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Microarrays were used to identify genes of Porphyromonas gingivalis W83 differentially expressed during
invasion of primary human coronary artery endothelial cells. Analyses of microarray images indicated that 62
genes were differentially regulated. Of these, 11 genes were up-regulated and 51 were down-regulated. The
differential expression of 16 selected genes was confirmed by real-time PCR.

Several epidemiological studies have led to the hypothesis of
an infection theory of atherosclerosis (31, 39). An accumula-
tion of evidence suggests that periodontopathogenic bacterial
species, among others, may be involved in cardiovascular dis-
eases (1, 8, 22, 29, 30, 32). In addition to these data, there is
also biological evidence for such a relationship. For example,
periodontal pathogens can be detected in atheromas dissected
from vascular tissues (17), and Porphyromonas gingivalis has
been shown to accelerate atherosclerosis in apolipoprotein E-
deficient mice (16, 26, 28). In addition, several studies have
demonstrated that P. gingivalis internalizes within arterial en-
dothelial cells and smooth muscle cells in vitro (7, 10) and can
also induce foam cell formation and secretion of monocyte
chemoattractants, both important phenomena in atheroscle-

rotic lesion formation (25). Most recently, a direct correlation
between the presence of P. gingivalis in periodontal plaque and
the progression of atherosclerosis (9), as well as the isolation of
viable P. gingivalis from atherosclerotic tissue (24), has been
reported. P. gingivalis is known to have a direct route to the
circulatory system in periodontitis patients (3, 38). Therefore,
invasion of coronary artery cells by P. gingivalis may be in-
volved in atherosclerosis.

To identify genes differentially expressed during the course
of P. gingivalis invasion of human coronary artery endothelial
cells (HCAEC), T-75 flasks with 90% confluence of HCAEC
were infected with P. gingivalis strain W83 for 2.5 h as de-
scribed previously (11, 27). Total RNA was isolated from both
10 ml of broth culture (prior to invasion) and internalized

TABLE 1. Comparison of RT-PCR and microarray expression values of selected genes

Locus no.a Putative identificationa
Expression value

RT-PCRc Microarrayb

PG0092 Transporter, putative 15.12 5.37
PG0120 UDP-N-acetylglucosamine 2-epimerase �9.01 �12.46
PG0186 Lipoprotein RagB �1.59 �13.27
PG0195 Rubrerythrin 1.33 �6.15
PG0280 ABC transporter, permease protein, putative 9.01 6.67
PG0686 Conserved hypothetical protein 23.84 10.51
PG1116 Methylenetetrahydrofolate dehydrogenase/methenyltetrahydrofolate cyclohydrolase 25.06 4.63
PG1172 Iron-sulfur cluster binding protein, putative 94.51 3.57
PG1286 Ferritin 23.01 2.72
PG1321 Formate-tetrahydrofolate ligase 11.19 5.73
PG1492 Hypothetical protein �71.35 �4.50
PG1682 Glycosyl transferase, group 1 family protein 6.21 3.63
PG1683 Conserved hypothetical protein 359.52 2.96
PG1795 Hypothetical protein �5.28 �7.92
PG1864 Leucine-rich protein �60.67 �6.69
PG1896 S-Adenosylmethionine synthase 16.93 3.51
PG2064 Hypothetical protein �3.34 5.19

a Locus number and putative identification are according to the TIGR P. gingivalis genome database.
b Expression values are expressed as average experimental intensities/average control intensity.
c Expression values are expressed as average experimental starting quantity/average of control starting quantity.
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bacteria by using 10 ml of Trizol reagent followed by RNA
isolation as described by the manufacturer (Invitrogen Life
Technologies, Carlsbad, CA). All RNA samples were DNase
treated and purified using the RNeasy kit (QIAGEN Inc.,
Valencia, CA). To separate bacterial total mRNA from
poly(A) mRNA, cellular and internalized bacterial RNAs were
also treated with the Oligotex kit (QIAGEN) according to the
manufacturer’s instructions and the supernatant (invasion
RNA) was again treated with Trizol LS reagent (Invitrogen
Life Technologies). Reverse transcription (RT) and microar-
ray reactions were performed either with 2.0 �g of total bac-
terial RNA (control) or with invasion RNA (200 �g of total

RNA containing 2.0 �g of bacterial RNA), collected from one
T-75 flask of invaded HCAEC (per microarray slide), as pre-
viously described (14, 37). Details of the microarrays can be
found at http://www.tigr.org. The resulting images were ana-
lyzed by TIGR Spotfinder 1.0 and TIGR Multiple Experiment
Viewer software 1.2 (The Institute for Genomic Research
[TIGR] [http://www.tigr.org]). The generated files were im-
ported into Microsoft Excel (Microsoft Corporation, Red-
mond, WA) for subsequent analyses. The results represent the
common findings of three independent biological replicate ar-
rays performed with three different RNA samples. Genes were
identified as differentially expressed if there was a 2.0-fold

FIG. 1. Distribution of differentially expressed genes grouped by functional classification according to the TIGR P. gingivalis genome database.
Numbers above the bars indicate the number of genes differentially expressed in each functional group.

