
An improved genetic model generates high-
resolution mapping of QTL for protein
quality in maize endosperm
Rongling Wu*†, Xiang-Yang Lou*‡, Chang-Xing Ma*, Xuelu Wang§, Brian A. Larkins§, and George Casella*

*Department of Statistics, University of Florida, Gainesville, FL 32611; ‡Department of Agronomy, Zhejiang University, Hangzhou, Zhejiang 310029,
People’s Republic of China; and §Department of Plant Sciences, University of Arizona, Tucson, AZ 85721

Contributed by Brian A. Larkins, June 8, 2002

The genetic mapping of polymorphic markers in a cross between
two inbred plant lines has proven to be a powerful method for
detecting quantitative trait loci (QTL) underlying complex traits.
However, existing methods of QTL mapping were developed for
disomic inheritance of both marker and QTL loci in a diploid
population. To map QTL influencing traits expressed in the en-
dosperm, a triploid embryo-nourishing tissue resulting from dou-
ble fertilization, existing QTL mapping models require modification
to consider the trisomic inheritance of the endosperm and the
generation difference between the mapping population and the
endosperm. Such a model requires simultaneous use of two suc-
cessive generations, which theoretically can lead to an increase in
resolution for QTL mapping compared with the use of a single
backcross or F2 generation. Using a newly developed model based
on these considerations, we demonstrate the improved resolution
of QTL, influencing protein quality traits in maize endosperm. The
increased resolution made possible with this approach makes
identified QTL accessible to positional cloning.

The evolutionary success of flowering plants is to a certain
extent due to the occurrence of double fertilization (1).

Double fertilization involves two sperm cells: one fuses with the
egg cell to form a diploid zygote; the other fuses with the
binucleated central cell to give rise to the triploid primary
endosperm nucleus (2). The endosperm has classically been
assigned the function of nourishing the embryo and providing
hormones thought to regulate embryo growth (2, 3). The en-
dosperm is largely or partially responsible for many grain quality
traits, including protein (amino acid) and carbohydrate content
(4), that are of paramount importance to the health of humans.
Unfortunately, the essential amino acids needed for building
proteins and other molecules are generally present at low
concentrations in seeds of crop plants. Genomics-based strate-
gies for breeding and genetic modification provide a powerful
means for developing nutritionally improved cultivars of crop
plants (5).

The improvement of many crop quality traits relies on the
identification of genes responsible for endosperm-specific traits.
The endosperm is a triploid tissue with four possible genotypes at
one gene locus AAA, AAa, Aaa, and aaa versus the three AA, Aa,
and aa for a usual diploid tissue. Also, because the endosperm is a
product of a reproductive process, it represents a new generation as
compared with its maternal sporophytic tissue. Finally, for the
endosperm, the progeny of a cross between two different genotypes
will vary between the reciprocal crosses. For these reasons, statis-
tical strategies for genetic mapping of endosperm traits should be
qualitatively different from those for mapping a diploid tissue (6, 7).
To this end, we have extended and improved existing genetic
models to map quantitative trait loci (QTL) affecting endosperm
traits in maize.

Using this improved model, we mapped QTL influencing two
measures of grain protein quality in maize (Zea mays): the protein
synthesis factor elongation factor 1� (eEF1A) and free amino acid

(FAA) content (8). It is well established that the concentration of
eEF1A is consistently highly correlated with the lysine content of
maize endosperm flour (9), which has much nutritional value for
humans and monogastric animals. A great deal of research has been
performed to explain the increased level of FAA in opaque-2 (o2)
mutants that nearly double the Lys content of maize endosperm
(10). These two traits have been used as indicators of the lysine
content of the endosperm (9). The genetic basis of eEF1A and FAA
content, which could provide an approach for selecting crop
genotypes with better protein quality, has been investigated using
quantitative and molecular genetic approaches (11–13). As will be
seen below, however, the underlying genetic factors or QTL for
these two traits can be identified more precisely by using our
improved statistical model.

Statistical Theory
Mixture Model. A mixture model forms a basic framework for
modeling putative QTL genotypes (6). In this model, each obser-
vation y is assumed to have arisen from one of k (k possibly
unknown but finite) genetic components, each component being
modeled by a density from the parametric family f:

p�y��, �, �� � �1f�y; �1, �� � . . . � �kf�y; �k, ��, [1]

where � � (�1, . . . , �k) are the mixture proportions which are
constrained to be non-negative and sum to unity; � � (�1, . . . ,
�k) are the component specific parameters, with �i being specific
to component i and � a parameter that is common to all
components.

