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Although secondary structure prediction methods have recently
improved, progress from secondary to tertiary structure prediction
has been limited. A promising but largely unexplored route to this
goal is to predict structure motifs from secondary structure knowl-
edge. Here we present a novel method for the recognition of �
hairpins that combines secondary structure predictions and thread-
ing methods by using a database search and a neural network
approach. The method successfully predicts 48 and 77%, respec-
tively, of all of hairpin and nonhairpin �-coil-� motifs in a protein
database. We find that the main contributors to motif recognition
are predicted accessibility and turn propensities.

The success of the genome sequencing projects, with their
pressing need for fast functional and structural annotations,

has renewed interest in predicting the tertiary structure of a
protein from its sequence. Ab initio approaches are limited by the
enormous size of the conformational space and an incomplete
knowledge of the interactions that contribute to protein stability
(1). These difficulties have prompted the development of alter-
native approaches involving different simplifications of the
problem. The prediction of protein secondary structure is the
most widely used of them, with accuracies between 75 and 80%
(2–8). These results open the way for the second part of the
prediction problem: Can we derive the three-dimensional struc-
ture of a protein from the knowledge of its secondary structure?

In recent years, a number of fold recognition methods have
addressed this question (9–13). Using the predicted secondary
structure of a protein to query the structure database, these
methods are able to retrieve a valid structural candidate in
40–60% of cases (10, 13). However, the fold recognition ap-
proach is of no use when the query protein has a novel fold. In
addition, it is limited by the fact that secondary structure
patterns are degenerate (10, 13) and may correspond to different
three-dimensional structures.

Secondary structure predictions have also been incorporated
into ab initio structure prediction methods (14–17). Again the
results are encouraging, with several structures predicted in the
low-resolution range (14, 15, 18, 19). However, such hybrid
methods are still limited to small proteins because of their large
computational requirements. In particular, recent studies (20)
suggest that it may be difficult to predict the structure of large
� proteins by using these methods, even if the native secondary
structure of the protein is known. This is because the low-
resolution potentials used to speed up the prediction process
have to be enriched with hydrogen bonding terms, to properly
model large cooperative structures like � barrels (20).

A third approach would follow the hierarchical organization of
protein structures and would predict local structural motifs.
These could be used in turn to derive the protein tertiary
structure, as shown in Fig. 1. Supersecondary structure (SSS)
elements are recurrent structural motifs consisting of two or
more secondary structure units (21). The interest in their
prediction lies in the fact that they are present in the majority of
protein structures, particularly in the frequently occurring

superfolds (22). Indeed, about 60% of residues involved in
secondary structure belong to one of the three simplest struc-
tural motifs (22): �, �, and ��� hairpins. This, together with the
fact that they have a relatively small number of possible arrange-
ments (23), strongly suggests that the ability to correctly identify
these motifs may help to simplify the structure prediction
problem. Actually, identification of structural motifs has been
successfully used within the context of ab initio protein structure
predictions (24, 25).

An Approach to SSS Prediction. Here we present an approach to
predicting the SSS of a protein, combining the best secondary
structure predictions with threading against a database of ter-
tiary motifs. The rationale behind our method is that in general,
any given linear pattern of secondary structures can fold into
different tertiary arrangements. However, some of them are very
common, and our method seeks to recognize these canonical
structures. For example, for the � strand-coil-� strand (�c�)
pattern, 40% of our database of 2,576 patterns fold into �
hairpins.

Therefore, we developed a protocol to predict � hairpins,
which are simple SSS motifs formed by two adjacent, antipar-
allel, hydrogen-bonded � strands (26–28). Their simplicity and
ubiquity make them good targets for prediction (29–32). In
general, because they capture rich three-dimensional structure
information, their identification in a protein of unknown struc-
ture significantly reduces the number of possible folds available
to that protein. More specifically, � hairpin predictions could be
used together with low-resolution experimental data, e.g., sec-
ondary structure from NMR experiments, to extend the range of
the structure determination�prediction process. In particular,
correct location of � hairpins within a protein sequence can help
in the identification of folds with several adjacent � strands in
their secondary structures. For example, both IL-1�, a � trefoil,
and the phosphotyrosine recognition domain SH2 of V-SRC, a
UB roll, have four � hairpins. However, for the latter, the strands
of the consecutive hairpins overlap; that is, the second strand of
one hairpin becomes the first strand of the next hairpin, etc. On
the contrary, for IL-1�, there is no strand overlap between
adjacent hairpins. For all of the above reasons, we wondered
whether it is possible, using only local sequence data, to dis-
criminate between those �c� patterns that form a � hairpin and
those that do not.