TABLE 2. P. gingivalis genes up-regulated during invasion of human coronary artery endothelial cells

Locus no. Putative identificationa Cellular rolea Expression
valueb

PG0092 Transporter, putative Transport and binding protein 5.37
PG0280 ABC transporter, permease protein, putative Transport and binding protein 6.67
PG0686 Conserved hypothetical protein Hypothetical protein 10.51
PG1116 Methylenetetrahydrofolate dehydrogenase/methenyltetrahydrofolate

cyclohydrolase
Biosynthesis of cofactors, prosthetic groups,

and carriers
4.63

PG1172 Iron-sulfur cluster binding protein, putative Energy metabolism 3.57
PG1286 Ferritin Transport and binding protein 2.72
PG1321 Formate-tetrahydrofolate ligase Central intermediary metabolism 5.73
PG1682 Glycosyl transferase, group 1 family protein Cell envelope 3.63
PG1683 Conserved hypothetical protein Hypothetical protein 2.96
PG1896 S-Adenosylmethionine synthase Central intermediary metabolism 3.51
PG2064 Hypothetical protein Hypothetical protein 5.19

a Locus number, identification and functional classification are according to the TIGR P. gingivalis genome database.
b Expression values are expressed as average experimental intensities/average control intensity.
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difference in their average expression values. To confirm the
microarray data, 16 different genes were subjected to RT-PCR
(Table 1) using an iCycler Thermal Cycler and iQ SYBR green
supermix according to the manufacturer’s instructions (Bio-
Rad Laboratories). DNA fragments of each gene were used as
internal controls and standard curves. Subsequent data nor-
malization and analysis were performed by using the iCycler
and Microsoft Excel softwares. All locus numbers and operon
predictions were obtained from the website for TIGR.

Analysis of microarray images showed that a total of 63
genes were differentially regulated (Fig. 1). Of these genes, 11
were up-regulated (Table 2) and 52 were down-regulated (Ta-
ble 3) during invasion of HCAEC, compared with those grow-
ing in broth culture. Among the up-regulated genes are several
that may be involved in intracellular trafficking and/or interac-
tions with autophagosomal vesicles or other virulence func-
tions. Examples are as follows. (i) PG1682 encodes a glycosyl
transferase, and PG1683 encodes a conserved hypothetical

TABLE 3. P. gingivalis genes down-regulated during invasion of human coronary artery endothelial cells

Locus no. Putative identificationa Cellular rolea Expression valueb

PG0120 UDP-N-acetylglucosamine 2-epimerase Cell envelope 12.46
PG0121 DNA-binding protein HU Cell envelope 4.70
PG0145 Hypothetical protein Hypothetical protein 14.60
PG0176 Cell surface protein, interruption Cell envelope 16.35
PG0178 Cell surface protein, interruption Cell envelope 9.29
PG0186 Lipoprotein RagB Cell envelope 13.27
PG0195 Rubrerythrin Energy metabolism 6.15
PG0272 Gliding motility protein GldE, putative Cellular processes 8.12
PG0288 Lipoprotein, putative Cell envelope 5.79
PG0315 Ribosomal protein L27 Protein synthesis 5.74
PG0375 Ribosomal protein L13 Protein synthesis 3.93
PG0389 Transcription antitermination protein NusG Transcription 24.85
PG0390 Ribosomal protein L11 Protein synthesis 7.59
PG0392 Ribosomal protein L10 Protein synthesis 14.78
PG0616 Thioredoxin, putative Energy metabolism 12.29
PG0618 Alkyl hydroperoxide reductase, C subunit Cellular processes 4.22
PG0687 Succinate-semialdehyde dehydrogenase Energy metabolism 6.71
PG0689 NAD-dependent 4-hydroxybutyrate dehydrogenase Energy metabolism 16.24
PG0762 Trigger factor, putative Protein fate 6.69
PG0779 Hypothetical protein Hypothetical protein 7.83
PG0780 Hypothetical protein Hypothetical protein 10.79
PG0992 Threonyl-tRNA synthetase Protein synthesis 9.35
PG1078 Electron transfer flavoprotein, alpha subunit Energy metabolism 12.55
PG1084 Thioredoxin family protein Energy metabolism 14.60
PG1105 RNA polymerase sigma-54 factor Transcription 5.08
PG1153 Hypothetical protein Hypothetical protein 4.85
PG1189 Hypothetical protein Hypothetical protein 6.52
PG1256 Ribonuclease, Rne/Rng family Transcription 15.55
PG1265 Hypothetical protein Hypothetical protein 8.33
PG1304 Hypothetical protein Hypothetical protein 3.89
PG1492 Hypothetical protein Hypothetical protein 4.50
PG1602 YibR protein Unknown function 12.45
PG1703 MazG family protein Unknown function 11.44
PG1788 Cysteine peptidase, putative Protein fate 19.58
PG1795 Hypothetical protein Hypothetical protein 7.92
PG1807 v-type ATPase, subunit K Energy metabolism 3.46
PG1823 Hypothetical protein Hypothetical protein 4.28
PG1864 Leucine-rich protein Unknown function 6.69
PG1911 DNA-directed RNA polymerase, alpha subunit Transcription 26.25
PG1913 Ribosomal protein S11 Protein synthesis 5.34
PG1917 Methionine aminopeptidase, type I Protein fate 17.61
PG1918 Preprotein translocase, SecY subunit Protein fate 24.52
PG1926 Ribosomal protein L5 Protein synthesis 12.25
PG1935 Ribosomal protein L2 Protein synthesis 9.48
PG1937 Ribosomal protein L4 Protein synthesis 9.86
PG1944 3-Phosphoshikimate 1-carboxyvinyltransferase Amino acid biosynthesis 6.23
PG1956 4-Hydroxybutyrate coenzyme A-transferase Energy metabolism 6.82
PG1973 Hypothetical protein Hypothetical proteins 1.86
PG1974 Hypothetical protein Hypothetical proteins 59.99
PG2082 POT family protein Transport and binding proteins 6.04
PG2192 Peptidase, M23/M37 family Protein fate 6.71
PG2205 2-Dehydropantoate 2-reductase, putative Biosynthesis of cofactors, prosthetic

