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The recent series of anthrax attacks has reinforced the importance
of biosurveillance systems for the timely detection of epidemics.
This paper describes a statistical framework for monitoring grocery
data to detect a large-scale but localized bioterrorism attack. Our
system illustrates the potential of data sources that may be more
timely than traditional medical and public health data. The system
includes several layers, each customized to grocery data and tuned
to finding footprints of an epidemic. We also propose an evalua-
tion methodology that is suitable in the absence of data on
large-scale bioterrorist attacks and disease outbreaks.

biosurveillance � time series analysis � grocery data

We describe a statistical system designed for biosurveillance
that is part of a larger project investigating ways to use

information technology to improve clinical preparedness for
bioterrorism (1). Our goal is evaluating the possible use of
non-public health data, and in particular grocery sales, for the
early detection of a bioterrorism attack. The potential of these
data for timely detection lies in the earlier manifestation of an
attack in grocery and over-the-counter (OTC) medication sales,
and in their high level of detail.

We begin in the next section by providing background and a
characterization of an outbreak of a bioagent, focusing on
anthrax. Then we describe traditional data collected from med-
ical and public health sources and their ability to detect attacks
in a timely fashion, before turning to grocery data and the
detection system that we developed. We also introduce a method
for evaluating the detection system in the absence of a bioagent
footprint in the data, and for tuning the system to the input data.
We end with some observations on the usefulness of our
approach.

Historical and Current Biological Outbreaks
Various bioagents have been identified as possible weapons in
biological warfare. Here, we focus on anthrax to illustrate how
a detection system that tracks OTC medication sales can provide
more timely signals than traditional systems that track medical
and public health data. The statistical framework is general,
however, and can be applied for the detection of other agents.

Inhalational anthrax results from inhaling an aerosol of an-
thrax spores into the respiratory tract, is invariably fatal, and is
considered the most likely weapon in biological warfare. Since
1998, U.S. military personnel have been immunized against
anthrax on a regular basis (2). Given the large number of other
bioagents that could be used during a biological war, the
possibility of vaccinating the entire population against all strains
of bioagents is very low. The fact that early treatment of infected
people increases their likelihood of survival has reinforced the
broad agreement among scientists that the best defense against
biological attack is an early warning system. Thus, early detection
biosurveillance systems are essential if public health and other
officials are to react quickly when an epidemic is beginning.

Even though the Biological Weapon and Toxins Convention
prohibits research on or production of offensive biological
weapons, and has been signed by most countries, several coun-
tries and autonomous terrorist groups are believed to have such

programs. It is especially difficult to predict, detect, or prevent
a bioterrorism attack (3).

Known outbreaks of inhalational anthrax include the recent
October 2001 mail-delivered anthrax envelopes in Florida, New
York, Washington, DC, and New Jersey; the 1979 Sverdlovsk,
Russia accident; the 1995 releases in a Tokyo subway by the
terrorist group Aum Shinrikyo (3); and the 1959 outbreak in New
Hampshire. From these incidents, we have learned about the
fatal results and the importance of timely detection and treat-
ment in cases of bioterrorism attacks.

The 1979 Sverdlovsk outbreak is believed to have been caused
by an accidental release of Bacillus anthracis spores from a
military microbiology facility nearby to where the victims lived
and worked (4). This release resulted in at least 79 cases of
anthrax infection and 68 documented deaths (3, 5). According to
the pathologists who made the diagnosis for 42 autopsies, healthy
people died within 1–4 days from contracting the bacteria (6).

An earlier outbreak occurred during a study conducted at the
Arms Textile Mill in Manchester, NH in 1959. After the deaths
of several workers between 1957–1959 from cutaneous anthrax,
a controlled experiment was conducted at the Arms Textile Mill
and at three other mills in the northeastern states. The exper-
imental group was vaccinated against anthrax, whereas the
control group received a placebo. Several months after the study
began an outbreak of inhalational anthrax occurred, and because
the vaccination proved to be effective, all workers were vacci-
nated and the experiment was terminated (2, 7).

In 1993, the U.S. Congressional Office of Technology Assess-
ment estimated that up to 3 million deaths could follow a release
of 100 kg of anthrax spores upwind of the Washington, DC area,
and an economic model developed by the Centers for Disease
Control and Prevention suggested a cost of $26.2 billion per
100,000 people exposed (3).

