Table 3.
Key components in designing an AI risk management framework for industrial systems.
| Key activity | AI use case identification & description | Prioritization of use cases | Evaluation of existing risk management frameworks | Risk measurement & quantification | Legal and regulatory considerations | Dynamic regulation of algorithms | Support for safety & reliability | Source |
|---|---|---|---|---|---|---|---|---|
| Use case identification | ✓ | Stuurman and Lachaud (2022) | ||||||
| Scope clarification | ✓ | Zhang et al. (2022) | ||||||
| Use of templates | ✓ | Brunnbauer et al. (2021) | ||||||
| Risk evaluation & mitigation | ✓ | ✓ | Baquero et al. (2020); Greiner et al. (2022); Lauterbach (2019) | |||||
| IT system maturity assessment | ✓ | Mäntymäki et al. (2022) | ||||||
| Screening of existing frameworks | ✓ | Butcher and Beridze (2019) | ||||||
| Adapting frameworks for industry | ✓ | de Almeida et al. (2021); Cheatham et al. (2019); Chesterman (2019) | ||||||
| Risk quantification | ✓ | Bannister and Connolly (2020); Wirtz et al. (2020); Schneider et al. (2023) | ||||||
| Algorithm transparency & impact | ✓ | Baquero et al. (2020); Bannister and Connolly (2020) | ||||||
| National AI regulations | ✓ | Mäntymäki et al. (2022) | ||||||
| International AI governance rules | ✓ | Chambers (2021); Ellul et al. (2021) | ||||||
| Avoiding AI innovation restrictions | ✓ | Baquero et al. (2020); Wirtz et al. (2020) | ||||||
| Dynamic algorithm regulation | ✓ | Nikitaeva and Salem (2022); de Almeida et al. (2021); Chambers (2021) | ||||||
| Safety & reliability | ✓ | Nikitaeva and Salem (2022); Zhang et al. (2022) | ||||||
| Process flow optimization | ✓ | Nikitaeva and Salem (2022) | ||||||
| Agile AI development support | ✓ | Baquero et al. (2020); Wirtz et al. (2020) |