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DRUG INTERACTIONS COMMONLY OCCUR in patients receiving treatment with multiple
medications. Most interactions remain unrecognized because drugs, in general, From the Department of
have a wide margin of safety or because the extent of change in drug levels is small Phar-m.acolog)f, Co!lege of
when compared with the variation normally seen in clinical therapy. All drug inter- Medicine, University of
actions have a pharmacokinetic or pharmacodynamic basis and are predictable Saskatchewan, Saskatoon,
given an understanding of the pharmacology of the drugs involved. Drugs most li- Sask.
able to pose problems are those having concentration-dependent toxicity within, or
close to, the therapeutic range; those with steep dose—response curves; those hav- This article has been peer reviewed.

ing high first-pass metabolism or those with a single, inhibitable route of elimina-
tion. Knowing which drugs possess these intrinsic characteristics, together with a
knowledge of hepatic P-450 metabolism and common enzyme-inducing and en-
zyme-inhibiting drugs, can greatly assist physicians in predicting interactions that
may be clinically relevant. This article reviews the pharmacology of drug interac-
tions that can occur with hydroxymethylglutaryl — coenzyme A (HMG-CoA) re-
ductase inhibitors (statins) to illustrate the scope of the problem and the ways in
which physicians may manage this important therapeutic class of drugs.
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Background

All important drug interactions, with the possible exception of idiosyncratic or
allergic reactions, have a pharmacokinetic or pharmacodynamic basis, or both."”?
Pharmacokinetic interactions refer to those where drugs or other factors cause an
alteration in the concentration of unbound drug acting on the tissues. They include
interactions that may lead to changes in drug absorption, drug distribution (either
through binding to plasma proteins or, more importantly, binding and uptake into
tissues) and drug elimination. Pharmacodynamic interactions refer to those where
changes occur in tissue sensitivity or response to the same unbound drug concen-
trations.

The consequences of a drug interaction depend upon patient-related as well as
drug-related factors (Fig. 1).> These include the magnitude and direction of the
concentration or effect changes, as well as the steepness and separation of the
dose-response of the drug’s intended (therapeutic) and unintended (adverse) phar-
macologic actions.' Large changes in the concentration or tissue response to a drug
possessing a flat dose-response relation or low intrinsic toxicity may be of little
clinical importance. Alternatively, small changes in the concentration of potent or
highly toxic drugs can be disastrous. Individual susceptibility to adverse drug effects
because of health- (e.g., age, pregnancy) and disease-related factors (e.g., renal, he-
patic, CNS) should also be considered. As well, the body may minimize a drug’s ef-
fect through offsetting changes in tissue sensitivity, by up-regulatdon or down-regu-
lation of receptor numbers or by changes in receptor—effector coupling, or both.*
What might produce minimal impairment on one occasion could be incapacitating
on another occasion or in a less tolerant individual.

Interactions between drugs binding to the same sites on plasma proteins are
rarely associated with changes in drug response.'? The reason for this is that most of
the drug exists in the body in tissue stores, mainly in muscle and fat, not in the circu-
lation. Thus, even large decreases in the amount of drug bound to plasma proteins is
effectively buffered by a greater distribution in peripheral tissues with little or no
change in unbound concentrations. The one exception occurs with drugs possessing

CMAJ e NOV. 16, 1999; 161 (10) 1281

© 1999 Canadian Medical Association or its licensors



Herman

small distribution volumes, like warfarin, where binding in-
teractions confined largely to the circulation produce large
changes in unbound concentrations and drug effects. What
is important to remember is that laboratories usually report
total drug concentrations and not unbound drug concentra-
tions. Therefore, target ranges of clinically monitored drugs
should be adjusted downwards in the presence of a binding
interaction, normally with no change in dosage. Similar
considerations apply if the levels of albumin or other bind-
ing proteins are not within the expected range.

