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We describe the second of two large-scale atomic simulation
projects on materials failure performed on the 12-teraflop ASCI
(Accelerated Strategic Computing Initiative) White computer at the
Lawrence Livermore National Laboratory. This investigation sim-
ulates ductile failure by using more than one billion atoms where
the true complexity of the creation and interaction of hundreds of
dislocations are revealed.

What Distinguishes Brittle From Ductile Behavior?

I f brittle fracture were the sole mechanism for materials failure,
our world would be quite fragile. However, there are two

generic types of materials failure: brittle fracture and ductile
bending. In the first case, atomic bonds are broken, and such a
failure is easily recognized when you see glass shatter. For ductile
failure, such a catastrophic event does not occur. Tough mate-
rials like metals do not shatter; they bend because plastic
deformation occurs by the motion of rows of atoms sliding past
one another on preferred slip-planes (dislocations).

We briefly review some basic fundamentals of fracture me-
chanics (1). They are simple to understand even though we all
know that fractured glass can look very complicated, because
there are lots of cracks when glass shatters. As a matter of fact,
micocracks are the seeds for both brittle and ductile failure. To
understand the failure of solids, we must go to an atomic picture
of matter. It is because a solid is made up of atoms, and not a
continuum, that a solid can break. Fracture is a consequence of
breaking atomic bonds by separating atoms from their neigh-
boring atoms, which can happen because the bonds have a
limited strength, the strength depending on the particular ma-
terial. The solid is said to be brittle when this happens; this has
the special meaning that the solid fails by the permanent
breaking of atomic bonds. Solids can fail a second way; by rows
of atoms slipping past their immediate nearest neighbors much
like a ‘‘ripple in a rug’’ being pushed across a stationary floor.
However, the atomic-level ripple is now called a line dislocation.
Also, while atomic bonds are broken by stretching the solid, the
sliding between planes is achieved by shearing the solid. The ease
of the atomic slip depends on the atomic arrangement of the slip
planes. The more compact (less bumpy) planes slip best. When
the solid fails by atomic sliding through dislocation motion, the
solid is described as ductile. The face-centered-cubic (FCC)
packing is known to have a strong propensity toward ductility;
body-centered-cubic much less so. Glasses do not have extended
crystallinity because atoms are packed randomly. They have no
slip-planes and hence no ductility. Glasses exhibit brittle failure.
These descriptions are oversimplified, and there are clear ex-
ceptions to them.

Molecular Dynamics Experiments on ASCI (Accelerated
Strategic Computing Initiative) White Computer
We have described our simulation tool in the accompanying
paper (2). We give a very brief summary. Our simulation tool is
computational molecular dynamics (3), which is very easy to

describe. Molecular dynamics predicts the motion of a large
number of atoms governed by their mutual interatomic interac-
tion, and it requires the numerical integration of the equations
of motion, force equals mass times acceleration or F � ma. In
the present simulations, we adopt simple interatomic force laws
because we want to investigate the generic features of a partic-
ular many-body problem common to a large class of real physical
systems and not governed by the particular complexities of a
unique molecular interaction.

Furthermore, for our billion atom simulation here, total
simulation time, as well as total clock time, is of real concern. A
factor of 3 increase in execution time using a favored interatomic
potential describing a ‘‘real’’ material (e.g., the embedded atom
potential for metals) may result in an excessive computational
burden when simulating lots of atoms. This was our situation
because our billion atom simulation required more than one
million computer hours and 4 clock days to complete. A simple
interatomic potential may be thought of as a model potential,
and the model potential for the present study is the Lennard-
Jones 12:6 potential.

Second Study: Ductile Failure Of A Flawed FCC Solid
Under Tension
This simulation of ductile failure and work-hardening is for a
crystal sample approaching the �m length scale and for a total
simulation time sufficient to achieve the evolving rigid-junction
microstructure. This has important significance in helping the
development of continuum theories for plastic deformation in
small structures. Before this study, it was widely believed that
one needed a mesoscopic bridge coupling the atomic scale to the
macroscopic scale (4). Because the smallest dimension for an
accurate continuum prediction corresponds to the largest at-
tainable size of an atomistic simulation, the need for a meso-
scopic bridge may not be so pressing.

The Plastic Deformation Scenario. We quote from page 284 of
Cottrell’s book (5):

‘‘. . . plastic deformation and multiplication of glide dis-
locations, particularly in soft metals such as pure copper,
increase the glide stress. This work-hardening can be
very striking. A 1-in diameter single-crystal copper bar,
for example, can easily be bent to a horseshoe shape
between the hands, but not straightened out again.
Figure 9.23 [in ref. 5] shows the usual shape of (shear)
stress-strain curve obtained from an FCC metal crystal.
Stage I (also called easy glide) of the plastic range is
entered at the initial yield stress. In this stage the crystal

Abbreviation: FCC, face-centered-cubic.
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glides to a strain usually 0.01–0.1, on a single set of
parallel slip planes, and there is little work-hardening,
because the glide dislocations mostly escape through the
free surface. Eventually the deformation becomes ‘tur-
bulent,’ and strong work-hardening (stage II, also called
linear hardening) sets in as the dislocations moving on
intersecting systems mutually entangle one another.’’

