Skip to main content
. 2025 May 19;66(8):502–510. doi: 10.3349/ymj.2024.0198

Table 5. The Numerical Performance of Three Post-Processed Models for BMs Detection and Segmentation.

After post-processing Standard U-Net Modified U-Net Modified U-Net with GAN
LWS (%) 87.84 89.19 89.19
Average FPR 2.2 1.4 0.9
Patient-wise DSC 0.834 (±0.08)* (p=0.017) 0.868 (±0.05)* (p=0.019) 0.873 (±0.05)* (p=0.037)
Tumor volume range (lesion-wise DSC)
≥0.1 cc 0.754 (±0.27)* (p<0.001) 0.746 (±0.28)* (p<0.001) 0.752 (±0.28)* (p<0.001)
0.06–<0.1 cc 0.775 (±0.05) 0.788 (±0.08) 0.787 (±0.08)
0.04–<0.06 cc 0.576 (±0.34) 0.667 (±0.27) 0.718 (±0.17)
0.02–<0.04 cc 0.638 (±0.22)* (p=0.002) 0.607 (±0.20)* (p=0.002) 0.630 (±0.17)* (p=0.003)
<0.02 cc 0.534 (±0.34) 0.575 (±0.38) 0.586 (±0.37)

BMs, brain metastases; GAN, generative adversarial network; LWS, lesion-wise sensitivity; FPR, false-positive rate; DSC, dice similarity coefficient.

Asterisks (*) indicate the statistical significance of differences between the post-processed model and the corresponding model before post-processing, as determined by p-values.