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This article presents a Bayesian method for model-based clustering
of gene expression dynamics. The method represents gene-
expression dynamics as autoregressive equations and uses an
agglomerative procedure to search for the most probable set of
clusters given the available data. The main contributions of this
approach are the ability to take into account the dynamic nature of
gene expression time series during clustering and a principled way
to identify the number of distinct clusters. As the number of
possible clustering models grows exponentially with the number
of observed time series, we have devised a distance-based heuristic
search procedure able to render the search process feasible. In this
way, the method retains the important visualization capability of
traditional distance-based clustering and acquires an independent,
principled measure to decide when two series are different enough
to belong to different clusters. The reliance of this method on an
explicit statistical representation of gene expression dynamics
makes it possible to use standard statistical techniques to assess
the goodness of fit of the resulting model and validate the
underlying assumptions. A set of gene-expression time series,
collected to study the response of human fibroblasts to serum, is
used to identify the properties of the method.

Both cDNA (1) and synthetic oligonucleotide (2) microarrays
enable investigators to simultaneously measure the expres-

sion of thousands of genes and hold the promise to cast new light
onto the regulatory mechanisms of the genome. Different
unsupervised methods have been used to analyze these data to
characterize gene functional behaviors. Among others (3–5),
correlation-based hierarchical clustering (6) is today one of the
most popular analytical methods to characterize gene-expression
profiles. Given a set of expression values measured for a set of
genes under different experimental conditions, this approach
recursively clusters genes according to the correlation of their
measurements under the same experimental conditions. The
intuition behind this approach is that correlated genes are acting
together because they belong to similar, or at least related,
functional categories. The clustering process returns a sorted
representation of expression profiles that allows the investigator
to identify sets of coregulated genes. The sorted set of gene
expression profiles is used to support the operation of partition-
ing the profiles in separated clusters, which is left to the visual
inspection of the investigator.

This clustering approach has become widely popular and it has
been successfully applied to the genomewide discovery and
characterization of the regulatory mechanisms of several pro-
cesses and organisms (7–10). Several of these applications of
genomewide clustering methods focus on the temporal profiling
of gene expression patterns. Temporal profiling offers the
possibility of observing the cellular mechanisms in action and
tries to break down the genome into sets of genes involved in the
same, or at least related, processes. However, correlation-based
clustering methods rest on the assumption that the set of
observations for each gene are independent and identically
distributed (iid). While this assumption holds when expression
measures are taken from independent biological samples, it is
known to be no longer valid when the observations are actually
realizations of a time series, where each observation may depend
on prior ones (e.g., refs. 11 and 12). Pairwise similarity measures
currently used for clustering gene expression data, such as

correlation or Euclidean distance, are invariant with respect to
the order of observations: if the temporal order of a pair of series
is permuted, their correlation or Euclidean distance will not
change. Biomedical informatics investigators over the past de-
cade have demonstrated the risks incurred by disregarding the
dependency among observations in the analysis of time series
(13, 14). Not surprisingly, the functional genomic literature is
becoming increasingly aware of the specificity of temporal
profiles of gene expression data, as well as of their fundamental
importance in unraveling the functional relationships between
genes (15–17).

We introduce here a Bayesian model-based clustering method
to profile gene expression time series, which explicitly takes into
account the dynamic nature of temporal gene expression pro-
files; that is, that time series data are not iid observations. This
method is a specialized version of a more general class of
methods called Bayesian clustering by dynamics (BCD) (18),
which have been applied to a variety of time series data, ranging
from cognitive robotics (19) to official statistics (20). The main
novelty of BCD is the concept of similarity: two time series are
similar when they are generated by the same stochastic process.
With this concept of similarity, the Bayesian approach to the task
of clustering a set of time series consists of searching the most
probable set of processes generating the observed time series.
The method presented here models temporal gene-expression
profiles by autoregressive equations (11) and groups together the
profiles with the highest posterior probability of being generated
by the same process.

