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Three-dimensional rotors, or scroll waves, provide essential insight
into the activity of excitable media. They also are a suspected cause
in the formation and maintenance of ventricular fibrillation, whose
lethality is well known. It is therefore of considerable interest to
find out what configurations can be adopted by such pathologies.
A scroll’s behavior is embodied in its organizing center or filament,
a largely quiescent tube about which the scroll rotates. Predicting
filament shape has normally required computer-intensive simula-
tions of the whole scroll in time. We have found a fast and robust
principle that yields the prediction for stationary filaments on a
purely geometrical basis, blind to the reaction parameters of the
medium. The procedure is to calculate the filament shape as a
minimal path. We work in singly diffusive media whose diffusivity
tensor—and no other feature—varies spatially. Mathematical and
numerical evidence is presented for the proposition that a stable
filament is a geodesic in a three-dimensional space whose metric
is given by the inverse diffusivity tensor of the medium. Away from
the boundaries, a stable filament is unaffected by the reaction
parameters. The algorithmic aspects of this work are subsidiary to
our main purpose of drawing attention to the universal and
unexpectedly exact fit of an elementary geodesic principle within
reaction–diffusion theories.

The importance of scroll waves and their filament in under-
standing the behavior of excitable media has been consis-

tently emphasized in the literature (1–6), and a good deal of
study has focused on the filament itself (6). The relevance of
these phenomena to ventricular fibrillation has been proposed by
several authors (7–11).

Anticipating our own analysis of that topic, we present Fig. 1
as an orientation to what follows. Fig. 1A depicts a steady-state
scroll wave in a nonuniform diffusion–reaction environment. In
this simulation, the shell-like structure is a snapshot of, for
example, the electrical activity in the heart. It surrounds the
unexcited filament, shown as a tube extending between the two
anchor points, which help ensure filament stability (12). The
complexity of its shape, as seen in Fig. 1, is what we aim to predict
quantitatively. That complexity is due in this case to directions
of maximum propagation speed (‘‘fibers’’) that gradually change
their orientation between top and bottom surfaces, pretty much
as in ventricular heart muscle; we refer to this configuration as
‘‘twisted anisotropy.’’ Generally speaking, we are concerned
with how a rotating scroll, and especially its filament, is shaped
by the geometry of the medium.

The Model
A reaction–diffusion model, in the standard (13–16) monodo-
main formulation with single diffusing variable, describes the
space–time propagation of a set of variables (u, v1, v2, v3, . . .) �
(u, v�) according to the parabolic partial differential equations

�tu � �i�Dij�ju� � ��u, v�� � 0, [1]

�tv� � �� �u, v�� � 0, [2]

Dij being the diffusion tensor. For the three spatial coordinates,
we use the notation (x1, x2, x3) � (x, y, z), and in Eq. 1 we sum
over repeated indices. The reaction functions � and �� , which
are in general nonlinear in u and v�, are considered given. In
electrocardiology, these terms serve to represent the detailed

ionic behavior of the cell membranes. For simplicity, we chose,
in the preparation of Fig. 1A, a version of the FitzHugh–Nagumo
theory (13, 14), whose complete specifications can be found in
ref. 17; only two propagating variables are involved. The partic-
ular choice of model is, however, of no importance to the
conclusions of this paper as long as it supports the existence of
a scroll wave that is periodic in time, implying a stationary
filament.

Returning to the form of Eq. 1, we choose to consider a
diffusivity tensor Dij that is entirely responsible for any inhomo-
geneity or anisotropy in the medium. At any point in space, the
six independent components Dij � Dji govern, in magnitude and
direction, the local propagation velocity of the excitation wave.
In heart tissue, the Dij tensor can be reduced to the diagonal form
diag(DL, DT, DT): DL longitudinally and DT transversely to the
local muscle fiber. We have DL�DT�9 in humans, corresponding
to a ratio of about 3:1 for the speeds in those principal directions.
The twisted anisotropy in Fig. 1 is specified in ref. 18. Thus, in
our analysis, we need to know only one pair of characteristics: the
fiber direction at every point and the ratio DL�DT. Here the fiber
has no anatomical identity; in the mathematics, it refers only to
the local direction of fastest propagation.