A genetic mapping study built on such a mixture model contains
two major tasks: (i) Derive the mixture proportions (�1, . . . , �k),
denoted as the frequencies of QTL genotypes, and the density
functions specified by gene effects of putative QTL (�1, . . . , �k) and
the common residual variance (�2); (ii) estimate the unknown QTL
parameters included in the mixture model, based on observed
markers and phenotypes. The first task relies on experimental
designs, marker types, meiotic configurations, population struc-
tures, and reproductive behaviors contained in the mixture pro-
portions, as well as gene actions and interactions contained in the
normal distribution density. The second task needs powerful sta-
tistical and computational algorithms; for example, the EM algo-
rithm for maximum likelihood method (14, 15).

Differences of Diploid and Triploid Mapping. Suppose there is a
segregating QTL (Q) with two alleles Q and q. For a usual diploid
F2 population, the components in the mixture model of Eq. 1
correspond to three groups of QTL genotypes QQ, Qq, and qq.
Phenotypic observations within each of the three genotype groups
are assumed to follow a normal distribution in which the expected
QTL genotypic values (�j, j � 0, 1, 2 denotes the number of allele
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Q), composed of the overall mean (�) and additive (a) and
dominant effects (d), are modeled by

��2 � � � a for genotype QQ
�1 � � � d for genotype Qq
�0 � � 	 a for genotype qq

, [2]

and the common residual variance is denoted by �2. The mixture
proportion of each QTL genotype is the conditional probability
of the QTL genotype, on a marker genotype, which is derived on
the basis of linkage analysis model as used in ref. 6.

For the triploid endosperm, there are four possible QTL geno-
types, QQQ, QQq, Qqq, and qqq, whose expected genotypic values
(�j) contain the additive effect (a) due to the substitution of allele
q by Q and two dominant effects of alleles QQ over q (d1) and allele
Q over qq (d2):

�
�3 � � �

3
2

a for triploid genotype QQQ

�2 � � �
1
2

a � d1 for triploid genotype QQq

�1 � � 	
1
2

a � d2 for triploid genotype Qqq

�0 � � 	
3
2

a for triploid genotype qqq

. [3]

In addition, the mixture proportions in endosperm mapping are the
conditional probabilities of each of the four endosperm QTL
genotypes on the marker genotypes of diploid F2 plants. For a QTL
located in a marker interval M1 � M2, these conditional probabil-
ities are derived and described in Table 3, which is published as
supporting information on the PNAS web site, www.pnas.org. It is
seen that the conditional probabilities of the QTL genotypes on a
given marker genotype are different between the F2 and endosperm
models.

Statistical Algorithm. In endosperm mapping, there are six unknown
parameters to be estimated, which are the overall mean (�),
additive effect (a), dominant effects (d1 and d2), residual variance
(�2), and QTL position (
). The maximum-likelihood estimates
(MLEs) of the unknown vector � � (� a d1 d2 �2 
)T under the
endosperm model can be computed by implementing an EM
algorithm (14, 15). The log-likelihood of Eq. 1 for N endosperms
derived from the F2 generation is given by

log ���� � �
i � 1

N

log� �
j � 0

3

�ijfj�yi�,�, [4]

with derivatives
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where we define

�ij �
�ijfj�yi�

�
j � 0

3
�ijfj�yi�

, [5]

which could be thought of as a posterior probability that the
endosperm from the ith F2 plant has a QTL genotype j. We then
implement the EM algorithm with the expanded parameter set
{�, �}, where � � {�ij}. Conditional on �, we solve for the
zeros of �log �(�)���� to get our estimates of � (the M step).
The estimates are then used to update � (the E step), and the
process is repeated until convergence. The values at convergence
are the maximum-likelihood estimates (MLEs).

