Skip to main content
. 2025 Jul 14;15:1626785. doi: 10.3389/fonc.2025.1626785

Table 3.

Comparison of binary classification performance between the MVT-OFML model and mainstream methods on the BreakHis dataset.

Backbone network or method Year of publication Magnification/times Accuracy/% Accuracy/% Recall rate/% F1 score/%
IDSNet (20) 2020 40 91.5 90.55 91 90.54
100 90.4 91.23 90.56 90.78
200 95.3 95.33 95.66 95.39
400 86.7 89.35 88.42 89.47
DCET-Net (18) 2021 40 99 99.47 97.38 98.41
100 98.08 94.79 98.91 96.81
200 99.34 97.66 97.82 98.82
400 98.72 98.22 97.65 97.93
RANet-ADSVM (13) 2022 40 91.96 93.83 94.91 94.36
100 96.83 98.52 98.3 98.32
200 98.05 98.92 99.15 99.13
400 90.3 93.17 93.56 93.35
VIT-DeiT (17) 2022 40 99.43 99.38 99.46 99.4
100 98.34 98.31 98.51 98.35
200 98.27 98.32 98.27 98.23
400 98.82 98.57 98.78 98.65
MVT-OFML 2023 40 99.77 99.75 99.71 99.77
100 99.56 99.74 99.54 99.44
200 99.76 99.65 99.43 99.62
400 99.45 99.3 99.69 99.33
Improvement 40 0.34↑ 0.37↑ 0.25↑ 0.37↑
100 1.22↑ 1.43↑ 1.03↑ 1.09↑
200 1.40↑ 1.33↑ 1.16↑ 1.39↑
400 0.63↑ 0.73↑ 0.96↑ 0.91↑

The symbol “↑”defines the improved values.