Besides its ability to account for the dynamic nature of
temporal gene expression profiles, this method automatically
identifies the number of clusters and partitions the gene expres-
sion time series in different groups on the basis of the principled
measure of the posterior probability of the clustering model. In
this way, it allows the investigator to assess whether the exper-
imental data convey enough evidence to support the conclusion
that the behavior of a set of genes is significantly different from
the behavior of another set of genes. This feature is particularly
important as decades of cognitive science research have shown
that the human eye tends to overfit observations by selectively
discount variance and ‘‘seeing’’ patterns in randomness (e.g.,
refs. 21–23). In our case, we therefore expect that visual inspec-
tion will find more clusters than those supported by the available
evidence. By contrast, a recognized advantage of a Bayesian
approach to model selection, like the one adopted in this article,
is the ability to automatically constrain model complexity (24,
25) and to provide appropriate measures of uncertainty.

Since the number of possible clustering models grows expo-
nentially with the number of time series, our method uses a
bottom-up distance-based heuristic to make the search process
amenable. The result of this clustering process can be repre-
sented by a set of trees, graphically displaying the model in an
intuitive form. In this way, the method retains the important
visualization capability of distance-based clustering but acquires
an independent, principled measure to decide whether two series
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are similar enough to belong to the same cluster. Furthermore,
the use of the posterior probability of the model as an indepen-
dent clustering metrics allows the comparison of different sim-
ilarity measures, which are typically chosen in a somewhat
arbitrary way. In the analysis presented here, for instance, we will
use several similarity measures—Euclidean distance, correla-
tion, delayed correlation, and Kullback–Leiber distance—and
select the one returning the most probable clustering model.
Another important character of the method here presented is its
reliance on an explicit statistical model of gene expression
dynamics. This reliance makes it possible to use standard sta-
tistical techniques to assess the goodness of fit of the resulting
model and validate the underlying assumptions. A set of gene
expression time series, collected to study the response of human
fibroblasts to serum (8), is used to study the properties of the
method. Our results confirm the advantages of taking into
account the dynamic nature of temporal data and return a
different picture from the one offered by the original correla-
tion-based cluster analysis. Statistical diagnostics and biological
insights support our results.

Methods
We regard a set of temporally oriented gene expression obser-
vations as a set of time series S � {S1, S2, . . . , Sm}, generated
by an unknown number of stochastic processes. The task here is
to iteratively merge time series into clusters, so that each cluster
groups the time series generated by the same process. Our
clustering method has two components: a stochastic description
of a set of clusters, from which we derive a probabilistic scoring
metric, and a heuristic search procedure. The derivation of the
scoring metric assumes that the processes generating the data
can be approximated by autoregressive models.

Autoregressive Models. Let S � {yj1, . . . yjt, . . . yjn} be a station-
ary time series of continuous values. The series follows an
autoregressive model of order p, say AR(p), if the value of the
series at time t � p is a linear function of the values observed in
the previous p steps. More formally, we can describe the model
in matrix form as

yj � Xj�j � �j, [1]

where yj is the vector (yj(p�1), . . . , yjn)T, Xj is the (n � p) � q
regression matrix whose tth row is (1, yj(t�1), . . . , yj(t�p)), for t �
p, and q � p � 1. The elements of the vector �j � {�j0, �j1, . . . ,
�jp} are the autoregressive coefficients, and �j � (�j(p�1), . . . ,
�jn)T is a vector of uncorrelated errors that we assume normally
distributed, with expected value E(�jt) � 0 and variance V(�jt) �
�j

2, for any t. The value p is the autoregressive order and specifies
that, at each time point t, yjt is independent of the past history
given the previous p steps. The time series is stationary if it is
invariant by temporal translations. Formally, stationarity re-
quires that the coefficients �j are such that the roots of the
polynomial f(u) � 1 � �h�1

p �jhuh have moduli greater than
unity. The model in Eq. 1 represents the evolution of the process
around its mean �, which is related to the �j coefficients by the
equation � � �j0�(1 � �h�1

p �jh). In particular, � is well defined
as long as �j�1

p �j � 1. When the autoregressive order p � 0,
the series S becomes a sample of independent observations
from a normal distribution with mean � � �j0 and variance �j

