactive genes are known to differentially acquire the attributes of transcriptionally
inaccessible chromatin states, which is unlikely to be fully overcome by IKKα re-expression.
In addition, some NF-κB dependent genes were also expressed at higher levels in IKKα rescued
IKKα (−/−) cells compared to their wild type counterpart (see fold change values for IFITR-1,
Gro1 and Caspase 11 in Wt. IKKα rescued IKKα null cells compared to their levels of
expression in Wt. MEFs in Table I), which could reflect intrinsic differences in the absolute
levels of NF-κB target gene expression in different cellular backgrounds. A fraction of the
TNFα responsive genes rescued by Wt. IKKα in IKKα null fibroblasts did not appear to be
dependent on NF-κB for their expression employing the criteria of being unaffected by the
inhibitory effects of the IκBα super repressor in Wt. MEFs nor by the loss of the NF-κB p50
subunit. However, because genes such as MMP13, an NF-κB target gene in other cellular
contexts (59–61), were amongst this latter gene subset (see Figures 4 and 6 and data not shown),
this supports our conclusion that the large majority of TNFα responsive, IKKα dependent genes
in these cells are also NF-κB dependent.

Surprisingly, a number of NF-κB dependent genes were dependent on IKKα for their basal,
stimulus independent expression in IKKα compromised MEFs (21 of the 53 representative
genes rescued by IKKα in Tables I and II). Furthermore, these same genes were also expressed
at significantly lower levels in NF-κB compromised MEFs compared to wild type MEFs (data
not shown). Thus our findings show that the IKKα containing signalsome is also required to
maintain the basal, intrinsic expression levels of specific NF-κB dependent genes.
Interestingly, 14 out of 21 of these stimulus independent/Wt. IKKα rescued genes were also
preferentially rescued by the IKKα(K44M) mutant in the absence of stimulation (see Table II),
also demonstrating that IKKα’s kinase activity is not required to restore their basal levels of
NF-κB dependent gene expression in most but not all cases.

IKKα does not always function as a kinase to ensure the expression of NF-κB dependent
genes

We also employed duplicate microarray screens to compare the abilities of Wt. IKKα or a
kinase dead IKKα(K44M) mutant protein to rescue NF-κB dependent gene expression in

MASSA et al. Page 10

J Biol Chem. Author manuscript; available in PMC 2005 September 23.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



IKKα null fibroblasts on a genomic scale. These findings, in combination with quantitative
TaqMan real time PCR assays on selected genes, reveal that even though IKKα’s kinase activity
is required to activate the majority of NF-κB dependent genes, it is not directly functioning as
a kinase for the expression of ~28% of the NF-κB dependent genes in this cell background.
Interestingly most of the latter subset of IKKα(K44M) rescued genes were unresponsive to
TNFα, with the exception of several genes (including M/CSF-1, A20, mL30 and B94) (see
Table II, Figures 7 and 9). In contrast to their TNFα independent rescues by the IKKα(K44M)
mutant, GADD45β/MyD118, ATF3 and JunB were rescued by Wt. IKKα in a TNFα dependent
manner (Table II and Figure 9). It is also noteworthy in this context that our quantitative
TaqMan analysis revealed that Wt. IKKα in comparison to IKKα(K44M) also rescued higher
levels of GADD45β, ATF3 and A20 expression (Figures 8 and 9). Taken together these
observations show that the nature of the Wt. IKKα vs. IKKα(K44M) mediated rescues of
GADD45β, ATF3, JunB and perhaps even A20 are intrinsically different from each other,
revealing that their dependencies on the IKKα protein occurs at more than one regulatory level.

