Table 2.
Summary for the input data types, evaluation metrics, training time, and optimizers in PINNs.
| Characteristics | Details |
|---|---|
| Data type | In silico data |
| In vivo data | |
| In vitro data | |
| Ex vivo data | |
|
| |
| Evaluation metrics | MSE (Mean squared error) |
| AMSE (Averaged mean squared error) | |
| RMSE (Root mean squared error) | |
| MAE (Mean absolute error) | |
| MAPE (Mean absolute percent error) (Nazaret et al 2023) | |
| NRMSE (Normalized root mean squared error) | |
| RE (Relative error) (Xie and Yao 2022a, Isaev et al 2024a) | |
| ME (Mean error) | |
|
| |
| Training time | |
|
| |
| Optimizer | Adam |
| L-BFGS (Herrero et al 2022) | |
| Nadam (Tenderini et al 2022) | |