2.
Note that the model in Eq. 1 is a special case of a state-space
model (12).

Probabilistic Scoring Metric. We describe a set of c clusters of time
series as a statistical model Mc, consisting of c autoregressive
models with coefficients �k and variance �k

2. Each cluster Ck
groups mk time series that are jointly modeled as

yk � Xk�k � �k,

where the vector yk and the matrix Xk are defined by stacking the
mk vectors ykj and regression matrices Xkj, one for each time
series, as follows

yk � � yk1

�

ykmk

� Xk � � Xk1

�

Xkmk

� .

Note that we now label the vectors yj assigned to the same cluster
Ck with the double subscript kj, and k denotes the cluster
membership. The vector �k is the vector of uncorrelated errors
with zero expected value and constant variance �k

2. Given a set
of possible clustering models, the task is to rank them according
to their posterior probability. The posterior probability of each
clustering model Mc is

P�Mc�y	 
 P�Mc	f�y�Mc	,

where P(Mc) is the prior probability of Mc, y consists of the data
{yk}, and the quantity f(y�Mc) is the marginal likelihood. The
marginal likelihood f(y�Mc) is the solution of the integral

� f�y��	f���Mc	d�,

where � is the vector of parameters specifying the clustering
model Mc, and f(��Mc) is its prior density. Assuming uniform
prior distributions on the model parameters and independence
of the time series conditional on the cluster membership, f(y�Mc)
can be computed as

f�y�Mc	 �
��1	

��1 � m	

� �
k � 1

c
��mk�m � mk	

��mk�m	

�RSSk

2 ��q 	 nk	�2

��nk 	 q
2 �

�2
	�nk 	 q	�2det�Xk
TXk	

1/2 , [2]

where nk is the dimension of the vector yk, and RSSk � yk
T(In �

Xk(Xk
TXk)�1Xk

T)yk is the residual sum of squares in cluster Ck.
When all clustering models are a priori equally likely, the
posterior probability P(Mc�y) is proportional to the marginal
likelihood f(y�Mc), which becomes our probabilistic scoring
metric.

Agglomerative Bayesian Clustering. The Bayesian approach to the
clustering task is to choose the model Mc with maximum
posterior probability. As the number of clustering models grows
exponentially with the number of time series, we use an agglom-
erative, finite-horizon search strategy that iteratively merges
time series into clusters. The procedure starts by assuming that
each of the m observed time series is generated by a different
process. Thus, the initial model Mm consists of m clusters, one
for each time series, with score f(y�Mm). The next step is the
computation of the marginal likelihood of the m(m � 1) models
in which two of the m series are merged into one cluster. The
model Mm�1 with maximal marginal likelihood is chosen and, if
f(y�Mm) � f(y�Mm�1), no merging is accepted and the procedure
stops. If f(y�Mm) � f(y�Mm�1), the merging is accepted, a cluster
Ck merging the two time series is created, and the procedure is
repeated on the new set of m � 1 clusters, consisting of the
remaining m � 2 time series and the cluster Ck.

Heuristic Search. Although the agglomerative strategy makes the
search process feasible, the computational effort can still be
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extremely demanding when the number m of time series is large.
To reduce this effort further, we use a heuristic strategy based
on a measure of similarity between time series. The intuition
behind this strategy is that the merging of two similar time series
has better chances of increasing the marginal likelihood of the
model. The heuristic search starts by computing the m(m � 1)
pairwise similarity measures of the m time series and selects the
model Mm�1 in which the two closest time series are merged into
one cluster. If f(y�Mm�1) � f(y�Mm), the merging is accepted, the
two time series are merged into a single cluster. The average
profile of this cluster is computed by averaging the two observed
time series, and the procedure is repeated on the new set of
m � 1 time series, containing the new cluster profile. If this
merging is rejected, the procedure is repeated on pairs of time
series with decreasing degree of similarity until an acceptable
merging is found. If no acceptable merging is found, the pro-
cedure stops. Note that the decision of merging two clusters is
actually made on the basis of the posterior probability of the
model and that the similarity measure is used only to improve
efficiency and limit the risk of falling into local maxima.