Medical and Public Health Data
Early diagnosis of inhalational anthrax would be difficult and
would require a high index of suspicion (3). For this reason, the
use of nontraditional data sources, such as grocery and pharmacy
data, school attendance records, uses of web sources, etc., could
improve the chances of detection. In the wake of the attacks on
the World Trade Center and the Pentagon on September 11,
2001, the diagnosis of subsequent anthrax attacks was very quick,
and the public, as well as the public health system, governmental
organizations, and the U.S. postal service were especially sen-
sitive to suspicious powder-like substances and anthrax-related
symptoms. If anthrax or a different bioagent were released
without a heightened public alert, the effects would be harder to
detect and diagnose quickly (8).

Inhalational anthrax has been described as a two-stage illness.
The first stage, which can take a few hours to a few days, includes
a spectrum of nonspecific symptoms such as fever, sweat, fatigue,
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malaise, cough, sore throat, shortness of breath, chest discom-
fort, nausea, vomiting, diarrhea, and headache (2, 9). Infected
people might not seek emergency medical services, but rather
purchase OTC medication, look for symptoms on the web, etc.
If the infection is detected at this stage, then rapid treatment
with antibiotics and other medical procedures can improve
survival, whereas a delay even by hours may lessen chances of
survival. In this case as in other lethal, rapidly developing
diseases (e.g., gastrointestinal anthrax) that are hard to diagnose
early, tracking OTC medications and other sources of early
warning data might improve the chances of timely detection and
treatment.

The second stage of inhalational anthrax develops rapidly, and
patients exhibit much more extreme symptoms. Death may occur
in as little as 2–48 h (3). Unlike what we observed in the fall of
2001, when the country was on heightened alert and small
numbers of people were exposed (i.e., only 11 cases spread
geographically), diagnosis of large-scale inhalational anthrax
exposure based on medical and public health facilities would
more likely occur after a large number of patients seeking
medical treatment in some geographical area with an acute-
onset flu-like illness and case fatality rate of 80% or more,
usually within 24–48 h. In addition, blood tests would provide
only a preliminary diagnosis 6–24 h later and could possibly go
unidentified if the lab had not been alerted to the possibility of
anthrax, whereas rapid diagnostic tests are available only at
national reference laboratories (3).

For less severe bioagents, such as cutaneous anthrax (e.g., the
12 cases that have been detected on the East Coast during
September and October 2001 (9)), death is rare if antibiotic
treatment is given on time. Without antibiotic therapy however,
the mortality rate has been reported to be as high as 20% (3). In
such cases, a timely detection could mean the difference between
complete recovery and a high probability of death.

Tracking Grocery Data
Grocery and OTC medication sales have three main advantages
for the detection of an outbreak: First, these datasets are
typically very large and rich, including information on each
purchased item and in many cases include customer information
(e.g., address). They are also available on a more frequent scale,
such as daily and even hourly basis, and do not include delays in
reporting as compared with medical and public health sources
which are typically collected weekly or even less frequently, and
might contain delays. Second, the outbreak footprint would
probably exist in these data earlier than in medical or public
health data, because of self treatment that people usually pursue
before seeking medical assistance. Third, although grocery and
OTC sales do not measure illness directly, we might infer specific

symptoms experienced by purchasers at a relatively early stage
of the onset of the disease.

The main problem with grocery and OTC medication sales is
their noisy nature. Fig. 1 Left illustrates a series of daily sales of
cough medication at a major retailer with many branches in the
Allegheny County, PA area, between August 8, 1999 and Jan-
uary 31, 2001.§ We monitored this series because cough is a
major symptom of inhalational anthrax.

There are two main causes that influence the sales of cough
medication other than an anthrax attack: general patterns of
sales at grocery stores, and outbreaks of diseases such as
influenza, where cough is a major symptom as well.

Fortunately, during this 1999–2001 period, there was no
known anthrax outbreak in this area. Nonetheless, the sales of
cough medication have widely varied patterns: a seasonal effect,
with winter sales higher and more chaotic than summer sales, a
weekly effect showing higher sales during weekends, peak sales
on holidays, and low sales on days when many stores are closed
(e.g., Easter on April, 24, 2000).