It is assumed above that an additive effect (a), along with two
different dominant effects (d1, QQ versus q, and d2, qq versus Q),
determines QTL-genotypic values of an endosperm (Eq. 3; three-
effect triploid model). In some case, the two dominant effects can
be collapsed into one (d1 � d2 � d; two-effect triploid model). Thus,
whereas the three-effect model is more general, the two-effect
model is computationally simpler. Because these two models are
not nested, a better model to fit a triploid endosperm data set can
be selected on the basis of Akaike’s (16) information criterion
(AIC)

AIC � �2 ln�maximum likelihood�

� 2�number of fitted parameters�

The model with the smallest AIC is chosen as the most
parsimonious.

Materials and Methods
An F2 population of 106 plants was derived from a cross between
two contrasting maize inbred lines, Oh51Ao2 (high eEF1A and
low FAA content) and Oh545o2 (low eEF1A and high FAA
content). The F2 and F2:3 progeny from this cross were prepared
for genotypic and phenotypic analyses as described (11, 12).

DNA was extracted from young leaves of the F2 plants, whereas
grain protein quality traits were measured from the F3 kernels of the
F2, as described (11–13). Simple sequence repeat (SSR) primers
were selected from the Maize Microsatellite-RFLP consensus map.
The primer sequences were described in the Maize Genome
Database. The procedures for generating SSR markers were de-
scribed in refs. 11 and 12. A linkage map of 83 SSR markers of the
F2 plants was constructed (11), based on the known order of SSR
markers on maize chromosomes.

Results
The eEF1A and FAA values for the endosperm of the F2 plants
and their original parents were previously reported (11, 12) and
found to display remarkable variation in the population. It is not
uncommon to detect F2 transgressive segregants whose pheno-
typic values are beyond those of both parents. The marker
information of the genetic map constructed is associated with the
phenotypic values of the endosperm in the F2 by using a
statistical model. For comparison, we used both the current
diploid model (6) and our newly developed triploid model,
described in the Statistical Theory.

The diploid model detected two suggestive QTLs (P � 0.05) for
eEF1A content, but did not detect a significant QTL (P � 0.01; ref.
11). However, our triploid model detected two suggestive QTLs and
two significant QTLs for the same trait (Table 1, Fig. 1). The two
significant QTLs for eEF1A content were detected on chromo-
somes 2 and 4, respectively. The log-likelihood ratio (LR) test
statistics calculated for these two QTLs were 31.82 and 26.84,
greater than the critical threshold values at P � 0.01, 25.45, and
25.97, respectively, calculated from 1,000 permutation tests (17). As
shown in Fig. 1A, interval mapping of a significant QTL on
chromosome 2 indicated a narrow peak spanning about 10 cM
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between markers bmc2248 and umc1026. This finding suggests that
our triploid model provides high resolution for QTL mapping of
endosperm traits. The second significant QTL was detected on the
short arm of chromosome 4 at 16.7 cM from the first marker phi072
(Fig. 1B). Although this QTL was also detected at a similar location
by Lander and Botstein’s diploid interval mapping (6), the diploid
mapping model had considerably lower power compared with our
triploid mapping model, as indicated by the difference of the LR
profiles between the two models (Fig. 1B). Wang et al. (11)
observed that this QTL was linked with a cluster of 22-kDa �-zein
coding sequences, confirming the biological relevance of our trip-
loid model.

The two suggestive QTLs were detected between markers
bmc1382 and dupssr10 on chromosome 5 (Fig. 1C) and between
markers phi075 and mmc0241 on chromosome 6 (Fig. 1D), respec-
tively, and both displayed steep peaks for the profile of the LR
values as a function of the length of linkage group. Each QTL
detected by our model independently explains about 20% of the
variance for eEF1A content. The four QTLs detected display strong
allelic interaction effects because of the dominance of QQ over q or
the dominance of Q over qq (Table 1). The QTL detected near the
centromere of chromosome 7 by the diploid model (11) was not
confirmed by the triploid model.

More striking genetic mapping results were obtained for FAA
content. The new triploid model identified ten significant QTLs and
one suggestive QTL, located on all ten chromosomes (Table 1),
whereas only four suggestive QTLs were detected by the diploid
model (8). Although the additive effects of the QTL detected are
significant for the FAA content of the endosperm, two types of
dominant effects (QQ versus q and Q versus qq) play a more
important role in affecting this trait. In all cases, the Akaike’s
information criterion (AIC) values calculated showed that the
three-effect triploid model better fit the data than the two-effect
model.