Several measures can be used to assess the similarity of two
time series, both model-free, such as Euclidean distance, cor-
relation and lag-correlation, and model-based, such as Kullback–
Leiber distance. Model-free distances are calculated on the raw
data. Because the method uses these similarity measures as
heuristic tools rather than scoring metrics, we can actually assess
the efficiency of each of these measures to drive the search
process toward the model with maximum posterior probability.
In this respect, the Euclidean distance of two time series Si �
{yi1, . . . , y1n} and Sj � {yj1, . . . , yjn}, computed as

De�Si, Sj	 � ��t � 1
n �yit 	 yjt	

2,

performs best on the short time series of our data set. This
finding is consistent with the results of ref. 9, claiming a better
overall performance of Euclidean distance in standard hierar-
chical clustering of gene expression profiles.

Validation. Standard statistical diagnostics are used as indepen-
dent assessment measures of the cluster model found by the
heuristic search. Once the procedure terminates, the coefficients
�k of the AR(p) model associated with each cluster Ck are
estimated as �̂k � (Xk

TXk)�1Xk
Tyk, while �̂k

2 � RSSk�(nk � q) is
the estimate of the within-cluster variance �k

2. The parameter
estimates can be used to compute the fitted values for the series
in each cluster as ŷkj � Xkj�̂k, from which we compute the
standardized residuals rkj � (ykj � ŷkj)��̂k. If AR(p) models
provide an accurate approximation of the processes generating
the time series, the standardized residuals should behave like a
random sample from a standard normal distribution. A normal
probability plot or the residuals histogram per cluster are used
to assess normality. Departures from normality cast doubt on the
autoregressive assumption, so that some data transformation,
such as a logarithmic transformation, may be needed. Plots of
fitted vs. observed values and of fitted values vs. standardized
residuals in each cluster provide further diagnostics. To choose
the best autoregressive order, we repeat the clustering for
p � 0, 1, . . . , w, for some preset w—by using the same p for
every clustering model—and compute a goodness of fit score
defined as

s � cq � �
k

nklog�nk 	 q	 	 log�RSSk	� 	 �1 � log�2
		�
k

nk,

where c is the number of clusters, nk is the size of the vector yk
in Ck, q � p � 1, where p is the autoregressive order, and RSSk
is the residual sum of squares of cluster Ck. This score is derived
by averaging the log-scores cumulated by the series assigned to

each clusters. The derivation of this score is detailed in the
technical report available from the Supporting Appendixes, which
are published as supporting information on the PNAS web site,
www.pnas.org. The resulting score trades off model complexi-
ty—measured by the quantity cq � �knk log(nk � q)—with lack
of fit—measured by the quantity �nk log(RSSk), and it general-
izes the well known Akaike information criterion goodness of fit
criterion of ref. 26 to a set of autoregressive models. We then
choose the clustering model with the autoregressive order p that
maximizes this goodness of fit score.

Display. As in ref. 6, a colored map is created by displaying the
rows of the original data table according to the pairwise merging
of the heuristic search. In our case, a set of binary trees
(dendrogram), one for each cluster, is appended to the colored
map. Each branching node is labeled with the ratio between the
marginal likelihood of the merging accepted at that node and the
marginal likelihood of the model without this merging. This ratio
measures how many times the model accepting the merging is
more likely than the model refusing it.

