Skip to main content
. 2025 Jul 28;17(7):e88915. doi: 10.7759/cureus.88915

Table 5. AI models to identify tumor types from MRI images (N=10) with 21 entries.

Remzan 2024 [25], Asiri 2023 [34], Hammad 2023 [39], Rethemiotaki 2023 [45], Mohsen 2023 [55], Asiri 2022 [74], Banik 2023 [47], Saeidifar 2021 [79], Kumar 2022 [62], Isselmou 2020 [86].

LGG: low-grade glioma; HGG: high-grade glioma; CNN: convolutional neural network

ID Study ID Study AI methods Accuracy N Precision Recall F1 score Tumor type
1 1 Remzan 2024 A CNN 0.95 1621 0.95 0.973 0.9614 Glioma
2 1 Remzan 2024 B CNN 0.96 1645 0.974 0.939 0.9562 Meningioma
3 1 Remzan 2024 C CNN 0.99 1757 0.983 0.997 0.99 Pituitary
4 2 Asiri 2023 A Ensemble algorithms 0.9802 221 0.99 0.99 0.99 Glioma
5 2 Asiri 2023 B Ensemble algorithms 0.9432 216 0.99 0.95 0.97 Meningioma
6 2 Asiri 2023 C Ensemble algorithms 0.99 255 1 0.99 0.99 Pituitary
7 3 Hammad 2023 A CNN 0.9143 1062 0.96 0.91 0.94 Meningioma
8 3 Hammad 2023 B CNN 0.978 2139 0.96 0.98 0.97 Glioma
9 3 Hammad 2023 C CNN 0.9956 1395 0.98 1 0.99 Pituitary
10 4 Rethemiotaki 2023 A CNN 0.9505 926 0.97 0.95 0.99 Glioma
11 4 Rethemiotaki 2023 B CNN 0.97 937 0.98 0.97 0.99 Meningioma
12 4 Rethemiotaki 2023 C CNN 0.99 901 0.98 0.99 1 Pituitary
13 5 Mohsen 2023 A CNN 0.9178 900 0.944 0.973 0.9584 Meningioma
14 5 Mohsen 2023 B CNN 0.9202 900 0.9725 0.942 0.9571 Pituitary
15 6 Asiri 2022 A CNN 0.99 826 0.99 0.99 0.99 Glioma
16 6 Asiri 2022 B CNN 0.95 822 0.93 0.95 0.9399 Meningioma
17 6 Asiri 2022 C CNN 0.99 395 0.92 0.99 0.9537 Pituitary
18 7 Banik 2023 CNN 0.9866 3000 0.98 0.967 0.9769 Tumor and not tumor
19 8 Saeidifar 2021 Ensemble algorithms 0.995 150 0.93 0.919 0.9262 Tumor and no tumor
20 9 Kumar 2022 Ensemble algorithms 0.977 8000 0.9812 0.963 0.94 Gliomas
21 10 Isselmou 2020 CNN 0.98 250 0.9396 0.988 0.9632 HGG and LGG