The most pronounced examples of loci affecting FAA content
are two QTL, one on chromosome 2 (Fig. 2A) and the other on
chromosome 4 (Fig. 2B). These two QTL were detected with high
LRs (42.4 and 45.1) and, more importantly, exhibited high mapping
resolution—i.e., their mapping intervals are 7–10 cM. The QTL at
marker interval bmc1633–bmc1329, located on the long arm of
chromosome 2, was also detected by the diploid model (ref. 12; Fig.
2A). This strong QTL is coincident with genes encoding a mono-

functional Asp kinase 2 and a bifunctional Asp kinase-homo-Ser
dehydrogenase-2 (13), which are enzymes controlling important
steps in metabolic pathways for amino acid biosynthesis and Lys
degradation. The gene corresponding to this QTL has now been
cloned (X.W. and B.A.L., unpublished work), which further vali-
dates our triploid model. On chromosome 2, a second significant
QTL bracketed by bmc1537 and bmc2248 was also detected by the
triploid model (Fig. 2B). But its existence can be tested more
precisely by modeling multiple QTL for the endosperm-specific
traits.

Another interesting finding in this study is that a QTL at marker
interval bmc1714–bmc1129 on chromosome 9 was observed by the
diploid model, whereas a QTL at a different marker interval on the
same chromosome was detected by the triploid model (Fig. 2C).
Because the triploid model built on the quantitative inheritance of
the endosperm (18) provides a more precise approach for QTL
mapping in the endosperm, this difference suggests that the result
from the diploid model, as can be used in the current literature, may
deviate from biological reality. The QTL detected on chromosomes
1, 3, 5, 6, 7, 8, and 10 are shown as Fig. 3, which is published as
supporting information on the PNAS web site.

Simulation
We performed a simulation study to examine the robustness and
power of the triploid model for detecting QTL affecting en-
dosperm-specific traits. This simulation study mimics the con-
ditions of the maize endosperm experiment by assuming the
same sample size (n � 106), a similar marker interval (10 cM)
and similar gene effects. The simulation study includes three
different schemes describing a variety of inheritance modes of a
QTL expressed in the endosperm: (i) a � 0.5, d1 � d2 � 0.05
(additive model); (ii) a � 0.5, d1 � 2.0 and d2 � 0 (one
dominant-effect model); and (iii) a � 0.5, d1 � d2 � 2.0 (two
dominant-effect model).

Assume that a QTL affecting an endosperm-specific trait is
located at 3 cM from the left one of the two flanking markers. Given
the conditional probabilities of endosperm QTL genotypes (see
supporting information), a total of 106 endosperm phenotypes were
simulated on the basis of a normal distribution with the mean as
the genotypic value of a particular QTL genotype (Eq. 3) and
the residual variance corresponding to the broad-sense heritability
of 0.15.

Table 1. MLEs of chromosome locations and effects of QTL affecting eEF1A and FAA contents in
maize endosperm

Chromosome Location LR

Threshold

a d1 d2P � 0.05 P � 0.01

eEF1A content
2S bmc2248 –umc1026 31.82 22.88 25.45 0.10 �0.47 �0.60
4S phi072 –phi026 26.84 22.61 25.97 �0.07 �0.07 0.41
5S bmc1382 –dupssr10 20.93 19.49 22.58 �0.23 �0.23 �0.14
6S phi075 –mmc0241 22.75 19.37 24.83 �0.28 �0.30 0.20

FAA content
1L phi037 –mmc0041 28.29 22.92 27.33 �6.17 �6.17 �11.87
2S bmc1537 –bmc2248 42.37 22.22 26.04 0.48 17.19 �0.48
2L bmc1633 –bmc1329 42.75 22.22 26.04 5.93 �11.19 �5.93
3S bmc2136 –bmc1452 41.22 21.61 23.84 6.18 �12.76 �6.18
4L bmc1217 –bmc1755 45.09 23.04 28.31 �5.80 �5.80 �12.51
5L dupssr10 –mmc0282 23.52 21.17 23.50 0.13 17.09 �0.13
6L bmc2249 –bmc1740 20.45 19.88 24.16 8.69 �14.62 �8.69
7L dupssr13 –bmc2328b 38.25 21.65 27.70 5.93 �11.31 �5.93
8S phi119 –phi115 34.95 19.60 24.15 �5.98 �5.98 �10.94
9S phi028 –bnlg244 26.03 18.63 24.83 5.73 �11.30 �5.73
10S bmc1655 –bmc1074 24.74 22.52 25.62 0.02 16.83 �0.02