Materials
Iyer et al. (8) report the results of a study of the temporal
deployment of the transcriptional program underlying the re-
sponse of human fibroblasts to serum. The study uses two-dye
cDNA microarrays to measure the changes of expression levels
of 8,613 human genes over 24 h. The actual data described in the
study comprise a selection of 517 genes whose expression level
changed in response to serum stimulation. At the time of their
original publication, 238 genes were unknown expressed se-
quence tags (ESTs). We relabeled the data set with the most
recent UniGene database (http:��www.ncbi.nlm.nih.gov�
UniGene), and 45 genes were left unknown. The UniGene
classification was used to identify repeated genes in the data set.
We found that 20 genes appear at least twice in the data set and
were not known to be part of the same UniGene cluster at the
time of the original report.

Results
Our clustering method was applied to the 517 gene expression
time series of length 13, described in Materials. As in the original
analysis, expression values were log-transformed. We ran the
clustering algorithm with four autoregressive orders p � 0, 1, 2,
3 and several similarity measures including Euclidean distance,
correlation, and lag-correlation to account for the temporal
dependency of the data.

Statistical Analysis. Euclidean distance gave the best results: it
systematically returned clustering models with higher posterior
probability than correlation-based distances. The number of
clusters found for p � 0, 1, 2, 3 varied between 4 (p � 0, 1) and
3 (p � 2, 3). To choose a clustering model among these four, we
used the goodness of fit score described in Methods. The scores
for the four models were, for increasing p, 10130.78, 13187.15,
11980.38, and 11031.12, and the model with autoregressive order
p � 1 was therefore selected. This model merges the 517 gene
time series into four clusters of 3, 216, 293, and 5 time series, with
estimates of the autoregressive coefficients and within-cluster
variance �̂10 � 0.518; �̂11 � 0.708; �̂1

2 � 0.606 in cluster 1, �̂20 �
0.136; �̂21 � 0.776; �̂2

2 � 0.166 in cluster 2, �̂30 � �0.132; �̂31 �
0.722; �̂3

2 � 0.091 in cluster 3; and �̂40 � �0.661; �̂41 � 0.328;
�̂4

2 � 0.207 in cluster 4. In this model, merging any of these
clusters decreases the posterior probability of the clustering
model of at least 10.05 times, a strong evidence in favor of their
separation (27). Colored maps and dendrogram of the four
clusters are displayed in Fig. 2.

The symmetry of the standardized residuals in Fig. 1, together
with the lack of any significant patterns in the scatter plot of the
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fitted values vs. the standardized residuals and the closeness of
fitted and observed values suggests that AR(1) models provide a
good approximation of the processes generating these time
series. This impression is reinforced further by the averages of
the fitted time series in each cluster, shown in Fig. 1, which follow
closely their respective cluster average profiles.

Comparison with Correlation-Based Clustering. The most evident
difference between the model in Fig. 2 and the model obtained
by the original analysis is the number of clusters: our method
detects four distinct clusters, characterized by the autoregressive
models described above, while hierarchical clustering merges all
517 genes into a single cluster. Across the four clusters, both
average profiles and averages of the fitted time series appear to
capture different dynamics. Iyer et al. (8) identify, by visual
inspection, eight subgroups of genes—labeled A, B, C, . . . , I,
J—from eight large contiguous patches of color. With the
exception of a few genes, our cluster 2 merges the subgroups of
time series labeled as D, E, F, G, H, I, and J, and cluster 3 merges
the majority of time series assigned to subgroups A, B, and C.
Interestingly enough, the members of subgroups A, B, and C
differ, on average, by one single value. Similarly, groups D and
G differ by a single value, as well as F, H, J, and I.

Our cluster 1 collects the temporal patterns of three genes—
IL-8, prostaglandin-endoperoxide synthase 2, and IL-6 (IFN-
�2). These time series were assigned by ref. 8 to the subgroups
F, I, and J, respectively. Cluster 4 collects the time series of five