The protocol developed is summarized in Fig. 2 and described
in detail in Methods. The approach is hierarchical. First, the
secondary structure is predicted. All of the occurrences of the
�c� pattern in a predicted secondary structure are labeled. Each
�c� pattern is then compared with each member of a library of
� hairpins with the same number of residues. Every comparison
generates 14 scoring terms that are input to a neural network,

Abbreviation: SSS, supersecondary structure.
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which discriminates between probable hairpins (scoring 1) and
nonhairpins (scoring 0). When the complete database has been
scanned, if there are more than 10 matches with output 1, we
predict the pattern as a � hairpin. Otherwise, the pattern is
predicted as a nonhairpin.

Methods
The SSS Prediction Method. The main steps of the method are
summarized in Figs. 1 and 2. This method is part of a hierarchical
approach to protein structure prediction (Fig. 1) in which
secondary structure is predicted in the first place. Then this
information is used to predict SSS motifs. Finally, the three-
dimensional structure of the protein would be obtained by
packing together the predicted SSS elements and modeling the
remaining protein residues (although this last part is not ad-
dressed herein).

The method for SSS prediction was derived for � hairpins,
although it can be easily extended to other SSS motifs. It can be
divided into five steps (Fig. 2). First, predict the secondary
structure of the protein. Second, label all of occurrences of the
�c� pattern in the prediction. Third, for each pattern found, scan
the hairpin database, scoring the database members by using a
set of structural and sequence parameters (see below). For each
database hairpin, this will give a set of 14 scores. Fourth, these
scores are then processed by a neural network that will produce
a discrete output, 0� or 1�, which means that the �c� pattern is
unlikely or likely, respectively, to form a � hairpin. A final filter
is applied: if the total number of 1�s (i.e., good matches to a
hairpin in the database) is above 10, the �c� pattern is predicted
to be a � hairpin; otherwise, it is assigned to the nonhairpin class.

Protein Set. The protein set was obtained from the CATH (33)
list of H representatives. Proteins belonging to the same homol-
ogy (H) level in the CATH hierarchy have the same fold, a
significant degree of sequence similarity, or common functional
features. The representatives for each H level are chosen by
using structure quality criteria, e.g., highest resolution for x-ray
structures, etc. (C. Orengo, personal communication). The list

was filtered, so that sequence identity is always lower than 35%
between any pair of proteins, excluding any protein with missing
residues. The latter was done because the accessibility-based
scoring term depends critically on the three-dimensional envi-
ronment of the residues. Missing residues could lead to incorrect
residue accessibility values. Our final protein set was made of 534
proteins.

� Hairpin Database. To build the � hairpin database, we used the
PROMOTIF program (34) to locate the hairpins in the 534
proteins. � hairpins having an � helix embedded in the coil
fragment were discarded. A total of 1,031 � hairpins were kept.
Their length varied between 6 and 52 residues, with an average
of 16.9 � 6.5.

The Ideal and Test Cases. The performance of our method was
computed for two different cases, the ideal and test cases. The
former was used to set an upper limit for the performance of our
method in its present form, by using information of the highest
quality, i.e., observed secondary structure was utilized to locate
the �c� patterns. It was also used, together with observed
accessibility, to compute the associated scores (see below). For
the test case, the information used was that available when
dealing with proteins of unknown structure. That is, predicted
secondary structure was used to locate the �c� pattern and,
together with predicted accessibility, to compute the associated
scores.

Scores based on other properties were also computed. How-
ever, because they require only the structure of the database
hairpin, they were computed in the same fashion in both the ideal
and test cases.

Observed Secondary Structure and Accessibility. For each database
hairpin, we took the observed secondary structure and accessi-
bility from the DSSP database (ftp:��ftp.embl-heidelberg.de�
pub�databases�dssp), downloading the file of the corresponding
protein.

