Table 6.
Summary of the results for PINNs in cardiac electrophysiology.
Article | Objective | Signal characteristics | Error metrics |
---|---|---|---|
Sahli et al (2020) | Cardiac activation mapping | In silico data | RMSE |
Grandits et al (2021) | Estimate heart conductivity tensor | In silico data; In vivo electroanatomical maps (EAMs) | RMSE |
Herrero et al (2022) | Electrophysiological tissue parameters estimation | In silico data; In vitro data | RMSE |
Xie and Yao (2022a, 2022b) | Spatiotemporal cardiac electrodynamics modeling | In silico data | RE |
Tenderini et al (2022) | Epicardial potentials and activation maps estimation | In silico data | Relative L1-norm error |
Kashtanova et al (2022b) | Cardiac electrophysiology dynamics forecasting | In silico data; Ex vivo optical mapping data | MSE |
Kashtanova et al (2023) | Cardiac electrophysiology dynamics forecasting | Ex vivo data | MSE |
Yao et al (2023) | Ion channels dynamics prediction | In silico data; Real measure membrane potential dataset | RMSE; Pearson coefficient |
Nazaret et al (2023) | Heart rate (HR) response prediction | In vivo ECG data | MAE |
Xie (2023) | Inverse ECG modeling | In silico data; Body surface potential mapping (BSPM) data | MSE; RE; Correlation coefficient (CC) |
Chiu et al (2024) | Drug effects on cardiac electrophysiology | In vitro optimal mapping images | RMSE; RE |
Chiu et al (2024) | Cardiac electrophysiology dynamics forecasting with complex geometries and dynamic regimes | In silico data | RMSE |
Jiang et al (2024) | Electrocardiographic imaging | In silico data; In vivo data | MSE |
Jiang et al (2024) | Cardiac electrophysiology dynamics forecasting | In silico data | MSE |
Kuang et al (2024) | Create patient-specific digital twins using non-invasive echocardiography data | In silico pressure-volume data; In vivo echocardiography | MAE |
Motiwale et al (2024) | High speed cardiac mechanics simulations | Random in silico data in space | ME |
Definitions of RMSE, MSE, MAE, ME and RE can be found in table 2.