groups, and carriers
19.30

a Locus number, identification and functional classification according to TIGR P. gingivalis genome database.
b Expression values are expressed as average experimental intensities/average control intensity.
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protein which has homology to �-amylases. These enzymes
have been suggested to be involved in the attachment of P.
gingivalis to epithelial cells (glycosyl transferase) (4) and coag-
gregation of P. gingivalis with other oral bacterial species (hy-
pothetical protein) (15, 23). Genes PG1682 and PG1683 might
also be involved in the coaggregation of P. gingivalis with cell
membranes (autophagosomes). (ii) PG0280 encodes a putative
ABC transporter permease protein that is organized as a chan-
neling pore complex through the membrane (34). The ABC
transporter superfamily is responsible for the translocation of
a wide variety of substances into or out of cells. However, the
substrate of this particular ABC transporter has not yet been
described. (iii) PG0092 encodes a putative transporter of un-
known substrate which belongs to the HlyD secretion protein
family (34). The HlyD family of secretion proteins is involved
in the activation and release of hemolysins in Escherichia coli
(19, 41, 42) as well as in the secretion of toxins in other
bacterial species (18, 21). Perhaps related, PG1286 (ftn) en-
codes a ferritin and PG1172 encodes a putative iron-sulfur
cluster binding protein, a prosthetic group present in a diverse
set of proteins involved in environmental sensing, gene regu-
lation, and substrate activation. (iv) PG1896 (metk) encodes an
S-adenosylmethionine synthase, the product of which is S-ad-
enosylmethionine (SAM), a major methyl donor in metabo-
lism. SAM is an essential metabolite in yeasts (5), and the lack
of SAM in E. coli cells has been shown to result in a cell
division defect (35). In previous work in our laboratory, Dorn
et al. (12) observed profiles of P. gingivalis dividing inside late
autophagosomes. Therefore, PG1896 could be involved in in-
tracellular replication of P. gingivalis. However, its up-regula-
tion may be due to other metabolic processes necessary for the
survival of P. gingivalis inside of HCAEC.

In contrast to genes up-regulated during invasion assays, a
larger number of genes (52 of 63) were down-regulated (Table
3). Several of the down-regulated genes (12 of 52) are hypo-
thetical proteins; however, a substantial number of down-reg-
ulated genes (21 of 52) are likely involved in protein synthesis,
transcription, and energy metabolism. This reduced level of
expression may indicate a reduced intracellular bacterial
growth rate and/or that intracellular P. gingivalis organisms at
this time point have limited but more specific metabolic activity
when compared with laboratory-grown late-log-phase bacteria.

This is the first report of a global genomic expression profile
of intracellular P. gingivalis during invasion of endothelial host
cells. The results presented here may provide new insights at
the molecular level of P. gingivalis gene expression once inside
human cells. It is expected that the gene expression profiles will
differ at earlier or later times during invasion of HCAEC
cultures. Similarly, P. gingivalis genetic expression profiles
would be expected to differ in different cell lines, since P.
gingivalis traffics intracellularly differently in different cell types
(2, 6, 12, 13, 20, 33, 36, 40). We are currently studying these
genes and their products to better understand the invasive
mechanism of P. gingivalis.
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