Fig. 1. A hierarchical approach to protein structure prediction (see text). Fig. 2. The protocol for � hairpin prediction (see Methods).
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PHD Predicted Secondary Structure and Accessibility. These were
obtained by using the PHD software (5) (www.embl-heidelberg.
de�predictprotein) with default parameters. We used the cross-
validation option, so that the target protein was removed from
the PHD training set before running the predictions.

Scoring Procedure. Every �c� pattern found in the secondary
structure prediction was compared against each hairpin of the
same length in the database. The comparison was based on an
ungapped residue by residue alignment between the query
pattern and the database hairpin. In this alignment, the first
residue in the query pattern matched the first residue in the
candidate hairpin, the second matched the second, etc. To
evaluate the similarity between the �c� pattern and the database
hairpin, we utilized 14 scores, derived from the previous align-
ment and based on the following properties: secondary structure
(6), accessibility (1), presence of turns (1), specific pair interac-
tions (1), nonspecific distance-based contacts (1), and four
properties of the secondary structure pattern related to residue
length. It is important to note that computing the scoring terms
requires the use of the alignment between the �c� pattern and
the database hairpin, except for the four scoring terms depend-
ing on the secondary structure pattern.

To compare the secondary structures of the �c� pattern and
the database hairpin, we first computed three scores: one for
each strand and one for the coil. These scores were computed as
follows: �i ssi�n. Where i runs from 1 to n1, n2, and n3, the
lengths of the two � strands and the coil of the database hairpin,
respectively. n will be equal to n1, n2, and n3, respectively. The
ssi score corresponds to the de la Cruz and Thornton potential
(10), which measures the similarity between the predicted sec-
ondary structure of the �c� pattern and the observed secondary
structure of the database hairpin. This score is equal to:

ssi � ln�p�OBSssi��PREDssi � rl��	

� 1�3�
j

ln�p�OBSssj��PREDssi � rl��	,

where PREDssi is the predicted secondary structure for the ith
residue in one of the secondary structure elements of the �c�
pattern (either one of the two strands, or the coil); rl, the
reliability of the prediction, as given by PHD (5); and OBSssi is
the observed secondary structure of the corresponding residue
in the database hairpin. The sum in the second right-hand term
runs over the three possible secondary structure states (helix, �,
and coil), and OBSssj takes the value of each of them. The
probabilities were computed by comparing the observed and
predicted secondary structures for a set of proteins (10). For the
ideal case, because observed secondary structure was used,
PREDssi was replaced by OBSssi, and rl was made equal to 9, the
maximum reliability index.

The whole procedure was repeated by using a Chou and
Fassman-like potential (35), to give an additional three scores.
These scores are used to measure the likelihood that the �c�
pattern adopts the secondary structure of the database hairpin.
They are equal to: ss(aai, ssi) 
 f(aai, ssi)�� f(ss)�, where aai is the
residue type found at position i in the query �c� pattern, ssi is
the secondary structure (helix, �, or coil) of the ith residue in a
database hairpin. ss(aai, ssi) is the score of assigning to residue
i of the query �c� pattern the secondary structure ssi of the ith
residue in the database hairpin; f(aai, ssi) is the probability of
finding a residue of type aai in secondary structure ssi; and � f(ss)�
is the average of f(aai, ssi) over the 20 amino acid types. Both
f(aai, ssi) and � f(ss)� are computed using a database of known
protein structures.

Thus a final six scores were generated to measure how well the
predicted secondary structure of the query sequence matches
the secondary structure of the database hairpin.

The overall similarity between the predicted accessibility of
the �c� pattern and the observed accessibility of the database
hairpin was measured by using the following score: �i aci�n.
Where n is the total length of the �c� pattern and aci is the value
of the de la Cruz and Thornton accessibility potential (10). This
potential is equal to:

ln�p�OBSaci��PREDaci � rl��	

� 1�3�
j

ln�p�OBSacj��PREDaci � rl��	,

where PREDaci is the predicted accessibility for the ith residue
of the �c� pattern, rl the reliability of the prediction, as given by
PHD (5). OBSaci is the observed accessibility for the ith residue
of the database hairpin. The sum in the second right-hand term
runs over the three possible accessibility states (exposed, buried,
and half-buried), and OBSacj takes the value of each of them.
The probabilities were computed by comparing the observed and
predicted accessibilities for a set of proteins (10). For the ideal
case, we followed the same procedure as for the secondary
structure (see above).