genes—receptor tyrosine kinase-like orphan receptor, TRABID
protein, death-associated protein kinase, DKFZP586G1122 pro-
tein, and transcription termination factor-like protein. Three of
these time series were assigned by ref. 8 to the A and B
subgroups. These two smaller clusters—clusters 1 and 4—are
particularly noteworthy because they illustrate how our method
automatically identifies islands of particular expression profiles.
The first of these two clusters merges cytokines involved in the
processes of the inflammatory response and chemotaxis and the
signal transduction and cell–cell signaling underlying these
processes. The cluster includes IL-8, IL-6, and prostaglandin-
endoperoxide synthase 2, which catalyzes the rate-limiting step
in the formation of inflammatory prostaglandins. The second
small cluster includes genes that are known to be involved in the
cell-death�apoptosis processes. This cluster includes kinases and
several transcription factors reported to be involved in these
processes. The cluster includes receptor tyrosine kinase-like
orphan receptor 2, TRAF-binding protein domain, and Death-
associated protein kinase. The cluster also includes the tran-
scription termination factor-like protein, which plays a central
role in the control of rRNA and mRNA synthesis in mammalian
mitochondria (28), and DKFZP586G1122 protein, which has
unknown function but has strong homology with murine zinc
finger protein Hzf expressed in hematopoiesis.

The number of clusters found by our algorithm is directly
inferred from the data, which also provide evidence in favor of
a temporal dependency of the observations: the goodness of fit
score of the AR(0) clustering model, where the observations are
assumed to be marginally independent, is lower than the good-
ness of fit score of the AR(1) clustering model, which assumes
that each observation depends on its immediate predecessor.
The allocation of the 20 repeated genes in the data set seems to
support our claim that identifying subgroups of genes by visual
inspection may overfit the data: with the exception of the two

Fig. 1. Diagnostic plots for the clustering model identified by the method
when the autoregressive order is p � 1. The first row reports histogram of
standardized residuals. The second row reports the scatter plot of fitted values
vs. observed values. The third row shows the scatter plot of fitted values vs.
standardized residuals. The fourth row displays, in black, the four cluster
average profiles—computed as averages of the observed time series in each
cluster—and, in blue, the averages of the fitted time series in each cluster. In
these plots, the x axis reports time in hours.

Fig. 2. Binary tree (dendrogram) and labeled gene expression display show-
ing the clustering model obtained by our method on the data reported in Iyer
et al. (8). The numbers on the branch points of the tree represent how many
times the merging of two series renders the model more probable. The model
identifies four distinct clusters containing 3 (Cluster 1), 216 (Cluster 2), 293
(Cluster 3), and 5 (Cluster 4) time series.

9124 � www.pnas.org�cgi�doi�10.1073�pnas.132656399 Ramoni et al.



repeats of the DKFZP566O1646 protein, our model assigns each
group of repeated genes to the same cluster, whereas four of the
repeated genes are assigned to different subgroups in ref. 8.
Details are shown in Table 1. The risks of overfitting by visual
inspection can be easily appreciated by looking at the color
patterns in Fig. 2. As the dendrogram is built, genes with highly
similar temporal profiles are merged first, thus producing sub-
trees with similar patterns of colors. However, according to our
analysis, the data do not provide enough evidence to conclude
that such subtrees contain time series generated by different
processes and they are therefore merged into a single cluster.

An example of this phenomenon is shown in detail by Fig. 3,
which enlarges part of the dendrogram in Fig. 2. The subtree on
the top half of the figure merges 29 time series that appear to be
more homogenous to visual inspection, and the large Bayes
factors, in log scale, which shows that at each step of the iterative
procedure, merging the time series determines a model which is
more likely than the model determined by not merging them.
Similarly, the bottom half subtree merges 16 time series that
appear to be more similar. The Bayes factors attached to the
terminal node of the picture are exp(33), meaning that the
model in which the two subtrees are merged together is exp(33)
times more likely than the model in which these subtrees are
taken as two separate clusters.

Discussion
The analysis of gene expression data collected along time is at
the basis of critical applications of microarray technology. This
contribution addresses a fundamental property of temporal
data—their directed dependency along time—in the context of
cluster analysis. We have introduced the application to microar-
ray data of a clustering algorithm able to account for dependency
of temporal observations and to automatically identify the
number and the members of the clusters.

