Skip to main content
. 2025 Jul 16;13:1590689. doi: 10.3389/fpubh.2025.1590689

Table 2.

Model performance metrics of 6 models on 10-CV training and validation datasets.

Model Sets AUC Accuracy Sensitivity Specificity PPV NPV F1-score AP
ExtraRFC Training Validation 1.000
0.848
0.984
0.795
0.951
0.578
0.999
0.898
0.998
0.730
0.977
0.817
0.974
0.650
0.999
0.743
BernoulliNB Training Validation 0.824
0.824
0.770
0.771
0.649
0.651
0.828
0.829
0.643
0.645
0.832
0.832
0.646
0.648
0.706
0.707
LogisticReg Training Validation 0.837
0.836
0.786
0.786
0.545
0.546
0.901
0.901
0.724
0.725
0.806
0.806
0.622
0.623
0.727
0.725
XGBoost Training Validation 0.999
0.836
0.983
0.783
0.956
0.583
0.997
0.879
0.993
0.698
0.979
0.815
0.974
0.635
0.998
0.722
MLP Training Validation 0.871
0.834
0.803
0.780
0.586
0.551
0.906
0.889
0.749
0.705
0.821
0.806
0.657
0.618
0.775
0.730
Transformer Training Validation 0.842
0.839
0.791
0.783
0.587
0.573
0.888
0.884
0.718
0.704
0.819
0.812
0.644
0.630
0.734
0.730