In contrast, displacement from tissue-based binding sites
or the inhibition of carrier-mediated uptake into tissues can
produce large changes in unbound drug concentrations.”
Drugs and their metabolites move out of tissues as readily
as they move in, and muscle and fat often contain large
body stores, particularly following multiple dosing. The
factors causing redistribution from tissues into the circula-
tion are not well understood, although evidence suggests
that this occurs commonly with lipophilic drugs that have
large distribution volumes.’ Examples of clinically relevant
interactions involving the inhibition of drug distribution
and transport include the 2- to 3-fold elevations in digoxin
serum concentrations following the concomitant adminis-
tration of quinidine or verapamil.’

The inhibition or induction of hepatic drug metabolism
is a major source of variability in drug response and is the
basis of many adverse drug interactions.” Paramount to an
understanding of this is a consideration of the role of the
liver in the overall elimination of the drug. Most drugs are
removed from the body through multiple competing path-
ways of renal and hepatic excretion. If one or several of
these become blocked because of disease or the action of
another drug, clearance will diminish, dependent upon the
relative contribution of the affected pathway(s) to the total
elimination of the drug.® If this occurs, steady-state concen-
trations and, correspondingly, drug or adverse effects rise.
However, these in turn drive elimination through other
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Fig. 1: Factors influencing drug interactions. (Adapted from
Hansten).?
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pathways as long as they are unencumbered. Therefore,
drugs that have few or minor alternative pathways are par-
ticularly prone to large concentration increases when elimi-
nation is impaired.

First-pass metabolism by the gut and liver is another im-
portant consideration. If a drug has low oral availability due
to high presystemic elimination, there may be large in-
creases in the amount of drug getting into the body if me-
tabolism is inhibited. Where the parent drug is inactive and
the pathway normally results in the formation of an active
metabolite, drug response may diminish rather than in-
crease when metabolism is inhibited.” Conversely, response
may be unchanged if both parent and metabolites are active
— increases in the concentration of the parent offset by de-
creases in the metabolites.”

The mechanism of interaction is also an important fac-
tor; an interacting drug may not be a known inhibitor but
merely a substrate for the same metabolic pathway and
thereby produce only minor dose-dependent competition
at the active enzyme site.” In this case, the affinity of the
substrate for the enzyme and the unbound concentration
and half-life of the inhibiting drug are important determi-
nants of the extent and time course of the interaction. Al-
ternatively, inhibition may be noncompetitive or uncom-
petitive, wherein the effect is likely to be more complete
and long lasting, requiring resynthesis of new enzyme be-
fore it can be overcome."

The cytochrome P450 superfamily

Hepatic metabolism is served by a superfamily of oxyge-
nases known as the cytochrome P450s. The purpose of
these enzymes is to add a functional group to a drug, an en-
vironmental chemical or an endogenous molecule and, in
so doing, increase either its polarity and excretion from the
body or its interaction with similar enzymes. The most dis-
tinguishing characteristic of the cytochrome P450 family is
its great diversity; members have a broad and overlapping
substrate specificity and an ability to interact with almost
any chemical species. The superfamily, referred to as the
CYP enzymes, is subdivided according to the degree of ho-
mology in amino acid sequences. CYP enzymes possessing
more than 40% homology are grouped together into fami-
lies, which are designated by an Arabic numeral (e.g., the
CYP1 family). Families are further divided into subfamilies,
which are designated by a letter after the number (e.g.,
CYP2C and CYP2D subfamilies); members of each sub-
family have more than 55% homology with one another.
Finally, individual members are given an additional number
(e.g., CYP3A4) to identify a specific enzyme pathway. Over
70 CYP families have been identified to date, of which 14
are known to occur in all mammals." Of the 26 mammalian
subfamilies, the CYP2C, CYP2D and CYP3A subfamilies
are involved in the metabolism of most clinically relevant
drugs. Important substrates, inducers and inhibitors of the
major CYP enzymes are listed in Table 1.
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The CYP2C subfamily comprises about 20% of all of CYP2C isozymes have been characterized, each having

the cytochrome P450s in the liver.” At least 6 different

Table 1: Inducers and inhibitors of major CYP enzymes

Enzyme; substrate

Enzyme inducers

greater than 80% homology with distinct but overlapping

Enzyme inhibitors

CYP1A2

TCAs

Haloperidol, olanzapine
Propranolol, local anesthetics
Theophylline, caffeine

Diazepam, chlordiazepoxide
Estrogens, tamoxifen

CYP2C9

ASA and most NSAIDs
Phenobarbital, phenytoin
S-Warfarin, dicumarol

Losartan (activation)