Of particular interest, a larger proportion of the IKKα rescued genes, which were also rescued
by the kinase inactive IKKα(K44M) mutant, encode proteins with functional properties in
either NF-κB autoregulation, cellular proliferation, growth arrest, apoptosis or cellular survival
(M/CSF-1, PLF2, PLF3, GADD45β/MYD118, A20, Sequestosome/p62, NDPP1/CARD 8,
JunB and ATF3). GADD45β/MyD118 was first described to function as an effector of myeloid
cell differentiation and as a member of a class of cell cycle checkpoint protein arresting cellular
growth in response to DNA damage or in association with terminal cellular differentiation
(62,63). In contrast and more recently, GADD45β has also been shown to be an NF-κB
dependent anti-apoptotic effector in response to TNFα, where it appears to act by directly
blocking MKK7/JNKK2 activity thereby leading to the suppression of the c-Jun N-terminal
kinase (JNK) cascade in response to TNFα stimulation (64,65)and also by suppressing Fas/
CD95/APO-1 induced caspase activation in response to CD40 triggering in B lymphocytes
(66). Our results show that the induction of GADD45β by TNFα requires IKKα kinase activity
for its NF-κB dependent expression. However, because we also find that a kinase inactive
IKKα(K44M) mutant restored unstimulated levels of GADD45β expression in IKKα null
MEFs, our results also indicate that other intrinsic properties of the IKKα protein contribute
to the expression of GADD45β under different physiological circumstances, perhaps leading
to other functional properties ascribed to GADD45β/MyD118. Sequestosome/p62, an atypical
protein kinase C (a PKC) interacting protein, interacts with RIP (receptor interacting protein)
linking it to TNFα mediated NF-κB induction with its inhibition or down-modulation also
interfering with IL-1 and TRAF 6 dependent NF-κB activation (67). A20 is a TNFα and IL-1
induced zinc-finger protein, which has been reported to act as a negative effector of NF-κB
(68–70), mediated by RIP and TRAF2 signaling (70). A20 was also recently shown to attenuate
TNFα mediated NF- κB activation via the cooperative action of its two intrinsic ubiquitin-
editing domains resulting in the polyubiquitination of receptor interacting protein (RIP), an
essential mediator of the TNF receptor 1 (TNFRI) signaling complex, thereby targeting RIP’s
proteasomal destruction (71). Akin to GADD45β, A20 has also been shown to block TNFα
dependent apoptosis at least in part by preventing TRADD and RIP recruitment to TNFRI
(72,73). NDPP1 a novel member of the caspase-associated recruitment domain (CARD) family
of proteins has also been reported to either promote or suppress apoptotic responses in specific
cell types and to block TNFα induced NF-κB activation (74,75). ATF3, a member of the ATF/
CREB family of leucine zipper transcription factors (also known as LRF-1/TI-241) (76,77)
and a stress induced transcriptional repressor (78–80), has recently been shown to be dependent
on both the NF-κB and JNK signaling pathways for its expression in response to TNFα and
nitric oxide (81). ATF3 has also been shown to play roles in either protection against or
induction of apoptotic responses, dependent on the nature of the signal and cellular context
(79,82,83). Finally, Proliferin 2 and Proliferin 3/Mitogen-regulated protein 3, which were also
rescued by both Wt. IKKα and IKKα(K44M) in a stimulus independent manner, are members
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of the prolactin growth hormone family of proliferins whose functional properties have been
associated with cellular proliferation and migration, wound healing and angiogenesis (84–
88). Because an IKKα(K44M) kinase inactive mutant was found to be incapable of
phosphorylating serine 10 of histone H3 (28), our observations also indicate that not all genes
whose expressions are co-dependent on IKKα and NF-κB require IKKα’s kinase activity for
histone H3 phosphorylation.