This description of plasticity will become much clearer when you
see our atomistic simulation of the phenomenon. We emphasize
the word ‘‘see.’’ While a general understanding has been known
for quite some time, it has been impossible to observe the rich
microscopic details of the many-body dislocation dynamics in the
laboratory. With the advent of teraflop computing, this has
become a reality.

The Computer Experiment Setup. This simulation builds on our
earlier studies of a single crack in a three-dimensional FCC solid
under mode I loading (6, 7). The interatomic forces are treated
as central forces, modeled as a Lennard-Jones 12:6 potential, and
we express quantities in terms of reduced units. This Lennard-
Jones potential has been used successfully in several simulation
studies concerning the mechanical properties of copper (8–11),
with its shortcomings well documented. As mentioned earlier,
total simulation time, as well as total clock time, for our billion
atoms simulation is of real concern. A factor of 3 increase in
execution time using a favored interatomic potential describing
a ‘‘real’’ material (e.g., the embedded atom potential for metals)
would result in an excessive computational burden when simu-
lating lots of atoms. Also, it is important to note that the
generalized stacking fault energy, which is the key property for
the dislocation creation, is the same for the Lennard-Jones and
the embedded atom potentials when proper normalization is
made for the comparison (12).

Our model for simulating work-hardening is very simple. We
have two opposing surface cracks on opposite faces of a three-
dimensional FCC solid cube and apply mode I loading. The
system is a slab with 1,008 atoms along the three orthogonal
sides. Two notches are centered midway along the x direction, at
y � 0 and y � Ly, with a y extension of 90 atomic layers extending
although the entire thickness Lz. The exposed notch faces are in
the y-z planes with (110) faces, and the notch is pointed in the �1
1� 0 � direction. Periodic boundary conditions are imposed
between the x-y faces at z � 0 and z � Lz. This notched slab
geometry has a total of 1,023,103,872 atoms. The total simulation
time for this study is 200,000 time steps or 900 in reduced units.
It takes 1.7 s per time step for a 4,096-node spatial decomposition
simulation on the Accelerated Strategic Computing Initiative
(ASCI) White computer that translate into approximately 4
clock-days of total simulation time.

The slab is initialized at zero reduced temperature, and an
outward strain of 4% is imposed on the outermost columns of
atoms defining the opposing vertical yz faces of the slab. To see
into the interior of the solid, we show only those atoms that have
potential energy greater than or equal to �6.1, where the ideal
bulk value is �6.3. This trick was used very effectively in our
earlier studies using a single crack for displaying dislocations,
microcracks, and other imperfections in crystal packing. This
reduces the number of atoms seen by approximately 2 orders of
magnitude in three dimensions; the visible atoms are associated
with faces of the slab and initial notch, surfaces created by crack
motion, local interplanar separation associated with the mate-
rial’s dynamic failure at the tip, and topological defects created
in the otherwise perfect crystal. Because of periodic boundary
conditions, all vertical faces are not exterior surfaces and are
therefore transparent.

The Computer Experiments Results and Discussion. A movie of the
work-hardening simulation may be viewed and downloaded from

Fig. 1. Early-time sequence of the propagating dislocations is shown growing as partial landscapes and the subsequent collision of the dislocations from the
opposing notches. The reduced times in a clockwise sequence are 0, 22.5, 45 and 67.5 (reduced time units). Only atoms with a potential energy less than 97%
of the bulk value are displayed, resulting in the selected visualization of atoms neighboring surfaces and dislocations.
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the following web address: http:��www.almaden.ibm.com�st�
Simulate�.

We encourage the reader to view this movie in conjunction
with the reading of this section because ‘‘a picture is worth a
thousand words and the movie is worth at least a thousand
pictures.’’ We should keep in mind that the movie and Figs. 1–4
show only atoms with the potential energy filtering, resulting in
the selected visualization of atoms neighboring surfaces and
dislocations. Why do dislocations appear? As mentioned earlier,
a dislocation can be viewed much like a ripple in a rug that is
being moved across a floor. In our case, the ripple is only a few
atomic spacings in width, and at any instant in time those atoms
associated with the ripple are distorted from their lowest energy
lattice site. The distortion and associated energy increase are
sufficient to be captured by the energy filtering.