To measure the likelihood that the putative query loop
sequence will adopt the turn conformation of the database
hairpin, we used a turn score. This score was generated by using
the Hutchinson and Thornton potential (36). To this end, we
utilized the turn information from the database hairpin. For
example, if the database hairpin had a type I turn starting at
position 5, the turn score was computed, adding the turn
propensities of residues at positions 5–8 in the query sequence.
The final score was then divided by four. For hairpins with
multiple turns, the final score was obtained by averaging over the
number of turns.

The two � strands in a � hairpin are arranged in an antiparallel
fashion, displaying a specific pattern of residue pairings between
them. It has been recently observed that not all of the residue
pairs are equally allowed in antiparallel pairings (37). To eval-
uate the likelihood that the sequence of the �c� pattern is
consistent with the pairing observed for the database hairpin, we
used the Hutchinson et al. potential (37). This potential is a
pair-specific term that measures the empirical probability that
two amino acids will form a ‘‘pair’’ in a � ladder [for a proper
definition of pairing, see Hutchinson et al. (37)]. To compute this
score, we used the information of the pairing pattern of the
database hairpin. For example, if residues i and j formed a pair
in the matched database hairpin, the score would be equal to the
propensity of residues i and j in the �c� pattern to form such a
pair. For hairpins with multiple pairs, the final score was taken
as the average.

To evaluate whether the �c� pattern is likely to be ‘‘stable’’ if
adopting a hairpin structure, we utilized a coarse-grained po-
tential: the shell potential by Park et al. (38). This potential is a
secondary structure unspecific distance-based potential, com-
puted for all of the residue pairs at a C�-C� distance lower than
7 Å (C� atoms are used for Gly residues) and an interresidue
distance larger than 1. Scoring a given �c� pattern required
threading the sequence onto the structure of the database
hairpin and then computing the overall value of the potential.
Because it is based on the use of C� and C� atoms, there was no
need to model the side chains.

Finally, to measure whether the secondary structure pattern of
the �c� pattern was ‘‘hairpin-like,’’ we used four simple param-
eters: the lengths of the two predicted � strands, that of the
predicted coil, and the absolute value of the length difference
between both predicted strands.
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The Neural Network. A feed-forward network (39) with one input
layer, one hidden layer, and one output layer was used. A total
of 14 parameters were input to the network—the 14 scoring
terms described above. The hidden layer had two units, and the
output layer had one unit. The network output was either 1
(a positive � hairpin prediction) or 0.

The network was trained following the procedure described in
Shepherd et al. (40) presenting the network with a number of
inputs, together with their associated target outputs. For non-
hairpins, the network was presented with all of the scores
resulting from threading the query sequence onto all of the
same-sized database hairpins. For � hairpins, only one set of
scores was presented to the network, that resulting from self
comparison of the sequence with its corresponding � hairpin.
This training protocol introduced a bias toward better predic-
tions for nonhairpins. However, it was followed because �
hairpins can show large variations for the selected properties
(accessibility, etc.). These differences may be comparable to
those found between hairpins and nonhairpins and thus could
lead to a poorer training of the network.

The neural network performance was tested by using the full
prediction procedure. For the true prediction test, no informa-
tion whatsoever on the observed hairpin structures or �c�
patterns was used. In addition, after training, the performance
in the test case was not used to alter the training procedure. The
network weights were optimized by using scaled conjugate
gradients with 50 iterations (40). The results cited in the present
work were obtained by using a 5-fold crossvalidation procedure.
The set of 534 proteins was randomly divided into 5 subsets. The
five different combinations of four subsets were used to train
the network. For each combination, the network was tested on
the excluded subset. The results for the test sets were then
averaged to provide the results included in Table 1. There was
an average 108 � hairpins in the test sets.

A final filter was used to limit false positives. A minimum of
10 neural network outputs equal to 1� was required for a �
hairpin prediction. This number was derived after testing the
effect of different values (0, 5, 10, 15) on the averaged perfor-
mances of the training sets. This filter may result in no � hairpin
predictions for the less frequent hairpins.

