Skip to main content
. 2025 Jul 16;8:1619029. doi: 10.3389/frai.2025.1619029

Table 3.

Key components in designing an AI risk management framework for industrial systems.

Key activity AI use case identification & description Prioritization of use cases Evaluation of existing risk management frameworks Risk measurement & quantification Legal and regulatory considerations Dynamic regulation of algorithms Support for safety & reliability Source
Use case identification Stuurman and Lachaud (2022)
Scope clarification Zhang et al. (2022)
Use of templates Brunnbauer et al. (2021)
Risk evaluation & mitigation Baquero et al. (2020); Greiner et al. (2022); Lauterbach (2019)
IT system maturity assessment Mäntymäki et al. (2022)
Screening of existing frameworks Butcher and Beridze (2019)
Adapting frameworks for industry de Almeida et al. (2021); Cheatham et al. (2019); Chesterman (2019)
Risk quantification Bannister and Connolly (2020); Wirtz et al. (2020); Schneider et al. (2023)
Algorithm transparency & impact Baquero et al. (2020); Bannister and Connolly (2020)
National AI regulations Mäntymäki et al. (2022)
International AI governance rules Chambers (2021); Ellul et al. (2021)
Avoiding AI innovation restrictions Baquero et al. (2020); Wirtz et al. (2020)
Dynamic algorithm regulation Nikitaeva and Salem (2022); de Almeida et al. (2021); Chambers (2021)
Safety & reliability Nikitaeva and Salem (2022); Zhang et al. (2022)
Process flow optimization Nikitaeva and Salem (2022)
Agile AI development support Baquero et al. (2020); Wirtz et al. (2020)