In summary, our global expression profiling analysis shows that IKKα functions in both kinase
dependent and independent modes, thereby revealing the existence of five distinct classes of
genes co-dependent on IKKα and NF-κB in mouse embryonic fibroblasts. In addition to the
importance of a Wt. IKKα containing signalsome for the activities of many stimulus dependent
target genes of NF-κB, the Wt. IKKα protein also plays a role in the regulation of a distinct
class of NF-κB dependent genes requiring only basal levels of active NF-κB for their regulated
expression. We envision that IKKα’s kinase independent mode of action to ensure the
expression of a subset of NF-κB dependent genes may be attributable to a novel regulatory/
docking-like property of the IKKα protein, which facilitates the recruitment of other regulatory
factors required for the expression of specific downstream targets of the NF-κB pathway.
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Figure 1. Physiological levels of expression of Wt. IKKα and IKKα(K44M) in rescued populations
of IKKα(−/−) MEFs.
Populations of IKKα(−/−) MEFs were retrovirally transduced to stably express either murine
Wt. IKKα-HA or an IKKα(K44M)-HA mutant proteins. SDS-PAGE was performed to
determine the levels of IKKα expression obtained in the infected populations (top) (see
Experimental Procedures). The membrane was stripped and reprobed with a NEMO specific
antibody as a reference control (bottom), which showed comparable expression in each cell
background.
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Figure 2. Immunostaining of Wt. IKKα-HA and IKKα(K44M)-HA proteins in retrovirally
transduced populations of IKKα(−/−) cells.
Wt. IKKα-HA and IKKα(K44M)-HA proteins, stably expressed by populations of retrovirally
transduced IKKα(−/−) MEFs, were visualized by in situ immunostaining. Cells were plated on
coverslips coated with poly-L-lysine, fixed and immunostained using 12CA5 anti-HA
monoclonal antibody or no primary antibody as a negative control. Stained cells were viewed
by a phase contrast Nikon Diaphot microscope and photographed using a Nikon D1X digital
camera, as described in "Experimental Procedures". In the absence of primary antibody (top
panels) or in IKKα(−/−) parental cells, no immunostaining is seen, while populations of
IKKα(−/−) cells stably transduced by either Wt. IKKα-HA or IKKα(K44M)-HA expressing
retroviruses show uniform cytoplasmic staining.
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Figure 3. Physiological expression of Wt. IKKα or IKKα(K44M) in IKKα(−/−) MEFs does not
interfere with stimulus dependent NF-κB DNA binding.
RelA/p65 DNA binding was assayed using the TransAM NF-κB p65 Transcription factor assay
kit (Active Motif), following the manufacturer’s instructions for the preparation of nuclear
extracts. All samples are presented as (−) unstimulated or (+) stimulated for 2 hours with 20
ng/ml TNFα prior to lysis and nuclear extract preparation. Data shown represent each data
point done in quadruplicate, with standard deviations presented as error bars. Nuclear p65 was
measured as the absorbance at 450 nm, with a reference wavelength of 650 nm using a
fluorescent plate reader. Specificity of p65- DNA binding within the Wt. IKKα and IKKα
(K44M) infected populations was determined by competition for binding using an excess of
either Wt. (W) or mutant (M) NF-κB synthetic oligonucleotide.
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Figure 4. Hierarchical cluster image of the NF-κB dependencies of genes rescued by Wt. IKKα in
IKKα(−/−) MEFs.
Signal values of 118 IKKα dependent genes derived from two independent microarray screens
of IKKα(−/−) cells expressing Wt. IKKα (Columns 1 and 2) were subjected to hierarchical
clustering in comparison to the following samples: Column 3: IKKα(−/−) MEFs+ empty vector
(EV) 2T, Column 4: IKKα(−/−) MEFs 2T, Column 5: p50(−/−) 2T and Column 6: Wt. MEFs
+ IκBα(S32A, S36A) 2T. The 118 IKKα dependent genes employed in these comparisons were
selected on the basis of average fold change values of 1.5 or greater (minimum of 1.3 fold each)
and difference calls of “increase” or “marginal increase” in two independent samples of 2 hr
TNFα (2T) stimulated IKKα(−/−) MEF + Wt.IKKα 2T vs. IKKα(−/−) MEF + empty vector
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(EV) 2T MEFs. The locations of a number of genes are indicated. Signal values were all derived
from MAS5.0 calculation and normalized as described in Experimental Procedures. Gene
expression values are shown in color according to the indicated expression scale bar.