Our proposed detection system consists of several layers
(A.G., G.S., and R.A.C., unpublished results). The first layer
preprocesses the data by accounting for store level sales. The
second layer puts the preprocessed data through a denoising
filter. We use the discrete cosine transform (10, 11), which
decomposes the series into cosine waves, and our filter retains
only those that have a large magnitude. We chose the number of
retained cosine waves to capture the main features of the series
but also to avoid overfitting (A.G., G.S., and R.A.C., unpub-
lished results).

Fig. 1 Right describes the output of the detection system for the
cough medication sales after the first two layers. In contrast with
the raw data (Fig. 1 Left), the preprocessed data are scaled
relative to the total sales of all medications, and counts of zero
(e.g., on days when the stores were closed) were replaced with
interpolated values. The denoised series, which is a result of the
third layer, yields a smoother series that is easier to forecast.

The third layer of the system forecasts the next day sales given
all of the previous sales. Although the data are now denoised,
simple time-series models (e.g., autoregressive moving average
models) do not perform well because of the non-stationarity
of the series, i.e., the changes in their behavior over time cannot
be characterized by simple time-series models. Instead, we use
a two-stage prediction method suitable for non-stationary
data that can be easily automated and yields more accurate
predictions.

§These data have been extracted from an extremely large database for that period that
included all other OTC medication sales and other products.

Fig. 1. Sales of cough OTC medication between 8�8�99 and 1�31�01: raw data (Left) and after preprocessing and de-noising (Right).

5238 � www.pnas.org�cgi�doi�10.1073�pnas.042117499 Goldenberg et al.



First, we decompose the denoised series into several ‘‘resolu-
tions’’ by using a discrete (redundant) wavelet transform (ref. 12;
cf. the continuous version of wavelets in ref. 13). Each resolution
describes a different frequency of the series, but, unlike other
transforms (e.g., the cosine and Fourier transform), it retains
information on the time that each frequency is present. The
resulting series for each resolution are more regular, and thus we
use a simple autoregressive model (where the sales at time t are
taken to be a weighted average of previous sales) for predicting
each resolution separately. We then add the predictions to create
the forecast of the next day sales. Fig. 2 shows the decomposition
of the (preprocessed and denoised) series into five resolutions.
For each resolution, we use an autoregressive model for fore-
casting the next point. Finally, we add the forecasts to obtain the
next point in the series, i.e., Fig. 2 also includes the combined
forecast of the next day (denoised) sales.

The final layer of the detection system includes the computation
of an upper threshold for the next day forecasts. This threshold is
based on the forecast made in the previous step, plus a margin of
error. When the actual next day sales become available, they are
compared with the threshold. If they exceed the threshold, the
system flags an alarm, indicating that the new daily sales are higher
than expected. The threshold is based on the distribution of the
differences between the forecasts and the real sales, and is in fact

three standard deviations of the differences above the denoised
series. This last step is based on a methodology used in statistical
quality control, called control charts, where a process is monitored
by using a chart that flags when a change occurs, while taking into
account natural variation of the series (14). Fig. 3 illustrates the
threshold for the cough OTC medication data. The threshold
follows the series, creating a ‘‘security band,’’ which, if exceeded, is
an indication that the sales are higher than expected. For example,
sales for 8�7�00 are higher than the prediction. They do not exceed
the threshold, however, and thus we do not take them to indicate
an abnormal increase in sales.

Evaluating the Detection System
To evaluate the usefulness of the detection system, we need to
know how well and how fast it detects an anthrax footprint. We
can’t use traditional measures to evaluate our system because
there has not been a large-scale release of inhalational anthrax
except for the Sverdlovsk case in 1979. Thus, information on the
time course of inhalational anthrax in humans is limited. Thus,
we devised a statistical simulation approach.

We used data from the Sverdlovsk anthrax outbreak (5) to
construct a footprint of anthrax in grocery data. The data
document the onset of the disease for 77 people. Given that the

Fig. 3. Comparing the sales on 8�7�00 with the threshold. Although sales
are higher than the predicted in layer 4, they do not exceed the threshold.

Fig. 4. The estimated probability of surviving as a function of the days since
onset of symptoms, based on data from Sverdlovsk anthrax outbreak in 1979.

Fig. 5. The ratio of detected footprints with slope 1�3 of the total footprints
added (SDR) as a function of the height of the footprint, within the first day,
first 2 days, and first 3 days.

