Skip to main content
. 2025 Jul 30;46(7):07TR02. doi: 10.1088/1361-6579/adf1d3

Table 5.

PDE models’ applications in PINNs analysis of physiological signals.

Field Model Focus Type of problem Type of data Output
Electrophysiology Eikonal (Sahli et al 2020, Grandits et al 2021, Jiang et al 2024) Spatial mapping Forward In silico data Activation maps
State-Space (Jiang et al 2024) Spatial mapping Forward In silico data; In vivo data ECGI
Aliev–Panfilov (Herrero et al 2022, Xie and Yao 2022a, 2022b, Chiu et al 2024) Spatial-temporal evolution Forward; Inverse; Forward & Inverse In silico data Activation maps + ECGI
Fenton–Karma (Sahli et al 2020, Chiu et al 2024) Spatial-temporal evolution Inverse;Forward & Inverse In silico data Activation maps
Mitchell–Schaeffer (Kashtanova et al 2021, Kashtanova et al 2022a) Spatial-temporal evolution Forward; Forward & Inverse In silico data Activation maps
Hodgkin–Huxley (Ferrante et al 2022, Yao et al 2023) Time series prediction Inverse In silico data Neuron action potential
FitzHugh–Nagumo (Rudi et al 2020, Ferrante et al 2022) Time series prediction Inverse In silico data Neuron action potential
Muscle Electro- mechanics Hill-type model (Taneja et al 2022, Zhang et al 2022, Ma et al 2024) Time series prediction Forward In vivo data Muscle force
Twitch force model (Li et al 2022) Time series prediction Forward In vivo data Muscle force
Hemodynamics Navier–Stokes + Windkessel (Li et al 2024) Time series prediction Forward & Inverse In vivo data Blood pressure
Navier–Stokes + continuity (Arzani 2021, Du et al 2023, Moser 2023, Isaev et al 2024b, Sautory and Shadden 2024, Maidu et al 2025) Spatial mapping Forward In silico data Blood pressure
Navier–Stokes + Laplace (Kissas et al 2020) Time series prediction Forward In vivo data Blood pressure
Burger + KdV (Bhaumik et al 2024) Spatial-temporal evolution Forward In silico data Blood pressure + velocity
Linearized Navier–Stokes (Liang et al 2023) Spatial-temporal evolution Inverse In silico data Blood pressure