The Geodesic Hypothesis
So far, the only way to predict the shape of a steady-state filament
has been to solve Eqs. 1 and 2 for the complete scroll over a long
time interval, i.e., over many or at least several rotations of the
scroll; appropriate boundary conditions are assumed in space
and time. Here, in a totally different approach, we present a
minimum-path principle that dispenses us from actually solving
those partial differential equations; instead, they are replaced by
a set of three ordinary differential equations. The only input we
shall need is the diffusion part of the diffusion–reaction model.

The geodesic hypothesis arises naturally in uniform media. A
scroll filament that equilibrates between two anchoring points in
a uniform medium is known to do so along a straight line (12);
see Fig. 1B. Although this observation is usually considered a
trivial consequence of symmetry, the straight line is surely the
most basic example of a geodesic (19). We know likewise that a
large class of nonequilibrium filaments possess the analogue of
positive mechanical tension (20), also suggesting a minimal
principle. This intuition is somewhat curtailed by results found
in nonuniformly anisotropic media. These typically reveal equi-
librium filaments that do not adopt a rectilinear shape (17).

The actual configuration of the filament will be shown here to
be a geodesic, or minimum path, given in differential form (21)
by a set of three simultaneous ordinary differential equations

ẍi � �g�1�il���kgjl �
1
2

�lg jk�ẋjẋk �i � 1, 2, 3�; [3]

each dot stands for ordinary differentiation with respect to a
path length s. In this equation, g � g(x1, x2, x3) is the metric,
defined by the form of the path element,

ds � �gijdxidxj�
1/2. [4]
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If every element of the metric gij � gji is known, Eq. 3 is easy to
solve numerically for a segment whose coordinates and direction
are specified at one end. Eventually we want to identify the
filament with one such geodesic. Although the filament is, strictly
speaking, a tube, the geodesic is seen in ref. 17 to be a
mathematical line contained within that tube.

As regards the solution to Eq. 3, its three components are not
mutually independent, because they must satisfy

gij ẋi ẋj � 1 [5]

by virtue of expression 4 for ds. In practice, however, we can solve
for the three xi independently and then integrate ds if we are
interested in mapping s along the path. We see, incidentally, that
the set of Eqs. 3 and 4 is invariant under a fixed arbitrary scaling
by a factor k: g 3 kg, s 3 	k s.

The generalities of this section are as far as we can go until we
know the specific form of the metric gij(x). How can we establish
that such a metric exists, and how do we determine its form? The
exact answer has now become obtainable from a large class of
media (17), described here in short as having a ‘‘deformed
anisotropy.’’ Any such medium is characterized by mutually
parallel-translated fibers of arbitrary planar but curved shape.
Here the filament solution, although nontrivial, is known exactly.
To find a metric that makes Eq. 3 valid, we use the following
approach.

Starting with a family of diffusivity tensors D, we analytically
derive (17) the exact form of the equilibrium filaments supported
by any one of these tensors. Thus, the ẋ and ẍ that will be needed
in Eq. 3 become known explicitly. If, perhaps by a lucky guess,

the explicit form of the tensor gij could be written down, it would
just be a matter of substitution in Eq. 3 to demonstrate the
correctness of the guess. As shown below, that approach is quite
feasible, and thus the geodesic principle can be proved analyt-
ically in a class of media.

The Metric
The procedure will now be outlined in more detail.