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Figure 5. Relative mRNA expression levels of examples of stimulus dependent and independent
classes of genes only rescued by a Wt. IKKα protein.
Comparisons of signal values of three NF-κB dependent genes, which were rescued only by a
kinase competent Wt. IKKα protein, in a TNFα responsive manner (Panel A). Signal value
comparisons of three additional genes, whose basal levels of NF-κB dependent expression
were rescued only by Wt. IKKα and were unaffected by TNFα stimulation (Panel B).
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Figure 6. Hierarchical cluster image of genes rescued by Wt. IKKα in comparison to an IKKα
(K44M) mutant
Signal values of the 118 genes rescued by Wt. IKKα in duplicate screens (columns 1 and 2)
were evaluated by hierarchical clustering (as described in Figure 3) in comparison to their
signal values in duplicate screens of 2 hr TNFα (2T) stimulated IKKα (−/−) MEFs expressing
a kinase inactive IKKα(K44M) mutant (columns 3 and 4). As in Figure 4, the IKKα specificities
of the rescues can be visualized in columns 5 and 6, which display the signal values of the 118
genes in IKKα(−/−) null MEFs or the same cells expressing an empty retroviral (EV).
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Figure 7. Relative mRNA expression levels of examples of stimulus dependent and independent
classes of genes rescued by the IKKα protein regardless of its kinase activity
Comparisons of signal values of three NF-κB dependent genes, which were comparably
rescued by both Wt. IKKα and the IKKα(K44M) mutant, in a TNFα responsive manner (Panel
A). Signal value comparisons of three additional NF-κB target genes, whose basal levels of
NF-κB dependent expression were rescued by either a wild type or a kinase inactive IKKα
mutant but were unresponsive to TNFα stimulation (Panel B).
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Figure 8. TaqMan ‘real time’ PCR analysis of selected genes differentially rescued by Wt. IKKα
and IKKα(K44M)
Independent samples of Wt. MEFs and IKKα(−/−) MEF expressing Wt. IKKα, EV (empty
retroviral vector) or IKKα(K44M) were stimulated with 20 ng/ml TNFα for 2 hrs. and RNAs
were prepared and subjected to TaqMan real time PCR analysis. The levels of expression of
eight representative genes (IL-6, ISG15, RANTES, SAA3, VCAM1, GADD45β, ATF3 and
A20) were quantitatively compared. Each bar represents data obtained at least in duplicate with
the indicated standard deviations. All samples were normalized to a GAPDH probe set and
mRNA copy numbers were determined in comparison to a genomic DNA standard for each
probe set.
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Figure 9. TaqMan ‘real time’ PCR analysis of the TNFα dependencies of selected genes rescued by
Wt. IKKα or IKKα(K44M)
The relative levels of expression in TNFα stimulated and unstimulated cells of the eight selected
genes in Figure 8 (IL-6, ISG15, RANTES, SAA3, VCAM1, GADD45β, ATF3 and A20) are
shown. TaqMan PCR reactions were performed and quantitated as described in Experimental
Procedures and in the legend of Figure 8.
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Table I
A Wt. kinase competent IKKα protein rescues the expression of two classes of NF-κB dependent genes in
IKKα null cells
Forty representative IKKα dependent genes, which met the stringent selection criteria outlined in Experimental
Procedures are shown. The first data column shows the fold change values of each genes obtained in two
independent microarray screens of IKKα(−/−) +Wt. IKKα 2T vs. IKKα(−/−) + EV 2T. Column 2 displays their
relative dependencies on IKKα in the context of wild type MEFs (i.e., Wt. MEF 2T vs. IKKα(−/−) 2T as previously
described)(26)(and data not shown). Columns 3–4 show NF-κB dependencies of each gene by comparing their
induced expressions in Wt. MEF 2T compared to either p50 null MEF 2T (Column 3) or Wt. MEF + IκBαSR
(super repressor) 2T (26)(Column 4). The criteria for assigning the TNFα responsiveness of each rescued gene
was determined on the basis of duplicate S (2T) vs. US microarray screens of Wt. IKKα rescued IKKα(−/−)
MEFs (see description of criteria in Experimental Procedures). Examples of signal values of three genes are
shown in Figure 5 and TaqMan ‘real time’ PCR analysis of selected genes are shown in Figure 9. Genes induced
by TNFα are assigned a (+) sign and genes whose expressions were not significantly stimulated by TNFα were
given a (−) sign. The expressions of nine of this representative group of forty genes were rescued independent
of TNFα stimulation and are highlighted in gray.