It must be noted that in the ideal case (when observed
secondary structure and accessibility of the query hairpin were
used for the scoring process), self-comparison was allowed. That
is, the hairpin used to query the database was kept in the
database, which was not true for the test case. That is, when
testing our method, the � hairpin corresponding to a given �c�
pattern was effectively purged from the database.

Performance Measures. The performance of our procedure was
evaluated by using three different parameters: Qp, Qo, and S.
Percentage of correct predictions (Qp): Qp 
 (100�cp)�(cp � ip),
where cp and ip were the number of correct and incorrect
predictions, respectively. We computed Qp independently for
hairpin and nonhairpin predictions, using all of the predictions
together. In the ideal case, a prediction was taken as correct
when: (i) the SSS of the query �c� pattern was correctly
identified as hairpin or nonhairpin; and (ii) the beginning of the
SSS motif was within �2 residues from the actual location of the
pattern. The latter was done to take into account inaccuracies in
secondary structure assignment methods (4). It was extended to
�4 residues in the true prediction case to allow for the greater
inaccuracies in secondary structure predictions (41). However,
�2 and �3 shifts gave similar results (results not shown).

Coverage (Qo): Qo 
 (100�cp)�(cp � np), where cp is the same
as before, and np is the number of nonpredicted instances, e.g.,
when computing Qo for the hairpins, np is the number of
nonpredicted hairpins.

Finally, we used the normalized performance relative to a

purely random prediction method, S (40). S is defined in such a
way as to eliminate overprediction advantages in the nonrandom
method. Let p and n be the number of correct hairpin and
nonhairpin predictions, and o and u the number of incorrect
hairpin and nonhairpin predictions. For the specific hairpin and
nonhairpin cases, S is defined as:

S(hairpin) 
 [p�t � (p � o)�(p � u)]�[t2 � (p � o)�(p � u)]
S(nonhairpin) 
 [n�t � (n � o)�(n � u)]�[t2 � (n � o)�(n � u)]

where t 
 p � n � o � u.
The values of these parameters were computed for those cases

for which the �c� pattern was present, because our prediction
method focuses on the ability to assign the proper SSS motif to
a given secondary structure pattern.

Results
To test our approach, we distinguish two cases (see Methods): the
ideal case and the true prediction case. In the former, observed
secondary structure and accessibility were utilized, together with
other properties, to compute the different scores used by the
neural network to produce the hairpin�nonhairpin prediction.
This provides a first and simple check of the novel recognition
procedure and also sets an upper limit for its performance. The
difference for the true prediction case is that predicted, instead
of observed, secondary structure and accessibility were used
when scoring the match between the query �c� pattern and the
database hairpins.

(i) The Ideal Case. In this case, we utilized the observed secondary
structure and accessibility to compute the values of the following
scores: six secondary structure-based scores, the accessibility
score, the lengths of the strands and coil, and finally the absolute
value of the difference between both strands sizes. For the
remaining terms, i.e., the turn term and both the specific and
unspecific contact terms, we used the three-dimensional struc-
ture of the database hairpin to derive the associated scores. For
example, the unspecific pairing term was computed using the
interresidue C�-C� distances for the database hairpin.

The results obtained (Table 1) show that, on average, 55.9%
(�2.1) and 73.6% (�3.7) of the � hairpin and non-� hairpin
predictions, respectively, are correct. Despite being smaller, the
� hairpin success rate still represents a 34.3% (�8.3) improve-
ment over a random method (Table 1). The coverage was
essentially the same for both hairpins and nonhairpins. These
results show that if the secondary structure assignment is accu-
rate, hairpin recognition works reasonably well.

We evaluated whether there is a dependence of the prediction
rates on the hairpin lengths. To this end, we computed the
average Qp for all those �c� patterns (hairpins and nonhairpins
together) for which there were at least 15 cases of the given
length per crossvalidation set and at least three crossvalidation
sets. The resulting Qp values varied between 50 and 68%. No
clear relationship was observed between Qp and pattern length
(Fig. 3).

