Table 4.
PDE models’ properties in PINNs analysis of physiological signals.
| Field | Model | No. of PDE/ODE | No. of Vars | Domain Dimension | Boundary conditions |
|---|---|---|---|---|---|
| Electrophysiology | Eikonal (Sahli et al 2020, Grandits et al 2021, Jiang et al 2024) | 1 PDE | 2 & 3 | 2D & 3D | N/A |
| State-Space (Jiang et al 2024) | Neural ODEs | 64 | 3D | N/A | |
| Aliev–Panfilov (Herrero et al 2022, Xie and Yao 2022a, 2022b, Chiu et al 2024) | 1 ODE + 1 PDE | 4 | 1-D & 2D & 3D | Neumman | |
| Fenton–Karma (Sahli et al 2020, Chiu et al 2024) | 2 ODEs + 1 PDE | 4 | 2D & 3D | Neumman | |
| Mitchell–Schaeffer (Kashtanova et al 2021, Kashtanova et al 2022a) | 2 ODEs | 3 & 4 | 2D & 3D | N/A | |
| Hodgkin–Huxley (Ferrante et al 2022, Yao et al 2023) | 4 ODEs | 5 | 1-D | N/A | |
| FitzHugh–Nagumo (Rudi et al 2020, Ferrante et al 2022) | 2 ODEs | 3 | 1-D | N/A | |
| Muscle Electro- mechanics | Hill-type model (Taneja et al 2022, Zhang et al 2022, Ma et al 2024) | 2 ODEs | 3 | 1-D | N/A |
| Twitch force model (Li et al 2022) | 1 ODE | no. of MUs | 1-D | N/A | |
| Hemodynamics | Navier–Stokes + Windkessel (Li et al 2024) | 2 PDEs | 3 | 1-D | Windkessel |
| Navier–Stokes + continuity (Arzani 2021, Du et al 2023, Moser 2023, Isaev et al 2024b, Sautory and Shadden 2024, Maidu et al 2025) | 3 PDEs | 8 | 1-D & 2D & 3D | Dirichlet & Neumman | |
| Navier–Stokes + Laplace (Kissas et al 2020) | 2 PDEs | 5 | 4D | Windkessel | |
| Burger + KdV (Bhaumik et al 2024) | 2 PDEs | 3 | 1-D | Neumman | |
| Linearized Navier–Stokes (Liang et al 2023) | 2 PDEs | 4 | 1-D | Dirichlet |
‘N/A’ indicates that either no boundary condition is applied in the model or the paper does not explicitly provide information about the boundary condition.