Tolbutamide, sulfonamides, dapsone
Zidovudine

Diazepam, temazepam

Fluoxetine, meclobemide
CYP2C19

TCAs

Diazepam, temazepam
Omeprazole, lansoprazole
Propranolol

Phenytoin, barbiturates, valproic acid
Zidovudine

CYP2D6

TCAs, SSRIs, venlafaxine
Phenothiazines, haloperidol
Several B-blockers

Codeine, oxycodone, hydrocodone
Dextromethorphan

Omeprazole

Halothane

MDMA (ecstasy)

Encainide, flecainide, propafenone
Selegiline

CYP2E1

Acetaminophen

Ethanol and other alcohols
Inhalational anesthetics
Sulfonamides, dapsone

CYP3A4

Halothane

Fentanyl, alfentanil, sufentanil
TCAs, SSRIs

Erythromycin, clarithromycin

HIV protease inhibitors
Calcium-channel blockers (not diltiazem)
Lovastatin, simvastatin, atorvastatin
Cyclosporine

Terfenadine, astemizole, loratadine
Midazolam, alprazolam, triazolam
Cisapride

Omeprazole, lansoprazole

Phenobarbital, phenytoin, carbamazepine
Erythromycin, clarithromycin, rifampin
Cigarette smoke

Ritonavir

Insulin

Rifampin
Phenobarbital, phenytoin, carbamazepine

Rifampin

Phenobarbital, phenytoin, carbamazepine
Prednisone

Norethindrone

Ethanol
Isoniazid
Clofibrate

Phenytoin, barbiturates
Rifampin

Erythromycin

Omeprazole, lansoprazole
Dexamethasone, sex steroids
Cyclophosphamide

Fluvoxamine (other SSRIs weak)
Ciprofloxacin (other quinolones weak)
Cimetidine

Isoniazid

Oral contraceptives

Ticlopidine

Fluvoxamine (other SSRIs weak)
Amiodarone

Omeprazole

Ritonavir

HMG-CoA reductase inhibitors
Tolbutamide

Cimetidine (weak)

Azole antifungals (weak)

Fluoxetine, fluvoxamine, paroxetine
Omeprazole, lansoprazole
Ritonavir

Azole antifungals (weak)
Cimetidine (weak)

Ticlopidine

Quinidine

Fluoxetine, paroxetine, sertraline

TCAs, venlafaxine

Phenothiazines, haloperidol, nefazodone
Ketoconazole

Cimetidine

Ritonavir

HMG-CoA reductase inhibitors
Amiodarone, encainide
Chlorpheniramine

Disulfiram
Ethanol
Cimetidine
Isoniazid

Ketoconazole, itraconazole, fluconazole
Erythromycin, clarithromycin

TCAs, nefazodone, venlafaxine
Fluvoxamine, fluoxetine, sertraline
Cyclosporine, tacrolimus

Omeprazole, lansoprazole
Calcium-channel blockers (esp. diltiazem)
Midazolam

Corticosteroids

Grapefruit juice

Tamoxifen

Note: TCA = tricyclic antidepressant, SSRI = selective serotonin reuptake inhibitor, HMG-CoA = hydroxymethylglutaryl — coenzyme A.
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substrate specificity. Prostaglandins and sex steroids are im-
portant endogenous substrates of the CYP2C subfamily.
"The most abundant enzyme in this subfamily, CYP2C9, is
responsible for the breakdown of a number of drugs in-
cluding ASA and many of the nonsteroidal anti-inflamma-
tory drugs, sulfonamides, phenytoin and S-warfarin (the
more active enantiomer of warfarin). CYP2C19 is involved
in the metabolism of diazepam, omeprazole and the tri-
cyclic antidepressants. Both CYP2C9 and CYP2C19 are
polymorphic, meaning the expression of these enzymes is
under strong genetic influence and some individuals have
markedly deficient activities. Indeed, 3% of white people
and 20% of all those of Japanese descent lack CYP2C19
and are unable to metabolize diazepam and omeprazole by
the usual pathways."'* However, since many of the en-
zymes in this family have overlapping substrate specificities,
it is unusual to see excessive or adverse drug effects even in
people completely deficient in CYP2C19." Serious interac-
tions occur predominantly with drugs that have a low ther-
apeutic index such as warfarin or phenytoin."