Step 1. We construct a family of explicit diffusivity tensors that
give rise to exactly known scroll wave filaments. If the direction
of fastest propagation defines a local ‘‘fiber’’ direction, we take
the prototype fiber to be, say, in the xz plane. Its z coordinate as
a function of x is

zfiber�x� ��S�x�dx. [6]

The arbitrary constant in the indefinite integral, together with a
constant value for yfiber, define the choice of a specific fiber. The
slope S is a finite single-valued function of x, but otherwise
unspecified. All fibers in xyz space are copies of the prototype,
parallel-translated, with the translation vector parallel to the yz
plane. In short, the medium enjoys a wide, but not complete,
generality. In terms of constant principal speeds DL and DT, the
diffusivity Dij has the components

D11 � �DL � DTS2���S2 � 1�, D22 � DT ,

D33 � �DLS2 � DT���S2 � 1�,

Fig. 1. (A) A steady-state scroll and filament under uniform left-handed twisted anisotropy. Near the top boundary, the fibers are parallel to the x axis; near
the bottom they are rotated by 120° (although still parallel to the xy plane), as indicated in the small Inset. We take the anisotropic coupling ratio to be DL�DT �
9. The twist and anisotropy are comparable to observations in the human ventricular wall. The propagating potential is displayed here as a snapshot of the region
(yellow) where it is above a cutoff value equal to 50% of maximum. The filament (green) is the tubular surface described over time by the locus of two
independent propagating variables with fixed assigned values; the scroll rotates in the direction of the small elliptical arrow. The filament is anchored to a pair
of small boundary protrusions (red) a and b. Note how the local anisotropy flattens the filament’s cross section into approximately a small ellipse. The scroll results
from a FitzHugh–Nagumo-type model and D tensor specified in ref. 18. Our choice of model, as well as of a cubic enclosure, is for illustrative purposes only and
does not reflect in any way on the generality of the work. (B) For comparison, and as a guide to visualizing the scroll of A, we show a similarly pinned scroll, with
the same membrane reaction parameters but in a uniformly isotropic medium. The boundaries have a remarkably weak effect on rectilinearity; this fact provides
a further control on our results.
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D12 � D21 � D23 � D32 � 0,

D13 � D31 � �DL � DT�S��S2 � 1�. [7]

Step 2. The exact stationary filament solution of Eqs. 1 and 2
must be written down. The diffusivity is as in Eq. 7 and the
reaction functions �, � are arbitrary. With x playing the role of
a parameter along the filament curve, the latter is found to be
given in the xz plane by (17)

zfilament � �DL � DT��x Sdx
DL � DTS2 . [8]

Qualitatively speaking, the filament adopts a local slope inter-
mediate between that of the fiber and the x axis. Although there
is much freedom in the model, a few special assumptions were
involved in obtaining solution 8:

(i) The propagating variable u obeys zero-flux (homogeneous
Neumann) boundary conditions over two boundary planes per-
pendicular to the x axis;

(ii) an equilibrium filament exists and is unique under con-
dition i; and

(iii) The medium is infinite (in practice, a few turns of the
scroll wide) in the y and z directions.

The coordinates xi in the prototypical geodesic, Eqs. 3 and 4,
are now given by

x1 � x, x2 � 0, x3 � zfilament. [9]

Step 3. We have obtained the metric directly by trying some
likely candidates. A small number of trials soon pointed to the
inverse diffusivity tensor, gij � (D�1)ij, whose diagonal form is
D�1 � diag(DL

�1, DT
�1, DT

�1). This fits Eqs. 3 and 4 exactly, in the
following way.

Calculating D�1 from Eq. 7, and using Eq. 9 for the xi, as well
as direct substitution in Eqs. 3 and 4, yields an identity. (With our
choice of coordinates, i � 2 is automatic.) In locally diagonalized
form, we have

ds2 � DL
�1dlL

2 � DT
�1�dlT1

2 � dlT2
2 �, [10]

where the orthogonal components of true distance are dlL in the
longitudinal direction and dlT1, dlT2 in the transverse directions.
(In a cardiological context, D�1 corresponds to a resistivity
tensor, and therefore the minimization of 
ds yields, loosely
speaking, a path of least resistance.) To conclude: We have
established that the D�1 tensor is the metric seen by filaments
under deformed anisotropies.