Table 1. Overall prediction performance

Ideal case Test case

� hairpin Non-� hairpin � hairpin Non-� hairpin

Qp* 55.9 � 2.1 73.6 � 3.7 47.7 � 3.9 77.4 � 2.7
Qo† 64.2 � 8.3 65.8 � 6.7 30.1 � 7.9 87.6 � 4.5
S‡ 34.3 � 8.3 26.3 � 3.6 15.9 � 5.5 28.5 � 6.3

*Percentage of correct predictions (see Methods). Average values are shown,
followed by the standard deviations. Both were computed from the results
of the cross-validation procedure (see Methods).

†Coverage (see Methods).
‡Performance relative to random (see Methods).
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(ii) The Test Case. We next tested our procedure by using only
sequence information. For example, when studying a given
target protein, only predicted secondary structure was used to
locate the �c� patterns, etc. Only 542 of 1,031 database hairpins
were found. The remaining 589 hairpins could not be located,
because their �c� patterns were missing from the secondary
structure predictions. However, the number of nonhairpins was
almost the same, going from 1,545 to 1,495, because spurious �c�
patterns are created by incorrect secondary structure predic-
tions. The prediction problem then becomes more difficult, as
the proportion of hairpins relative to nonhairpins decreased
from 0.67 to 0.36. The following assessment of hairpin prediction
refers only to the 2,037 �c� patterns found in the secondary
structure predictions of the query proteins.

The prediction rate shows a decrease in the hairpin predic-
tions, 47.7% (�3.9) correct predictions, when compared with
that of the ideal case, 55.9% (�2.1) correct predictions. The
coverage is also smaller, with 30.1% (�7.9) identified hairpins vs.
64.2% (�8.3) in the ideal case. However, the normalized im-
provement over random, 15.9% (�5.5), is still significant.

The prediction rate for the nonhairpins is comparable to that
of the ideal case, 77.4% (�2.7) correct predictions vs. 73.6%
(�3.7) in the ideal case, which is also true for the normalized
performance relative to random: 28.5% (�6.3) vs. 26.3% (�3.6)
in the ideal case.

The length dependence was also studied in this case (Fig. 3).
We found that Qp varies within a somewhat broader range,
61–84%, but no clear trend could be found. In addition, there are
no clear differences between the ideal and test cases.

Discussion
The procedure for SSS prediction is based on the decomposition
of the problem in two separate parts: secondary structure
prediction and SSS motif identification. This strategy has proved
fruitful when used in other structure prediction problems, like
turn prediction (40). Our approach is entirely different from the
few SSS prediction methods described until now (29–31), which
try to predict SSS mainly from sequence. In our case, we first use
secondary structure predictions to locate possible SSS motifs.
Then, a recognition procedure is used to identify the corre-
sponding motif. By following this decomposition scheme, we can
address the first half of the problem by using already available
high-performance secondary structure prediction methods. We
are then able to concentrate on the identification process.

When evaluating this approach in the test case, we observe
that only about half the hairpins were predicted as �c� patterns
in stage 1. For the remaining hairpins, the corresponding �c�
pattern did not exist in the secondary structure prediction. This
becomes the major obstacle to our method, emphasizing the

importance of improving secondary structure prediction accu-
racy. In stage 2, we can see that the prediction rates for hairpins
and nonhairpins, 47.7% (�3.9) and 77.4% (�2.7) correct pre-
dictions, respectively, are better than random (Table 1), which
shows that local sequence contains information that helps to
determine the local fold, beyond secondary structure. This
observation concurs with the work by Wodak and coworkers
(32), who found that a local signal helps to determine the
conformation of �� turns. Testing our method in the ideal case
led to better results in the sense of more balanced predictions:
55.9% (�2.1) and 73.6% (�3.7) � hairpin and nonhairpin
successful predictions vs. 47.7% (�3.9) and 77.4% (�2.7) for the
test case. However, despite this clear improvement, the fact that
the correct prediction rate still was below 100% stresses the
relevance of global context in determining local structure.

