Skip to main content
. 2025 Jun 25;27(7):678. doi: 10.3390/e27070678
Algorithm 2: HPO EM algorithm for the diabetes dataset
1. Generate randomly hyperparameters value η, λ, μ.
2. Choose a suitable linear basis function ψ(xn) to get an 8×442 matrix Ψ by using (12).
3. E step. Compute the mean m and covariance C using the current hyperparameter values.
m=(Λ+λΨTΨ)1(Λμ+λΨTT), (54)
C=(Λ+λΨTΨ)1. (55)
4. M step. Estimate again the hyperparameters by employing the mean m and covariance C obtained by step 3 and the following update equations
ηinew=1mi2+Cii, (56)
λnew=NTΨm2+Tr(ΨTΨC), (57)
μnew=m. (58)
5. Compute the likelihood function or log likelihood function given by the following result:
p(T|X,η,λ,μ)=λ2πNΛ12C12exp(G(m))
or
lnp(T|X,η,λ,μ)=N2lnλG(m)+12i=1Mlnηi+12lnCN2ln(2π)
and then determine the convergence of the hyperparameters or the likelihood. If convergence criterion is not satisfied, go back to step 3.