CYP2D6 accounts for only 4% of hepatic CYP en-
zymes,"” but is more unique in its metabolic profile. Impor-
tant substrates for this enzyme include tricyclic antidepres-
sants, selective serotonin reuptake inhibitors, neuroleptics,
opioid analgesics and several of the B-adrenergic blockers.
Seven to 10% of white people and 3% of black and oriental
people are known to be deficient in the CYP2D6 enzyme,
the so-called sparteine—debrisequine, poor metabolizer
polymorph.”'* These individuals show great variability in
clinical response (up to 1000-fold) and commonly have ad-
verse effects to standard doses of drugs metabolized by this
enzyme. Also, they are unable to convert codeine, oxy-
codone and hydrocodone to their active metabolites and
thereby derive little or no analgesic benefit from oral mor-
phine analogues. Levels of CYP2D6 are not affected by
age, sex or smoking status.” Inhibitors are quinidine, keto-
conazole and most antidepressants and neuroleptics, and
there are no known inducers of this enzyme.

The CYP3A subfamily, like CYP2D6, is involved in the
metabolism of a large number drugs and other chemicals
and is involved in many drug-drug and drug—food interac-
tions. It is the most abundant of all of the P450s in the hu-
man liver 25%-28%, but sometimes as high as 70%) and
is widely expressed throughout the gastrointestinal tract,
kidneys and lungs.”? More than 150 drugs are known sub-
strates of CYP3A4, the major CYP3A isozyme, including
many of the opiate analgesics, steroids, antiarrhythmic
agents, tricyclic antidepressants, calcium-channel blockers
and macrolide antibiotics. Although several substrates show
age-dependent reductions in elimination, the enzyme itself
does not appear to be altered.” Also, sex-related effects are
small and probably not important. Ketoconazole, itracona-
zole, erythromycin, clarithromycin, dildazem, fluvoxamine,
fluoxetine, nefazodone, cyclosporine and dihydroxyberg-
amottin and various substances found in grapefruit juice,
green tea and other foods are potent inhibitors of CYP3A4
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and are known to be responsible for many drug interac-
tions."”” Terfenadine, astemizole, cisapride, cyclosporine
and many of the hydroxymethylglutaryl — coenzyme A
(HMG-CoA) reductase inhibitors are potentially toxic
drugs or drugs susceptible to large changes in concentra-
tion following enzyme inhibition and, therefore, are candi-
dates for serious interactions with other substrates of
CYP3A4." These interactions can have serious clinical
consequences.

Interactions with HMG—-CoA reductase
inhibitors

The HMG-CoA reductase inhibitors (statins) are associ-
ated with 2 uncommon but important side effects, namely
asymptomatic elevation in liver enzymes and skeletal muscle
abnormalities, which can range from benign myalgias to my-
opathy (10-fold elevation in creatine kinase with muscle pain
or weakness) and life-threatening rhabdomyolysis."”* The
incidence of myopathy in patients taking statins alone is esti-
mated to be 0.1%-0.2%,*" and rhabdomyolysis is exceed-
ingly rare. Evidence suggests that myopathy is a direct con-
sequence of HMG-CoA reductase inhibition”** and is
dose-dependent.**” Myopathy is most likely to occur when
statins are administered with other drugs or chemicals that
are themselves myotoxic or that elevate the concentrations of
the statin to the toxic range. Indeed, the incidence of muscle
disorders increases over 10-fold when statins are given with
gemfibrozil,***?! niacin,” erythromycin,” itraconazole,***
cyclosporine,®**" and diltiazem® among others.

