Skip to main content
. 2025 Aug 4;25:760. doi: 10.1186/s12888-025-07189-1

Table 3.

Comprehensive summary of model performance

Method Dataset AUC (95% CI) Specificity Sensitivity Intercept of calibration curve* Slope of calibration curve
Bayesian Network Training Set 0.849 (0.839–0.859) 0.875 0.762 < 0.0001 0.99
Testing Set 0.821 (0.803–0.840) 0.896 0.724 < 0.0001 0.94
Validation Set 0.800 (0.785–0.815) 0.882 0.690 0.0003 1.48
Sensitivity Analysis (30% missing) 0.791 (0.777–0.806) 0.849 0.681 0.0005 1.51
Logistic Regression Model Training Set 0.838 (0.829–0.847) 0.899 0.734 0.0002 1.16
Testing Set 0.832 (0.817–0.847) 0.899 0.734 0.0002 1.1
Validation Set 0.799 (0.787–0.811) 0.903 0.664 0.0001 2.26
Sensitivity Analysis (30% missing) 0.746 (0.733–0.759) 0.867 0.603 0.0013 0.18

* Represents the absolute value of the intercept of calibration curves