The location of QTLs is described by two flanking markers. The threshold is calculated on the basis of 1,000 permutation tests (17).
a is the additive effect of a QTL, and d1 and d2 are the dominance effects due to the dominance of QQ over q or Q over qq, respectively.
Significant QTLs (P � 0.01) are expressed in boldface.
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We used both the triploid and diploid models to detect the
hypothesized QTL from the simulated phenotypic data for the
endosperm under the three different schemes. In any case, the tri-
ploid model displayed greater power (or probability) of detecting a

significant QTL among 500 simulation replicates (0.23–0.42) than
the diploid model (0.20–0.36; Table 2). The map location of the
QTL detected was also estimated more precisely from the triploid
model (�1.0 cM) than from the diploid model (�3.5 cM). Under

Fig. 1. The profiles of the LR test statistics for testing the QTL affecting eEF1A content calculated as a function of genome position on chromosomes 2 (A), 4 (B), 5
(C),and6(D).Thebluecurvesareassociatedwithourtriploidmodel,whereasthepinkcurveswithLanderandBotstein’sdiploidmodel.Thesignificancethresholdvalues
for the triploid model [indicated by the solid (P � 0.01) and dashed (P � 0.05) horizontal lines] were estimated with 1,000 permutations (17). Except for the QTL on
chromosome 4, all of the QTL detected are fit better by the three- rather than two-effect triploid model. Marker names and map distances (in cM) are given below each
profile (11).
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the diploid model, the estimate of the additive genetic effect of the
endosperm QTL had a significantly greater sampling error (by over
50%) than under the triploid model (Table 2). This finding thus
suggests that the estimate of the QTL additive effect is questionable
when the conventional diploid model is used to map QTL segre-
gating in the endosperm. The triploid model can estimate two
different dominant effects (d1, the dominance of QQ over q, and d2,
the dominance of Q over qq) occurring in the endosperm inheri-
tance, whereas the diploid model mixes the estimates of these two
dominant effects. When the dominant effect of a QTL is small
(Scheme 1 in Table 2), the triploid model appeared to overestimate
this effect (Table 2). But the triploid model provided an accurate
estimate of a large dominant effect, although a large sampling error
may occur. The inaccurate estimate of the dominant effect from the
triploid model may occur because of the small sample size simu-
lated. When the sample size is increased to 400, both the accuracy
and precision of the dominant-effect estimate can be significantly
increased from the triploid model, whereas the diploid model still
displays a poor estimate of the dominant effect as obtained from a

small sample size (data not shown). A similar result is achieved
when different sets of values are hypothesized.

Discussion
The past 10–15 years have witnessed tremendous progress in the
development of innovative molecular techniques and the applica-
tion of these techniques to dissect complex, quantitatively inherited
traits into QTL components in a variety of organisms (19, 20).
Statistical inference has played a pivotal role in the successful
dissection of quantitative traits (6, 7). The statistical principle for
QTL mapping originally proposed by Lander and Botstein (6) has
been extended to different experimental designs, different mapping
populations, and different marker types. However, no statistical
strategy has been developed to specifically map disomically inher-
ited quantitative traits expressed in the triploid endosperm, despite
the fact that the endosperm is an embryo-nourishing tissue carrying
grain quality traits of great economical importance.

In this study, we have proposed an improved QTL mapping
model built on the segregation and transmission of genes from a

Fig. 2. The profiles of the LR test statistics for testing the QTL affecting FAA content calculated as a function of genome position on chromosomes 2 (A), 4 (B), and
9 (C). The blue curves are associated with our triploid model, whereas the pink curves with Lander and Botstein’s diploid model. The significance threshold values for
the triploid model [indicated by the solid (P � 0.01) and dashed (P � 0.05) horizontal lines] were estimated with 1,000 permutations (17). According to AIC (16), all of
the QTL detected for FAA content are fit better by the three- rather than two-effect triploid model. Marker names and map distances (in cM) are given below each
profile (11).