Fig. 2. Third layer: decomposing the series into five resolutions (Upper),
predicting the next point for each resolution, and recombining the resolutions
to obtain the next day sales forecast (Lower).
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anthrax release occurred on April 1, 1979 (5), the onset of
symptoms for the first two cases was only on April 4. Fig. 4 gives
the survival plot for the 66 (of the 68) people who died and the
11 people who survived.¶ The plot shows the probability of
surviving for the number of days since onset. There is a
significant drop after 3 days from the onset, where the proba-
bility of survival decreases from 0.68 to 0.35 (the median survival
time is also 3 days). We assumed that the medication sales for
specific anthrax symptoms (e.g., cough and cold medication) will
increase steadily over the first 3 days, as more people begin to
exhibit symptoms, i.e., a plausible anthrax footprint in OTC
medication sales is a three-spike linearly increasing pattern.

Next, we added the simulated footprint to the daily sales series
on each day, and ran the detection system to see whether and
when it detected the footprint. By assuming that the simulated
footprint is close to a real footprint, adding it directly to the data,
and then trying out different variations of the simulated foot-
print, we can learn about the speed and detection ability of the
system. We can also try different configurations of the system
and gain information on the types of sales patterns that make
detection of an anthrax footprint harder or easier (e.g., it is
harder to detect an outbreak when sales are decreasing). To
illustrate this simulation approach, we added a footprint of three
consecutive spikes that increase linearly (slope 1�3) and where
the height of the first spike varies in size. We measured the spike
detection ratio (SDR; A.G., G.S., and R.A.C., unpublished
results), i.e., the number of footprints detected, divided by the
number of footprints added to the dataset. If all of the added
footprints are detected, then SDR � 1. Fig. 5 shows the SDR as
a function of the height of the footprint (i.e., the amount added
to daily sales). The footprint values were scaled so that the largest
height corresponds to double the range of the daily counts, and
the smallest corresponds to the range � 2�24 (in this case, the
scaled range is 0.00476–0.00097, corresponding to the range of
the raw counts, 400 � 11 � 389). If the scale of the footprint
increases sales by a factor of 1.36 or more, the system detects
100% of the footprints within the first 3 crucial days.

We also attempted to use these data and tools to detect the
onset of the local influenza epidemic during the period in
question. The onset turned out to coincide with a holiday and
thus was not easily distinguishable from sales patterns. An
anthrax footprint that coincided with such a disguised peak in
sales might pose difficulties for detection unless the exposure
rate was very large.

Concluding Remarks
OTC medication sales are a useful source of data for early
detection of bioterrorist attacks. Symptoms of bioagents such as
anthrax are similar to those of ordinary diseases such as influ-
enza, and people may self-treat the symptoms before they turn
to medical sources. Even then, it is often hard to detect and
correctly diagnose the presence of a bioagent, and verifying tests
can take several days.

We designed a modular detection system, composed of several
layers, where each layer applies a statistical tool to an OTC sales
series. The specific choice of tools clearly should depend on the
characteristics of the data being used. From experimentation
with various OTC medications, we found that different config-
urations of the system are more efficient for different input
series. Because our goal is the early detection of a bioterrorism
attack, we prefer a system that can be tuned and tailored to
detect a specific disease footprint. We would also expect more
sensitive detection from analyses of sales of multiple OTC
products with variations in their temporal shifts. False alarms
can still occur for various reasons, but the purpose of such
systems is early warning and they require careful followup with
medical assessment and other information on possible exposure
to a bioagent.

Although information on the course of inhalational anthrax
for the 11 recent cases (e.g., see ref. 15) should be of value (e.g.,
see refs. 15 and 16), it may not provide major insights into the
detection of a large-scale attack because the bioagent was
targeted at individuals and office areas. It is clearly harder to
detect a small number of cases in a large city or region, but also
easier to detect 500 or even thousands of cases resulting from
exposure at a public event, the focus of our system. Closer
attention to geographic detail is thus important in the control of
excessive false alarms.

The next generation of biosurveillance systems will incorpo-
rate information from multiple sources, including public-health
and nontraditional data. Such integrated systems may provide
early alerts to the public health and medical communities on
possible attacks. The output from these systems ultimately needs
to be integrated into the clinical evaluation and diagnosis process
for a suspected epidemic caused by a bioagent.
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