In Fig. 1, we present a temporal sequence of snapshot pictures
for the early time evolution of the dislocations dynamics. From
two virgin cracks, we see a spaghetti-like network of atomic
strings flying from the vertices of the two opposing crack edges.
This is simply a large number of mobile dislocations being
created at each crack edge, rapidly flowing through the stretched
solid in a wiggly manner, and eventually colliding with inter-
secting dislocations from the opposite edge. For the simple FCC
solid, dislocations are easily created at the apex of the two
micocracks where the stress is maximum and easily f lows
through the solid, giving rise to the ductility of the solid. Because
the stacking fault energy for our model potential is zero, the

mobile wiggly dislocations are a particular kind, called a partial.
The simulation supports our early assertion that creation of vast
amounts of dislocations can occur at severe stress concentra-
tions, such as at crack tips. This enables a stressed solid to be
rapidly filled with dislocations, which gives rise to material
deformation under a steady load. Zooming into subvolumes of
the ‘‘transparent solid’’ in Fig. 2 yields magnified views of the
local dynamical topology of the dislocations that is evolving
during the work-hardening process. Colliding dislocations can
cause permanent atomic relocation along a line, called a rigid
junction or sessile dislocation. These sessile dislocations are
quite apparent in these pictures as being very straight in com-
parison to the wiggly, mobile partial dislocations.

In Fig. 3, we present a late-time snapshot of the dislocation
distribution in the billion atom slab. A coarse grain cubical
skeleton of rigid junctions (sessile dislocations) becomes appar-
ent from a distant view. In Fig. 4, we present a magnified view
of the rigid junction network for a small interior section of the
solid. A detailed analysis of the sessile network is in progress
(Maria Bartelt and James S. Stolken, personal communication;
a preliminary analysis suggests the following sessile structures. In
the 110 directions, two partials on {111} planes interact to form
a Lomer Lock. In the 001 direction the Lomer locks react to form
a Hirth lock). These rigid junctions are obstacles to further
dislocation mobility. If the junction density is sufficiently high,
dislocation mobility becomes insignificant, and ductility of the
solid ceases. The solid no longer can bend through dislocation

Fig. 2. Close-up snapshots of the propagating dislocations and rigid junctions evolving into a complex topology of the defect-solid landscape. The time interval
in the dynamics is 290 to 430 (reduced time units).
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Fig. 4. Magnified view of the rigid junction network at a reduced time of 900.

Fig. 3. Late-time snapshot picture of the dislocation network of the billion atom slab. A coarse grain cubical skeleton of rigid junctions (sessile dislocations)
becomes apparent from a distant view. The reduced time is 700.
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motion. The ductile solid becomes brittle through this work-
hardening process. In Fig. 5, the total number of atoms associ-
ated with dislocation of all types is plotted versus time. The
number grows rapidly, reaches a peak, and eventually relaxes to
constant nonzero value. This represents the creation of partial
dislocations from the two crack edges and their eventual con-
version to a smaller total line length of sessile dislocations
resulting in work-hardening.

The mechanisms giving rise to work-hardening are very
apparent from the atomistic simulation of the phenomenon. We
reiterate that while a general understanding has been known for
quite some time, it is presently impossible to observe the rich
microscopic details of the many-body dislocation dynamics in the
laboratory. Teraflop computing makes this a reality. We must
keep in mind that this present atomistic simulation of work-
hardening is just a beginning. We have given a very qualitative
description of the dynamics, and much needs to be accomplished
before a detailed understanding is achieved. Many such simu-
lations using a variety of model configurations, interatomic
potentials, and clever analysis schemes are required. Our solid

was composed of a little more than one billion atoms, a signif-
icant level of achievement in atom system size. However, this still
represents a very small solid, only 0.3 microns on a side. Also, the
dynamical time span is on the order of a few nanoseconds,
enough time for the phenomenon to achieve a final structure
state for our size solid cube. With the near-future petaflop
computers, �m-size solids simulated for microseconds will be-
come a possibility.

Our present simulation of ductile failure and work-hardening
in crystal samples approaching �m-size scale has significance in
helping the development of continuum theories for plastic
deformation in small structures. Recent studies (13, 14) have
shown that materials display strong size effects when the char-
acteristic length scale associated with nonuniform plastic defor-
mation is on the order of microns. The classical plasticity theories
cannot predict this size dependence of material behavior at the
�m scale because their constitutive models possess no internal
length scale. As a result, intensive efforts are currently being
made on developing strain gradient plasticity theories (13, 14)
that contain an intrinsic material length in their constitutive
equations. One bottleneck in this field of research is that it is
generally very difficult to conduct experiments at �m scales. So
far only a few experiments including microtorsion, microbend-
ing, and microindentation have been developed. These experi-
ments are not enough to distinguish among several plausible
gradient theories that have been proposed in the literature. It is
now possible to use molecular dynamics simulations, such as
those presented in this article, to ‘‘design’’ and perform me-
chanical tests that complement laboratory experiments. We have
demonstrated that with today’s powerful computers it has be-
come a reality to perform molecular dynamics calculations on
material samples approaching �m size scale. Such computer
experiments on mechanical properties of materials will surely
play a more important role in micro- and nano-technologies.
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Fig. 5. The total number of atoms associated with dislocations of all types is
plotted versus time (in units of 100 time steps equal to 0.045 reduced time
units).
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