Accession# Genes
Inflammation/Stress & Immune-like Responses IKKα(−/−)

+ Wt.
IKKα vs

IKKα( −/−)
+ EV

Wt.
MEF vs
IKKα
( −/−)

Wt.
MEF vs
p50(−/
−)

Wt. MEF
vs Wt.
MEF +
IκBαSR

TNFα
(Wt.

IKKα)

U43084 IFITR-1 26.4/20.1 8.6 4.2 8.0 +
AJ007970 Guanylate binding protein 2/mGBP-2 19.3/22.8 24.3 56.3 6.4 +
AF065947 ScyA5/RANTES 15.5/5.1 45.0 52.8 3.6 +
X03505 Serum amyloid A3 10.8/4.9 22.7 498.5 450.7 +
M55544 Guanylate binding protein 1/mGBP-1 9.2/13.3 22.6 15.2 14.8 +
X66402 Matrix metalloproteinase 3/MMP3 6.3/2.1 3.2 8.8 5.7 +
M33266 CXCL10/ScyB10 5.8/6.7 2.8 6.0 2.0 +
X53798 Macrophage inhibitory protein 2β/

MIP2β/ScyB2
5.3/5.0 2.0 3.2 2.8 +

U27267 ScyB5/LIX 4.6/8.1 21.9 133.9 5.7 +
AW047476 Guanylate binding protein 3/mGBP-3 3.6/5.1 3.8 3.9 1.7 +
X66473 Matrix metalloproteinase 13/MMP13 2.8/1.5 1.1 1.1 1.0 +
AB031386 Clast1/LR8 2.3/1.5 11.3 7.2 7.8 -
J04596 GRO1 oncogene (2 hits) 2.2/2.3 1.5 5.2 2.4 +
X83601 Pentaxin related gene/Ptx3 2.1/3.7 38.2 12.6 7.8 +
U92565 ScyD1 2.1/1.5 24.2 18.4 2.2 +
X56602 ISG15 (2 hits) 2.1/1.3 7.0 12.3 13.9 +
X54542 Interleukin-6 2.0/2.2 6.5 50.4 65.5 +
L24118 TNF-α induced protein 2/B94 1.9/2.3 4.0 20.2 4.4 +
AW121732 Interferon-induced protein 35/IFP35 1.9/1.7 2.0 6.3 1.4 −
NF-κB Regulation
U19463 A20/somatostatin receptor 1 5.8/12.6 5.7 5.7 3.3 +
U57524 IκBα (2 hits) 1.8/2.2 2.2 4.9 ND +
AJ242778 ABIN/Tnip1 1.7/1.6 1.4 2.2 1.4 +
Growth & Develoment/Differentiation & Cell Fate
AF099973 Schlafen 2 11.9/3.2 8.6 16.6 22.9 +
U19118 Activating transcription factor 3/ATF3 2.8/2.1 1.7 3.6 1.5 +
X61800 CCAAT/enhancer binding protein δ 1.6/1.5 6.8 5.2 8.9 +
Growth Arrest & Apoptosis
Y13089 Caspase 11 12.4/12.3 4.9 4.3 5.5 +
M83649 Fas antigen 3.2/4.4 8.1 14.0 8.3 +
X54149 GADD45β/MyD118 (2hits) 2.2/2.8 4.3 4.5 2.2 +
U76253 Integral membrane protein 2/Itm2B/

BRI
1.6/1.5 1.9 2.5 2.7 −

Proliferation & Survival
X16009 Proliferin 3/PLF3 3.7/4.5 5.4 264.5 3.8 −
Y09257 Nephroblastoma over expressed/NOV/

CCN3
2.1/3.3 −1.0 4.0 6.0 −

K03235 Proliferin 2/PLF2 2.0/2.5 5.3 397.4 3.4 −
M21952 M-CSF1 1.9/2.1 2.7 6.0 3.3 +
Adhesion/Extracellular matrix
L22545 Collagen XVIII alpha 1/Endostatin 5.0/7.3 1.9 2.8 4.7 +
X53929 Decorin 2.0/2.8 8.9 87.7 27.1 −
Metabolic Pathways
D78354 Phospholipid scramblase 1/Plscr1 5.2/3.9 8.0 2.0 1.6 +
V00835 Metallothionein 1/Met-1 2.3/1.9 6.7 19.3 7.7 +
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Accession# Genes
Inflammation/Stress & Immune-like Responses IKKα(−/−)

+ Wt.
IKKα vs

IKKα( −/−)
+ EV

Wt.
MEF vs
IKKα
( −/−)

Wt.
MEF vs
p50(−/
−)

Wt. MEF
vs Wt.
MEF +
IκBαSR

TNFα
(Wt.

IKKα)

AI746846 Sorting nexin 10/Snx10 1.6/1.4 1.7 −1.3 4.6 −
Miscellaneous
C85523 mVL30/