From the prediction point of view, the results for the test case
show a clear improvement over random predictions (Table 1)
and open the question of what features of the scoring function
led to recognition. To answer this question we trained six
separate neural networks by using a subset of scores for each
network: (i) six secondary structure-based terms; (ii) accessibil-
ity; (iii) turn; (iv) specific pair interactions; (v) nonspecific
distance-based contacts; and (vi) four properties of the second-
ary structure pattern. The training and prediction protocols were
repeated as before for each of the networks. For the ideal case,
we found that only secondary structure and accessibility-related
scores, when considered in isolation, display substantial � hair-
pin recognition rates, 51.2% (�2.7) and 60.5% (�3.0), respec-
tively, together with high coverages (Table 2). However, for the
accessibility score only, the results of our procedure are better
than random predictions (Table 2). For the test case, secondary
structure scores again show the highest hairpin prediction rate,
57.3% (�8.2). However, as before, these prediction results are
close to random predictions (Table 2). Interestingly, in this case,
the turn term has the second highest recognition rate, 34%
(�4.6), 8.8% (�4.4) better than random, suggesting that turn
propensities may compensate for incorrect secondary structure
predictions, by giving a lower score to residue stretches incor-
rectly predicted as coil. This observation is supported by the fact
that for the ideal case, the turn term alone did not show any
prediction power. In the case of the accessibility score, the
prediction rate dropped to 32.5% (�3.3), although it was still
better than random predictions.

The results for the accessibility score, both in the ideal and in
the test case, indicate that the accessibility pattern of the hairpin
is a powerful contributor to recognition. This recognition power
probably appears because the accessibility pattern reflects the
three-dimensional environment of the hairpin and thus the
long-range interactions involved in stabilizing the hairpin. From
the prediction point of view, that recognition happens in the test
case, where no hairpins from homologues to the target protein
were present, shows that hairpins with similar environments may
be found in the database. The latter indicates that our procedure

Fig. 3. Length (abscissae) dependence of the overall (� hairpins � nonhair-
pins) prediction rate of the method (ordinates). Dark gray, ideal case; light
gray, test case.

Table 2. Prediction performance for � hairpins by using only
independent scoring terms (see Discussion)

Ideal Test

SS* AC¶ SS* AC¶

Qp† 51.2 � 2.7 60.5 � 3.0 57.3 � 8.2 32.5 � 3.3
Qo‡ 17.4 � 3.3 76.0 � 3.0 6.7 � 2.9 28.7 � 3.6
S§ 4.8 � 4.9 53.0 � 1.3 3.8 � 2.0 6.3 � 3.5

*Results for our procedure when using only the six secondary structure-based
terms as input to the NN (see Methods).

†,‡,§Same as in Table 1.
¶Same as before, but using the accessibility-based term (see Methods).
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can be applied to proteins with no relatives in the protein
database.

We see that results obtained when using the different scoring
terms independently (Table 2) are always worse than those
obtained when using all of them together (Table 1). This fact
suggests that an important contribution to the success of our
method comes from the correlations between scoring terms
identified by the neural network.

Finally, it is interesting to note that no clear trend was
observed for prediction rates in relation to the length of the �c�
patterns (Fig. 3). This result was obtained for those pattern
lengths, 10–24, for which there was a similar number (100) of
hairpins in the database. Considering that hairpins of different
sizes may be very different, the latter suggests that our scoring
scheme is able to correctly identify some common characteristics
between patterns, independent of their lengths. Thus only
marginal benefits would be obtained from improving our
method by using size-dependent neural networks. This indepen-
dence of size is relevant in the sense that the prediction problem
is mostly reduced to a SSS motif recognition problem only.

Future Improvements
The final goal of SSS predictions is to pave the way for tertiary
structure predictions (Fig. 1). In this sense, our results support
what we believe is a promising approach to the problem. The
previous analysis suggests that future improvements may come
from three different directions: better secondary structure and

accessibility predictions, improvements in the prediction proce-
dure, and growth in the database. The former will increase the
rate of recovered hairpin �c� patterns in the first step of our
prediction protocol.

The prediction procedure can be improved by replacing the 10
1�s filter (see Methods) by a second neural network. The latter
would be used to assess the likelihood that a given �c� pattern
corresponds to a nonhairpin, following a procedure analogous to
that presented here. �c� patterns giving a weak � hairpin signal
and a strong nonhairpin signal could be predicted as nonhairpins
more reliably.

Finally, improvements may come from enlarging the hairpin
database (10). Increasing the database size will provide a better
sampling of the hairpin space, thus increasing the number of
cases for which a correct hit can be found. Adding hairpins from
different representatives of the same protein family, with low
intermotif sequence identity, is a possible way to expand our
database.

We are at present exploring these options as well as the
extension of the method to other SSS motifs.
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