Six statins are currently marketed for the treatment of
dyslipidemia in North America. Lovastatin, simvastatin,
atorvastatin and cerivastatin are all substrates of
CYP3A4**" and would be subject to marked inhibition of
metabolism by azole antifungal agents, macrolide antibi-
otics, selective serotonin reuptake inhibitors, cyclosporine,
diltazem and grapefruit juice. Fluvastatin is metabolized by
CYP2C9; it would not be affected by these substrates, but
rather would have a different spectrum of interactions,”*
perhaps less clinically relevant because of the overlap be-
tween CYP2C isozymes. Pravastatin is not significantly
metabolized by CYP and would be comparatively devoid of
these effects.”* Lovastatin, simvastatin and atorvastatin are
all extensively metabolized on first-pass through the
liver**# with resultant low oral availability (5%-10%),
whereas cerivastatin has an intermediate availability of
around 60%.% Moreover, the active CYP3A metabolites of
atorvastatin and cerivastatin contribute in large measure to
their overall clinical activity.** Thus, inhibition of first-
pass metabolism of lovastatin or simvastatin could result in
10-20 fold elevations (oral availability increasing from 5%
to 100%) in steady-state concentrations with a marked lia-
bility to drug toxicity. Inhibition of metabolism of atorvas-
tatin and cerivastatin, on the other hand, is likely to pro-
duce a balanced inhibition with small changes in the total



active drug concentration within the normal dosing range.
Indeed, pharmacokinetic interactions of these types have
been confirmed recently for each of the marketed
statins.”

A MEDLINE review of all interactions involving a
statin and any other drug between 1984 and 1999 revealed
1 case report of rhabdomyolysis in a patient receiving
pravastatin and fenofibrate, but 27 cases of rhabdomyolysis
in patients on simvastatin combined with either gemfi-
brozil, nefazodone, cyclosporine, itraconazole or mibefradil
and 37 cases in those on lovastatin plus gemfibrozil, niacin,
cyclosporine, itraconazole or erythromycin (references
available on request). There are numerous other reports
documenting lesser degrees of myopathy, myalgia and
asymptomatic elevations in creatine kinase showing the
same pattern of predilection for lovastatin and simvastatin.
However, the mere potental for a drug interaction to oc-
cur, even its citation in the literature, provides little indica-
tion of the true incidence of adverse outcomes in routine
clinical use. Monotherapy with lovastatin, pravastatin and
simvastatin has a proven record of safety and efficacy in
large clinical trials.?**** Moreover, there are numerous re-
ports in the recent literature documenting the safe use of
low dose statin—cyclosporine and statin—fibrate combina-
tions in high-risk patients or patients with complex dyslipi-
demias’*’ (other references available on request). Indeed,
patients who experienced serious toxicity often received
other drugs, in addition to the interacting drug cited, that
competed with the statin through CYP3A4.

Finally, the interaction of the statins with the fibric acid
lipid-lowering agents like gemfibrozil and fenofibrate is
thought to have a pharmacodynamic rather than a pharma-
cokinetic basis. Although rhabdomyolysis has been re-
ported most frequently with lovastatin—fibrate combina-
tions, there have also been cases reported with each of the
other marketed statins, except possibly cerivastatin. Studies
have not found any fibrate-dependent alterations in statin
concentratons, however.”* Moreover, statin-induced my-
opathy is seen with hypothyroidism**' or congenital or
acquired myopathic conditions.”# This drug—disease inter-
action likely represents a statin-related functional mito-
chondrial deficit in addition to an inherent tendency to-
ward muscular disease.

Summary

Drug interactions commonly occur in patients taking
multiple medications. Although there may be some differ-
ences in the potential for statin preparations to be involved
in serious adverse drug reactions, in general, they have a
proven record of safety and efficacy in large clinical studies.
Nonetheless, concern is warranted when statins, particu-
larly lovastatin and simvastatin, are used in multidrug regi-
mens because of dose-dependent toxicity and their propen-
sity toward marked elevations in concentration if taken
with drugs that inhibit first-pass metabolism.

Drug interactions §
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