Murine retrotransposable element
2.4/1.4 2.9 2.7 4.6 +

U43085 IFITR-2/GARG39 2.3/1.9 2.6 1.5 2.5 −
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Table II
NF-κB dependent genes rescued by IKKα independent of its kinase activity.
Twenty representative genes meeting the criteria of being rescued by both the Wt . IKKα and IKKα(K44M)
proteins are shown. Fold Change values of these twenty genes obtained from duplicate microarray comparisons
using independent samples of IKKα(−/−) + IKKα(K44M) 2T vs. IKKα(−/−) + EV 2T are indicated in Column
1. Column 2 shows the results obtained for the same genes in duplicate microarray comparisons of IKKα(−/−)
+ Wt. IKKα 2T vs. IKKα(−/−) + EV 2T. Column 3 displays their relative dependencies on IKKα in the context
of wild type MEFs (i.e., Wt. MEF 2T vs. IKKα(−/−) 2T as previously described)(26)(and data not shown).
Columns 4–5 shows their NF-κB dependencies by comparing their expressions in Wt. MEF 2T compared to
either p50 null MEF 2T (Column 4) or Wt. MEF + IκBαSR(super repressor) 2T (26)(Column 5). The TNFα
dependencies for the IKKα rescued expression of each gene are shown in the context of their independent rescues
by physiological levels of either IKKα(K44M) (Column 6) or Wt. IKKα (Column 7). The criteria for assigning
the TNFα responsiveness of each rescued gene was determined on the basis of duplicate S (2T) vs. US microarray
screens [for Wt. IKKα or IKKα(K44M) rescued IKKα(−/−) MEFs as indicated] (see description of criteria in
Experimental Procedures). Examples of signal values of three genes are shown in Figure 7 and TaqMan ‘real
time’ PCR analyses of selected genes are in Figure 9. Genes induced by TNFα are assigned a (+) sign and genes
whose expression was not significantly stimulated by TNFα were given a (−). The IKKα(K44M) mutant in a
TNFα responsive manner comparable to that achieved by Wt. IKKα rescued three genes highlighted in gray.

Accession# Genes
Inflammation/Stress & Immune-like Responses IKKα

( −/−) +
IKKα

(K44M)
vs

IKKα
( −/−)

IKKα
( −/−) +

Wt.
IKKα

vs
IKKα

( −/−) +
EV

Wt.
MEF

vs
IKKα
( −/−)

Wt.
MEF

vs
p50

(−/−)

Wt.
MEF vs

Wt.
MEF +
IκBαSR

TNFα
(K44M)

TNFα
(Wt.

IKKα)

M26071 Coagulation factor III 2.2/2.6 1.7/1.6 4.2 2.8 4.8 − −
X56824 Heme oxygenase 1/Hmox1/

HO-1
1.8/2.1 1.5/1.6 4.6 6.0 9.2 − −

AA615831 Heat shock protein 4/Hsp4/
Apg-2

1.5/1.4 1.5/1.5 2.0 2.6 1.6 − −

NF-κB Regulation
U19463 A20/somatostatin receptor 1 18.6/6.8 5.8/12.6 5.7 5.7 3.3 + +
U40930 Sequestosome 1/Sqstm1/p62 1.7/1.3 2.3/1.8 1.4 2.3 2.4 − −
D10727 NPC derived proline rich

protein 1/NDPP1/CARD8
1.5/1.8 1.4/1.7 1.1 2.9 1.5 − −

Growth & Develoment/Differentiation & Cell Fate
U19118 Activating transcription factor

3/ATF3
3.8/2.0 2.8/2.1 1.7 3.6 1.5 − +

Growth Arrest & Apoptosis
X54149 GADD45β/MyD118 (2hits) 2.8/1.9 2.2/2.8 4.3 4.5 2.2 − +
AF064088 TGFβ inducible early growth

response/Tieg1/GIF
2.2/3.9 1.6/1.3 4.0 5.0 6.1 − −

U20735 Jun-B oncogene 1.7/2.2 1.5/1.5 1.5 21.7 5.6 − +
Proliferation & Survival
X16009 Proliferin 3/PLF3 5.0/83.3 3.7/4.5 5.4 264.5 3.8 − −
K03235 Proliferin 2/PLF2 2.6/22.3 2.0/2.5 5.3 397.4 3.4 − −
AA270365 Cytokine receptor-like factor 1/

Crlf1
14.1/4.9 2.0/1.8 3.6 −1.3 2.6 − −

M21952 M-CSF1 2.2/1.7 1.9/2.1 2.7 6.0 3.3 + +
Adhesion/Extracellular matrix
AW121179 Microfibrillar associated

protein 5/Mfap5/Magp2
5.0/3.8 3.6/4.5 −1.2 −6.8 4.4 − −

AA980164 SPARC related modular
calcium binding 2/Smoc2

3.4/2.5 2.3/2.2 −1.6 −11.8 4.0 − −

Metabolic Pathways
AW046181 Serum/

glucocorticoid regulated kinase
2.4/3.8 1.7/2.0 3.1 4.6 2.2 − −

AW049647 ADP-ribosylation factor-like 6
interacting protein 5/Arl6ip5/
GTRAP 3-18

1.5/1.4 1.5/1.4 1.9 2.1 1.2 − −

Miscellaneous
C85523 mVL30/

Murine retrotransposon
2.1/2.1 2.4/1.4 2.9 2.7 4.6 + +

AI847054 EST 1.9/1.7 2.0/2.4 22.6 19.7 32.1 − −
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