Simulations and Degree of Universality
In verifying an exactly derived result, simulations are for con-
firmation only, and indeed, in the large class of single-diffusion
models where we have been able to conduct a mathematical
analysis, the geodesic principle holds exactly. We are referring
here to those media that support periodic scrolls and exhibit
deformed anisotropy. Under more general kinds of diffusivities,
however, the answer must rely on numerical simulations. So far,
none has turned out an exception to our result.

Twisted anisotropy, which we address in Figs. 1 A and 2, is an
important case that has defied analytic proof and therefore
requires computational verification. Its nontriviality resides in
the fact that successive layers of tissue consist of fibers whose
direction changes from layer to layer, in contrast to deformed
anisotropy. The importance of twisted anisotropy stems from its
relevance to the heart. Fig. 1 A shows a perspective of the scroll,
simulated according to Eqs. 1 and 2, with its filament. Compar-
ison between this simulation and the geodesic curve obtained

from Eq. 3 is displayed in the Cartesian projections of Fig. 2. The
agreement between simulation and theory is striking.

In confirmation of the universality (i.e., reaction indepen-
dence) of the geodesic result, we have recalculated the scroll of
Fig. 1 A with modified reaction parameters, resulting in a sub-
stantial change in the wave form. That is to say, the spiral cross
sections of the scroll change shape and size according to these
parameters; especially noteworthy is the near-doubling of the
wave frequency. The filament nevertheless keeps its invariant
configuration. The scroll’s sense of rotation is likewise immate-
rial, as we have tested.

Discussion
Our conclusions can be summarized as follows: In media with
nonuniform diffusivity, stable open-ended filaments coincide
with geodesics; the metric is given by the inverse diffusivity
tensor of the medium; filament shape is therefore unaffected by
the reaction part of the reaction–diffusion model generating the
scroll—the results are purely geometric. Stated more figura-
tively, only geometrical ‘‘forces’’ are responsible for positioning
the filament at equilibrium, despite the fact that other forces
(from the medium’s reaction) are also known to be at work in
moving the filament before equilibrium is reached.

For safe implementation of the geodesic principle, a few
caveats should be kept in mind. We first recall that stability of
the filament—meaning complete stationarity—is an essential
prerequisite to our implementation of the geodesic principle. We
have also had to assume that all and any medium nonuniformi-
ties are expressed in the diffusivity tensor rather than, for
example, in the reaction parameters.

Our test cases are filaments anchored at both ends. How
essential is that feature? Anchoring seems unrelated to the
geodesic property, because the latter must apply locally to every
segment of the filament through the agency of Eq. 3. The reason
anchoring is often needed by open filaments is to enforce the

Fig. 2. Comparison between simulation and theory. We present the three
orthogonal projections of both the filament (green) and the local geodesic
(thin red–yellow curve); we calculated the geodesic by integrating Eq. 2, using
as ‘‘initial conditions’’ the coordinates and direction cosines at the lower end,
b, of the simulated filament. We see a clear agreement between theory and
simulation.
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stationarity under which the minimum principle applies. In
general it is not needed, however. Our study of ref. 17 is an
outstanding example of a stationary, nonrectilinear, nonan-
chored filament. The present work does not include consider-
ation of closed filaments (scroll rings, knots, and links) (22–24).
Such a study, which would be of considerable interest, requires
a careful topological study, which we have not yet undertaken.

We note that experimental applications are conceivable.
Today’s developing technique of cardiac tissue transillumination
(25, 26) allows some visualization of the filament; its data should
become more accurately interpretable with the help of the
method described here, possibly combined with known topolog-
ical constraints (27). In actual heart tissue, the fiber architecture
can often be considered given (28).

Looking to the future, we must hope that mathematical
exactness will be supplemented by a more qualitative under-
standing of why the result is valid. In particular, the ‘‘least-
resistance’’ rule seems mysterious when pertaining to a scroll-
wave filament. Meandering scrolls should be interesting
candidates for a future treatment using the minimal principle.
Incentive for further research in the direction of the present work
should be provided by the long and well-known history of
variational principles, especially in geometric contexts.
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