Skip to main content
. 2025 Jul 30;46(7):07TR02. doi: 10.1088/1361-6579/adf1d3

Table 6.

Summary of the results for PINNs in cardiac electrophysiology.

Article Objective Signal characteristics Error metrics
Sahli et al (2020) Cardiac activation mapping In silico data RMSE
Grandits et al (2021) Estimate heart conductivity tensor In silico data; In vivo electroanatomical maps (EAMs) RMSE
Herrero et al (2022) Electrophysiological tissue parameters estimation In silico data; In vitro data RMSE
Xie and Yao (2022a, 2022b) Spatiotemporal cardiac electrodynamics modeling In silico data RE
Tenderini et al (2022) Epicardial potentials and activation maps estimation In silico data Relative L1-norm error
Kashtanova et al (2022b) Cardiac electrophysiology dynamics forecasting In silico data; Ex vivo optical mapping data MSE
Kashtanova et al (2023) Cardiac electrophysiology dynamics forecasting Ex vivo data MSE
Yao et al (2023) Ion channels dynamics prediction In silico data; Real measure membrane potential dataset RMSE; Pearson coefficient
Nazaret et al (2023) Heart rate (HR) response prediction In vivo ECG data MAE
Xie (2023) Inverse ECG modeling In silico data; Body surface potential mapping (BSPM) data MSE; RE; Correlation coefficient (CC)
Chiu et al (2024) Drug effects on cardiac electrophysiology In vitro optimal mapping images RMSE; RE
Chiu et al (2024) Cardiac electrophysiology dynamics forecasting with complex geometries and dynamic regimes In silico data RMSE
Jiang et al (2024) Electrocardiographic imaging In silico data; In vivo data MSE
Jiang et al (2024) Cardiac electrophysiology dynamics forecasting In silico data MSE
Kuang et al (2024) Create patient-specific digital twins using non-invasive echocardiography data In silico pressure-volume data; In vivo echocardiography MAE
Motiwale et al (2024) High speed cardiac mechanics simulations Random in silico data in space ME

Definitions of RMSE, MSE, MAE, ME and RE can be found in table 2.