Table 3.
Comparison of binary classification performance between the MVT-OFML model and mainstream methods on the BreakHis dataset.
| Backbone network or method | Year of publication | Magnification/times | Accuracy/% | Accuracy/% | Recall rate/% | F1 score/% |
|---|---|---|---|---|---|---|
| IDSNet (20) | 2020 | 40 | 91.5 | 90.55 | 91 | 90.54 |
| 100 | 90.4 | 91.23 | 90.56 | 90.78 | ||
| 200 | 95.3 | 95.33 | 95.66 | 95.39 | ||
| 400 | 86.7 | 89.35 | 88.42 | 89.47 | ||
| DCET-Net (18) | 2021 | 40 | 99 | 99.47 | 97.38 | 98.41 |
| 100 | 98.08 | 94.79 | 98.91 | 96.81 | ||
| 200 | 99.34 | 97.66 | 97.82 | 98.82 | ||
| 400 | 98.72 | 98.22 | 97.65 | 97.93 | ||
| RANet-ADSVM (13) | 2022 | 40 | 91.96 | 93.83 | 94.91 | 94.36 |
| 100 | 96.83 | 98.52 | 98.3 | 98.32 | ||
| 200 | 98.05 | 98.92 | 99.15 | 99.13 | ||
| 400 | 90.3 | 93.17 | 93.56 | 93.35 | ||
| VIT-DeiT (17) | 2022 | 40 | 99.43 | 99.38 | 99.46 | 99.4 |
| 100 | 98.34 | 98.31 | 98.51 | 98.35 | ||
| 200 | 98.27 | 98.32 | 98.27 | 98.23 | ||
| 400 | 98.82 | 98.57 | 98.78 | 98.65 | ||
| MVT-OFML | 2023 | 40 | 99.77 | 99.75 | 99.71 | 99.77 |
| 100 | 99.56 | 99.74 | 99.54 | 99.44 | ||
| 200 | 99.76 | 99.65 | 99.43 | 99.62 | ||
| 400 | 99.45 | 99.3 | 99.69 | 99.33 | ||
| Improvement | 40 | 0.34↑ | 0.37↑ | 0.25↑ | 0.37↑ | |
| 100 | 1.22↑ | 1.43↑ | 1.03↑ | 1.09↑ | ||
| 200 | 1.40↑ | 1.33↑ | 1.16↑ | 1.39↑ | ||
| 400 | 0.63↑ | 0.73↑ | 0.96↑ | 0.91↑ | ||
The symbol “↑”defines the improved values.