Skip to main content
. 2025 Jul 24;57(1):2537920. doi: 10.1080/07853890.2025.2537920

Table 1.

Comparison of representative modeling approaches for perioperative blood pressure dynamics.

Study Modeling focus Method type Explainability Subgroup analysis Key limitation Contribution of present study
Wiórek et al. BPV → mortality Traditional regression No No No predictive model; poor generalizability Enables individualized BPV prediction
Maheshwari et al. BPV + waveform → IOH Regression + BPV No No No real-time prediction Combines waveform & demographics under ML
Chen & Zhang Induction IOH prediction ML (XGBoost, RF, etc.) No No No BPV modeling or interpretability Extends ML to BPV with interpretability
Hatib et al. Real-time IOH prediction (HPI) Proprietary ML (HPI) No No Black-box model; lacks transparency Provides transparent alternative to HPI
Kouz et al. IOH phenotype clustering Unsupervised clustering No No Not predictive; pattern only Translates phenotypes into predictions
Dai et al. Time-series BP → AKI (TA-AAD) Explainable ML (XGBoost + SHAP) Yes No Cardiac surgery specific; no BPV index Applies explainable ML beyond cardiac field
Present Study HIBPV detection Explainable ML (XGBoost + SHAP) Yes Yes First interpretable HIBPV model with subgrouping

BPV: blood pressure variability; HIBPV: high intraoperative blood pressure variability; IOH: intraoperative hypotension; ML: machine learning; RF: random forest; XGBoost: extreme gradient boosting; SHAP: Shapley additive explanations; HPI: Hypotension Prediction Index; TFT: temporal fusion transformer; ASA: American Society of Anesthesiologists; AKI: acute kidney injury; TA-AAD: type A acute aortic dissection.