We have represented the dependency of temporal observa-
tions as autoregressive equations and we have taken a Bayesian

approach to the problem of selecting the number and members of
clusters. To explore the exponential number of possible clustering
models, we have devised a heuristic search procedure based on
pairwise distances to guide the search process. In this way, our
method retains the important visualization capability of traditional
distance-based clustering and acquires a principled measure to
decide when two time series are different enough to belong to
different clusters. It is worth noting that the measure here adopted,
the posterior probability of the clustering model, takes into account
all the available data, and such a global measure also offers a
principled way to decide whether the available evidence is sufficient
to support an empirical claim. Our analysis shows that sometimes
the available evidence is not sufficient to support the claim that two
time series are generated by two distinct processes. Fig. 2 shows
contiguous patches of colors, but the posterior probability of the
model does not support the claim that these subgroups are suffi-
ciently distinct to be viewed as distinct processes. This finding has
interesting implications for experiment design and sample size
determination, because it allows the analyst to assess whether the
available information is sufficient to support significant differenti-
ations among gene profiles and, if necessary, collect more data. A
third feature of the method presented here is the reliance of the
clustering process on an explicit statistical model. Contrary to other
approaches (16), our method builds the clustering model by using
the parametric content of the statistical model rather than provid-
ing statistical content to an established clustering model. This
stochastic content allows us to use standard statistical techniques to
validate the goodness of fit of the clustering model, as illustrated at
the end of Results. While the biological validation of microarray
experiments plays a critical role in the development of modern
functional genomics, practical considerations often limit this vali-
dation to few genes, while the claims and the scope of a microarray
experiment involve thousands. A proper use of available statistical

Table 1. Assignment of gene repeats to subgroups by Iyer et al.
(8) (column 2) and by our method (column 3)

Gene name
Group

membership
Cluster

membership

Serum�glucocorticoid regulated kinase J, J 2, 2
Pre-B-cell colony-enhancing factor J, NA 2, 2
Myeloid cell leukemia sequence 1 J, J 2, 2
Serine proteinase inhibitor I, I 2, 2
Stromal cell-derived factor 1 NA, H 2, 2
Neurotrimin H, H 2, 2
Dual specificity phosphatase 6 F, F 2, 2
V-ets avian erythroblastosis virus E26 F, F 2, 2
Expressed sequence tags H, H 2, 2
DKFZP566O1646 protein B, A 2, 3
Stearoyl-CoA desaturase C, C, C 3, 3, 3
Pregnancy-associated plasma protein A C, C 3, 3
DEAD�H box polypeptide 17 B, B 3, 3
KIAA0923 protein B, B, B, B 3, 3, 3, 3
WW Domain-containing gene B, B 3, 3
Bardet–Biedl syndrome 2 B, B 3, 3
Calcium�calmodulin-dependent protein

kinase
B, B 3, 3

Tax1 (human T cell leukemia virus type I) A, B 3, 3
AD036 protein A, A 3, 3
DKFZp586I1823 A, A 3, 3

The first column reports the UniGene name of the repeated genes. Sub-
groups in column 2 are identified by A–J letters, with NA denoting a placement
outside the eight clusters identified by the authors.

Fig. 3. A zoom of the dendrogram in Fig. 2, with details of the probability of
merging.
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diagnostics provides analytical tools to independently assess the
global validity of a clustering model.

Autoregressive equations are very simple representations of
process dynamics and they rely on the assumption that the
modeled time series are stationary. Our reason to choose this
representation is its simplicity: since the time series of gene
expression experiments are typically very short, more sophisti-
cated representations could be prone to overfitting. Stationarity
conditions can be checked with the method described at the end
of Methods but, both in the data analyzed here and in our general
experience, the clustering process seems to be largely unaffected
by the presence of nonstationary time series. In principle,

however, more sophisticated representations can be integrated
within the Bayesian framework described in this article. The
method here described is implemented in a computer program
called CAGED (Cluster Analysis of Gene Expression Dynamics),
available from http:��genomethods.org�caged.
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