Table 2. The MLEs of genetic parameters, their sampling errors (SE), and the power of detecting a significant
QTL segregating in the endosperm from the triploid and diploid models under different simulation schemes

Model

MLE (�SE)

Powerâ d̂1 d̂2

Scheme 1: Additive model 0.5 0.05 0.05
Triploid 0.49 (0.1473) 0.33 (0.9376) �0.16 (0.9091) 0.416
Diploid 0.51 (0.2330) 0.04 (0.3689) 0.364

Scheme 2: One dominant-effect model 0.5 2.0 0
Triploid 0.49 (0.2387) 1.86 (1.3778) 0.10 (1.6118) 0.182
Diploid 0.49 (0.3680) 0.53 (0.5944) 0.120

Scheme 3: Two dominant-effect model 0.5 2.0 2.0
Triploid 0.50 (0.2575) 2.43 (1.1899) 1.47 (1.7075) 0.234
Diploid 0.52 (0.3927) 1.06 (0.5961) 0.198

a, d1, and d2 are the additive genetic effect, the dominant genetic effect of QQ over q, and the dominant genetic effect of Q over qq,
respectively, for a QTL expressed in the endosperm. The triploid model estimates the dominant effects d1 and d2 separately, whereas the
diploid model estimates the mixture of these two effects.
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diploid sporophytic mother to triploid endosperm and used it to
map QTLs affecting grain quality traits in maize endosperm. Our
model takes account of the nature of quantitative inheritance in the
endosperm (18) and the difference between the generation of the
endosperm and the generation of its mother sporophytic plant. As
compared with Lander and Botstein’s model (6) developed for
mapping diploid tissues, our triploid model displays three advan-
tages. First, our model can increase the power of detecting a QTL
affecting endosperm traits (reduced type II errors). In our maize
example, many more significant QTL have been identified by the
triploid than by the diploid model. Second, the triploid model can
increase mapping resolution. For example, a QTL for FAA content
was mapped to an interval of �7 cM. Third, our model increases the
precision of QTL mapping. At least one QTL detected by our
model corresponds to candidate genes encoding enzymes impor-
tant to amino acid biosynthesis (13). Fourth, because the genetic
mechanism underlying endosperm formation is embedded in our
model, it has increased potential to detect correct QTL (reduced
type I errors).

It is expected that the triploid endosperm has more possibilities
to generate strong dominance effects than usual diploid tissues
because of its larger number of gene combinations (18). In this
study, we observed strong dominance effects of QTL on eFF1A and
FAA contents in maize endosperm, suggesting that dominance
effects are important for the genetic improvement of grain quality
traits. However, given the modest sample size used in this study, the
estimates of dominance effects should be interpreted with caution.
Based on our simulation study, we found that the precise estimate
of dominance effects on endosperm traits requires 400 genotypes.
When the sample sizes used are limited, other measures, as we
recommended in our other study (21), can be used to enhance the

estimates of QTL positions and effects in the endosperm. These
measures include (i) a two-stage hierarchical design for genotyping
both the maternal plants and their embryos to extract more
information about gene transition and segregation, (ii) appropriate
sampling schemes for allocating samples between the F2 and their
seeds, and (iii) multiple replicates used to increase heritability levels
of an endosperm trait.

In this study, we ignored the effect of the maternal genome on
the endosperm. Despite many QTL detected for the two protein
traits, our current triploid model may be insufficient to capture all
information about the inheritance of the endosperm. For example,
the QTL located near the centromere of chromosome 7 was
detected by the diploid model (11), but not by the triploid model.
This difference can be explained by a possibility that this QTL is
derived from the maternal genome. It is interesting to investigate
how maternal genomes (F2) interact with offspring genomes (en-
dosperm) to determine the phenotypes of seed- and endosperm-
specific traits. This issue is similar to gene interactions from
maternal effects in animals (22) and should be fundamentally
important to simultaneously improve seed yield (mostly determined
by parental genomes) and seed quality (mostly determined by
offspring genomes) in plants (4, 5). The model reported in this
study, however, provides a necessary platform for unlocking the
genetic secrets underlying seed and endosperm formation and,
ultimately, designing an efficient marker-assisted selection plan for
the genetic improvement of grain yield and quality traits in crop
plants.
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